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ABSTRACT
We study the static and dynamic planar range skyline re-
porting problem in the external memory model with block
size B, under a linear space budget. The problem asks for
an O(n/B) space data structure that stores n points in the
plane, and supports reporting the k maximal input points
(a.k.a. skyline) among the points that lie within a given
query rectangle Q = [α1, α2]× [β1, β2]. When Q is 3-sided,
i.e. one of its edges is grounded, two variants arise: top-
open for β2 =∞ and left-open for α1 = −∞ (symmetrically
bottom-open and right-open) queries.

We present optimal static data structures for top-open
queries, for the cases where the universe is R2, a U ×U grid,
and rank space [O(n)]2. We also show that left-open queries
are harder, as they require Ω((n/B)ε + k/B) I/Os for ε > 0,
when only linear space is allowed. We show that the lower
bound is tight, by a structure that supports 4-sided queries in
matching complexities. Interestingly, these lower and upper
bounds coincide with those of the planar orthogonal range
reporting problem, i.e., the skyline requirement does not alter
the problem difficulty at all!

Finally, we present the first dynamic linear space data
structure that supports top-open queries in O(log2Bε n +
k/B1−ε) and updates in O(log2Bε n) worst case I/Os, for
ε ∈ [0, 1]. This also yields a linear space data structure for
4-sided queries with optimal query I/Os and O(log(n/B))
amortized update I/Os. We consider of independent interest
the main component of our dynamic structures, a new real-
time I/O-efficient and catenable variant of the fundamental
structure priority queue with attrition by Sundar.
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1. INTRODUCTION
Given two different points p = (xp, yp) and q = (xq, yq)

in R2, where R denotes the real domain, we say that p
dominates q if xp ≥ xq and yp ≥ yq. Let P be a set of n
points in R2. A point p ∈ P is maximal if it is not dominated
by any other point in P . The skyline of P consists of all
maximal points of P . Notice that the skyline naturally forms
an orthogonal staircase where increasing x-coordinates imply
decreasing y-coordinates. Figure 1a shows an example where
the maximal points are in black.

Q

(a) Skyline (b) Range skyline

Figure 1: Range skyline queries.

Given an axis-parallel rectangle Q, a range skyline query
(also known as a range maxima query) reports the skyline
of P ∩Q. In Figure 1b, for instance, Q is the shaded rect-
angle, and the two black points constitute the query result.
When Q is a 3-sided rectangle, a range skyline query be-
comes a top-open, right-open, bottom-open or left-open query,
as shown in Figures 2a-2d respectively. A dominance (resp.
anti-dominance) query Q is a 2-sided rectangle with both the
top and right (resp. the bottom and left) edges grounded, as
shown in Figure 2e (resp. 2f). Another well-studied variation
is the contour query, where Q is a 1-sided rectangle that is
the half-plane to the left of a vertical line (Figure 2g).
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Figure 2: Variations of range skyline queries (black points represent the query results).

This paper studies linear-size data structures that can
answer range skyline queries efficiently, in both the static
and dynamic settings. Our analysis focuses on the external
memory (EM) model [1], which has become the dominant
computation model for studying I/O-efficient algorithms. In
this model, a machine has M words of memory, and a disk of
an unbounded size. The disk is divided into disjoint blocks,
each of which is formed by B consecutive words. An I/O
loads a block of data from the disk to memory, or conversely,
writes B words from memory to a disk block. The space of a
structure equals the number of blocks it occupies, while the
cost of an algorithm equals the number of I/Os it performs.
CPU time is for free.

By default, the data universe is R2. Given an integer
U > 0, [U ] represents the set {0, 1, . . . , U − 1}. All the above
queries remain well defined in the universe [U ]2. Particularly,
when U = O(n), the universe is called rank space. In general,
for a smaller universe, it may be possible to achieve better
query cost under the same space budget. We consider that
P is in general position, i.e., no two points in P have the
same x- or y-coordinate (datasets not in general position can
be supported by standard tie breaking). When the universe
is [U ]2, we make the standard assumption that a machine
word has at least log2 U bits.

1.1 Motivation of 2D Range Skyline
Skylines have drawn very significant attention (see [4, 6, 7,

10–12,15,20,21,23,24,26–31] and the references therein) from
the research community due to their crucial importance to
multi-criteria optimization, which in turn is vital to numerous
applications. In particular, the rectangle of a range skyline
query represents range predicates specified by a user. An
effective index is essential for maximizing the efficiency of
these queries in database systems [24,28].

This paper concentrates on 2D data for several reasons.
First, planar range skyline reporting (i.e., our problem) is
a classic topic that has been extensively studied in theory
[7, 11,12,15,20,21,23,27]. However, nearly all the existing
results apply to internal memory (as reviewed in the next
subsection), while currently there is little understanding
about the characteristics of the problem in I/O environments.

The second, more practical, reason is that many skyline
applications are inherently 2D. In fact, the special importance
of 2D arises from the fact that one often faces the situation
of having to strike a balance between a pair of naturally con-
tradicting factors. A prominent example is price vs. quality
in product selection. A range skyline query can be used to
find the products that are not dominated by others in both
aspects, when the price and quality need to fall in specific
ranges. Other pairs of naturally contradicting factors include
space vs. query time (in choosing data structures), privacy
protection vs. disclosed information (the perpetual dilemma
in privacy preservation [9]), and so on.

The last reason, and maybe the most important, is that
clearly range skyline reporting cannot become easier as the

dimensionality increases, whereas even for two dimensions,
we will prove a hardness result showing that the problem
(unfortunately) is already difficult enough to forbid sub-
polynomial query cost under the linear space budget! In
other words, the “easiest” dimensionality of 2 is not so easy
after all, which also points to the absence of query-efficient
structures in any higher dimension when only linear space is
permitted.

1.2 Previous Results
Range Skyline in Internal Memory. We first review
the existing results when the dataset P fits in main memory.
Early research focused on dominance and contour queries,
both of which can be solved in O(logn + k) time using a
structure of O(n) size, where k is the number of points
reported [11, 15, 20, 23, 27]. Brodal and Tsakalidis [7] were
the first to discover an optimal dynamic structure for top-
open queries, which capture both dominance and contour
queries as special cases. Their structure occupies O(n) space,
answers queries in O(log n+ k) time, and supports updates
in O(log n) time. The above structures belong to the pointer
machine model. Utilizing features of the RAM model, Brodal
and Tsakalidis [7] also presented an alternative structure
in universe [U ]2, which uses O(n) space, answers queries
in O( logn

log logn
+ k) time, and can be updated in O( logn

log logn
)

time. In RAM, the static top-open problem can be easily
settled using an RMQ (range minimum queries) structure
(see, e.g., [36]), which occupies O(n) space and answers
queries in O(1 + k) time.

For general range skyline queries (i.e., 4-sided), all the
known structures demand super-linear space. Specifically,
Brodal and Tsakalidis [7] gave a pointer-machine structure
of O(n logn) size, O(log2 n+ k) query time, and O(log2 n)
update time. Kalavagattu et al. [21] designed a static RAM-
structure that occupies O(n log n) space and achieves query
time O(logn + k). In rank space, Das et al. [12] pro-
posed a static RAM-structure with O(n logn

log logn
) space and

O( logn
log logn

+ k) query time.
The above results also hold directly in external memory,

but they are far from being satisfactory. In particular, all of
them incur Ω(k) I/Os to report k points. An I/O-efficient
structure ought to achieve O(k/B) I/Os for this purpose.

Range Skyline in External Memory. In contrast to
internal memory where there exist a large number of re-
sults, range skyline queries have not been well studied in
external memory. As a naive solution, we can first scan
the entire point set P to eliminate the points falling out-
side the query rectangle Q, and then find the skyline of the
remaining points by the fastest skyline algorithm [31] on
non-preprocessed input sets. This expensive solution can
incur O((n/B) logM/B(n/B)) I/Os.

Papadias et al. [28] described a branch-and-bound algo-
rithm when the dataset is indexed by an R-tree [17]. The
algorithm is heuristic and cannot guarantee better worst



space query insertion deletion remark

top-open in R2 O(n/B) O(logB n+ k/B) - - optimal
top-open in U2 O(n/B) O(log logB U + k/B) - - optimal

top-open in [O(n)]2 O(n/B) O(1 + k/B) - - optimal

anti-dominance in R2 O(n/B) Ω((n/B)ε + k/B) - - lower bound (indexability)
4-sided in R2 O(n/B) O((n/B)ε + k/B) - - optimal (indexability)

top-open in R2 O(n/B) O(log2Bε n+ k/B1−ε) O(log2Bε n) O(log2Bε n) for any constant ε ∈ [0, 1]

4-sided in R2 O(n/B) O((n/B)ε + k/B) O(log(n/B)) O(log(n/B)) update cost is amortized

Table 1: Summary of our range skyline results (all complexities are in the worst case by default).

case query I/Os than the naive solution mentioned earlier.
Different approaches have been proposed for skyline mainte-
nance in external memory under various assumptions on the
updates [19,28,33,35]. The performance of those methods,
however, was again evaluated only experimentally on certain
“representative” datasets. No I/O-efficient structure exists
for answering range skyline queries even in sublinear I/Os
under arbitrary updates.

Priority Queues with Attrition (PQAs). Let S be a set
of elements drawn from an ordered domain, and let min(S)
be the smallest element in S. A PQA on S is a data structure
that supports the following operations:

• FindMin: Return min(S).
• DeleteMin: Remove and return min(S).
• InsertAndAttrite: Add a new element e to S and

remove from S all the elements at least e. After the
operation, the new content is S′ = {e′ ∈ S | e′ <
e} ∪ {e}. The elements {e′ ∈ S | e′ ≥ e} are attrited.

In internal memory, Sundar [32] described how to implement
a PQA that supports all operations in O(1) worst case time,
and occupies O(n−m) space after n InsertAndAttrite
and m DeleteMin operations.

1.3 Our Results
This paper presents external memory structures for solving

the planar range skyline reporting problem using only linear
space. At the core of one of these structures is a new PQA
that supports the extra functionality of catenation. This
PQA is a non-trivial extension of Sundar’s version [32]. It
can be implemented I/O-efficiently, and is of independent
interest due to its fundamental nature. Next, we provide an
overview of our results.

Static Range Skyline. When P is static, we describe
several linear-size structures with the optimal query cost.
Our structures also separate the hard variants of the problem
from the easy ones.

For top-open queries, we present a structure that answers
queries in optimal O(logB n+ k/B) I/Os (Theorem 1) when
the universe is R2. To obtain the result, we give an elegant
reduction of the problem to segment intersection, which can
be settled by a partially persistent B-tree (PPB-tree) [5].
Furthermore, we show that this PPB-tree is (what we call)
sort-aware build-efficient (SABE), namely, it can be con-
structed in linear I/Os, provided that P is already sorted by
x-coordinate (Theorem 1). The construction algorithm ex-
ploits several intrinsic properties of top-open queries, whereas
none of the known approaches [2, 14, 34] for bulkloading a
PPB-tree is SABE.

The above structure is indivisible, namely, it treats each
coordinate as an atom by always storing it using an entire

word. As the second step, we improve the top-open query
overhead beyond the logarithmic bound when the data uni-
verse is small. Specifically, when the universe is [U ]2 where
U is an integer, we give a divisible structure with optimal
O(log logB U + k/B) query I/Os (Corollary 1). In the rank
space, we further reduce the query cost again optimally to
O(1 + k/B) (Theorem 2).

Clearly, top-open queries are equivalent to right-open
queries by symmetry, and capture dominance and contour
queries as special cases, so the results aforementioned are
applicable to those variants immediately.

Unfortunately, fast query cost with linear space is im-
possible for the remaining variants under the well-known
indexability model of [18] (all the structures in this paper be-
long to this model). Specifically, for anti-dominance queries,
we establish a lower bound showing that every linear-size
structure must incur Ω((n/B)ε + k/B) I/Os in the worst
case (Theorem 5), where ε > 0 can be an arbitrarily small
constant. Furthermore, we prove that this is tight, by giving
a structure to answer a 4-sided query in O((n/B)ε + k/B)
I/Os (Theorem 6). Since 4-sided is more general than anti-
dominance, these matching lower and upper bounds imply
that they, as well as left- and bottom-open queries, have
exactly the same difficulty.

The above 4-sided results also reveal a somewhat unex-
pected fact: planar range skyline reporting has precisely the
same hardness as planar range reporting (where, given an
axis-parallel rectangle Q, we want to find all the points in
P ∩Q, instead of just the maxima; see [3, 18] for the match-
ing lower and upper bounds on planar range reporting). In
other words, the extra skyline requirement does not alter the
difficulty at all.

Dynamic Range Skyline. The aforementioned static
structures cannot be updated efficiently when insertions
and deletions occur in P . For top-open queries, we provide
an alternative structure with fast worst case update over-
head, at a minor expense of query efficiency. Specifically, our
structure occupies linear space, is SABE, answers queries
in O(log2Bε(n/B) + k/B1−ε) I/Os, and supports updates in
O(log2Bε(n/B)) I/Os, where ε can be any parameter satisfy-
ing 0 ≤ ε ≤ 1 (Theorem 4). Note that setting ε = 0 gives a
structure with query cost O(log(n/B) + k/B) and update
cost O(log(n/B)).

The combination of this structure and our (static) 4-sided
structure leads to a dynamic 4-sided structure that uses
linear space, answers queries optimally in O((n/B)ε + k/B)
I/Os, and supports updates in O(log(n/B)) I/Os amortized
(Theorem 6). Table 1 summarizes our structures.

Catenable Priority Queues with Attrition. A central
ingredient of our dynamic structures is a new PQA that is
more powerful than the traditional version of Sundar [32].



Specifically, besides FindMin, DeleteMin and InsertAn-
dAttrite (already reviewed in Section 1.2), it also supports:

• CatenateAndAttrite: Given two PQAs on sets S1

and S2 respectively, the operation returns a single PQA
on S = {e ∈ S1 | e < min(S2)} ∪ S2. In other words,
the elements in {e ∈ S1 | e ≥ min(S2)} are attrited.

We are not aware of any previous work that addressed the
above operation, which turns out to be rather challenging
even in internal memory.

Our structure, named I/O-efficient catenable priority queue
with attrition (I/O-CPQA), supports all operations in O(1)
worst case and O(1/B) amortized I/Os (the amortized bound
requires that a constant number of blocks be pinned in main
memory, which is a standard and compulsory assumption
to achieve o(1) amortized update cost of most, if not all,
known structures, e.g., the linked list). The space cost is
O((n−m)/B) after n InsertAndAttrite and CatenateAn-
dAttrite operations, and after m DeleteMin operations.

All the missing proofs of theorems, lemmata and corollaries
can be found in the full version.

2. SABE TOP-OPEN STRUCTURE
In this section, we describe a structure of linear size to

answer a top-open query in O(logB n + k/B) I/Os. The
structure is SABE, namely, it can be constructed in linear
I/Os provided that the input set P is sorted by x-coordinate.

2.1 Reduction to Segment Intersection
We first describe a simple structure by converting top-open

range skyline reporting to the segment intersection problem:
the input is a set S of horizontal segments in R2; given a
vertical segment q, a query reports all the segments of S
intersecting q.

Given a point p in P , denote by leftdom(p) the leftmost
point among all the points in P dominating p. If such a point
does not exist, leftdom(p) = nil. We convert p to a horizontal
segment σ(p) as follows. Let q = leftdom(p). If q = nil, then
σ(p) = [xp,∞[×yp; otherwise, σ(p) = [xp, xq[×yp. Define
Σ(P ) = {σ(p) | p ∈ P}, i.e., the set of segments converted
from the points of P . See Figure 3a for an example.

p1

p2

p3

p1

p2

p3

(a) Data conversion (b) Converted query

Figure 3: Reduction.

Now, consider a top-open query with rectangleQ = [α1, α2]×
[β,∞[. We answer it by performing segment intersection
on Σ(P ). First, obtain β′ as the highest y-coordinate of
the points in P ∩ Q. Then, report all segments in Σ(P )
that intersect the vertical segment α2 × [β, β′]. An example
is shown in Figure 3b. A proof of the correctness of the
algorithm can be found in the full version.

We can find β′ in O(logB n) I/Os with a range-max query
on a B-tree indexing the x-coordinates in P . For retrieving

the segments intersecting α2 × [β, β′], we store Σ(P ) in a
partially persistent B-tree (PPB-tree) [5]. As Σ(P ) has n
segments, the PPB-tree occupies O(n/B) space and answers
a segment intersection query in O(logB n+ k/B) I/Os. We
thus have obtained a linear-size top-open structure with
O(logB n+ k/B) query I/Os.

More effort, however, is needed to make the structure
SABE. In particular, two challenges are to be overcome.
First, we must generate Σ(P ) in linear I/Os. Second, the
PPB-tree on Σ(P ) must be built with asymptotically the
same cost (note that the range-max B-tree is already SABE).
We will tackle these challenges in the rest of the section.

2.2 Computing Σ(P )
Σ(P ) is not an arbitrary set of segments. We observe:

Lemma 1. Σ(P ) has the following properties:

• (Nesting) for any two segments s1 and s2 in Σ(P ),
their x-intervals are either disjoint, or such that one
x-interval contains the other.

• (Monotonic) let ` be any vertical line, and S(`) the
set of segments in Σ(P ) intersected by `. If we sort
the segments of S(`) in ascending order of their y-
coordinates, the lengths of their x-intervals are non-
decreasing.

We are ready to present our algorithm for computing Σ(P ),
after P has been sorted by x-coordinates. Conceptually, we
sweep a vertical line ` from x = −∞ to ∞. At any time,
the algorithm (essentially) stores the set S(`) of segments
in a stack, which are en-stacked in descending order of y-
coordinates. Whenever a segment is popped out of the stack,
its right endpoint is decided, and the segment is output. In
general, the segments of Σ(P ) are output in non-descending
order of their right endpoints’ x-coordinates.

Specifically, the algorithm starts by pushing the leftmost
point of P onto the stack. Iteratively, let p be the next point
fetched from P , and q the point currently at the top of the
stack. If yq < yp, we know that p = leftdom(q). Hence,
the algorithm pops q off the stack, and outputs segment
σ(q) = [xq, xp[×yq. Then, letting q be the point that tops the
stack currently, the algorithm checks again whether yq < yp,
and if so, repeats the above steps. This continues until either
the stack is empty or yq > yp. In either case, the iteration
finishes by pushing p onto the stack. It is clear that the
algorithm generates Σ(P ) in O(n/B) I/Os.

2.3 Constructing the PPB-tree
Remember that we need a PPB-tree T on Σ(P ). The

known algorithms for PPB-tree construction require super-
linear I/Os even after sorting [2, 5, 14, 34]. Next, we show
that the two properties of Σ(P ) in Lemma 1 allow building T
in linear I/Os. Let us number the leaf level as level 0. In
general, the parent of a level-i (i ≥ 0) node is at level i+ 1.
We will build T in a bottom-up manner, i.e., starting from
the leaf level, then level 1, and so on.

Leaf Level. To create the leaf nodes, we need to first sort
the left and right endpoints of the segments in Σ(P ) together
by x-coordinate. This can be done in O(n/B) I/Os as follows.
First, P , which is sorted by x-coordinates, gives a sorted list
of the left endpoints. On the other hand, our algorithm of
the previous subsection generates Σ(P ) in non-descending



order of the right endpoints’ x-coordinates (breaking ties by
favoring lower points). By merging the two lists, we obtain
the desired sorted list of left and right endpoints combined.

Let us briefly review the algorithm proposed in [5] to build
a PPB-tree. The algorithm conceptually moves a vertical
line ` from x = −∞ to ∞. At any moment, it maintains a
B-tree T (`) on the y-coordinates of the segments in S(`). We
call T (`) a snapshot B-tree. To do so, whenever ` hits the left
(resp. right) endpoint of a segment s, it inserts (resp. deletes)
the y-coordinate of s in T (`). The PPB-tree can be regarded
as a space-efficient union of all the snapshot B-trees. The
algorithm incurs O(n logB n) I/Os because (i) there are 2n
updates, and (ii) for each update, O(logB n) I/Os are needed
to locate the leaf node affected.

When Σ(P ) is nesting and monotonic, the construction can
be significantly accelerated. A crucial observation is that any
update to S(`) happens only at the bottom of `. Specifically,
whenever ` hits the left/right endpoint of a segment s ∈ Σ(P ),
s must be the lowest segment in S(`). This implies that the
leaf node of T (`) to be altered must be the leftmost1 one
in T (`). Hence, we can find this leaf without any I/Os by
buffering it in memory, in contrast to the O(logB n) cost
originally needed.

The other details are standard, and are sketched below
assuming the knowledge of the classic algorithm in [5]. When-
ever the leftmost leaf u of T (`) is full, we version copy it to
u′, and possibly perform a split or merge, if u′ strong-version
overflows or underflows, respectively2. A version copy, split,
and merge can all be handled in O(1) I/Os, and can happen
only O(n/B) times. Therefore, the cost of building the leaf
level is O(n/B).

Internal Levels. The level-1 nodes can be built by exactly
the same algorithm, but on a different set of segments Σ1

which are generated from the leaf nodes of the PPB-tree. To
explain, let us first review an intuitive way [13] to visualize a
node in a PPB-tree. A node u can be viewed as a rectangle
r(u) = [x1, x2[×[y1, y2[ in R2, where x1 (resp. x2) is the
position of ` when u is created (resp. version copied), and
[y1, y2[ represents the y-range of u in all the snapshot B-trees
where u belongs. See Figure 4.

x1 x2

the first interval in the leaf node
next to u in the snapshot tree T (x1)

the rectangle of node u

node u created by
by a version copy
at x1

node u dies when
it is version copied
at x2

y2

y1

Figure 4: A node in a PPB-tree.

For each leaf node u (already created), we add its the
bottom edge of r(u), namely [x1, x2[×y1, into Σ1. The next
lemma points out a crucial fact.

Lemma 2. Σ1 is both nesting and monotonic.

1We adopt the convention that the leaf elements of a B-tree
are ordered from left to right in ascending order.
2Version copy, strong-version overflow and strong-version
underflow are concepts from the terminology of [5].

Our algorithm (for building the leaf nodes) writes the left
and right endpoints of the segments in Σ1 in non-descending
order of their x-coordinates (breaking ties by favoring lower
endpoints). This, together with Lemma 2, permits us to
create the level-1 nodes using the same algorithm in O(n/B2)
I/Os (as |Σ1| = O(n/B)). We repeat the above process to
construct the nodes of higher levels. The cost decreases by
a factor of B each level up. The overall construction cost
is therefore O(n/B). Leaving the other details to the full
version, we now conclude with the first main result:

Theorem 1. There is an indivisible linear-size structure
on n points in R2, such that top-open range skyline queries
can be answered in O(logB n + k/B) I/Os, where k is the
number of reported points. If all points have been sorted by
x-coordinates, the structure can be built in linear I/Os. The
query cost is optimal (even without assuming indivisibility).

3. DIVISIBLE TOP-OPEN STRUCTURE
Theorem 1 holds under the external memory model with

the indivisibility assumption. This section eliminates the
assumption, and unleashes the power endowed by bit manip-
ulation. As we will see, when the universe is small, it admits
linear-size structures with lower query cost.

In Section 3.1, we study a different problem called ray-
dragging. Then, in Section 3.2, our ray-dragging structure
is deployed to develop a “few-point structure” for answering
top-open queries on a small point set. Finally, in Section
3.3, we combine our few-point structure with an existing
structure [7] to obtain the final optimal top-open structure.

3.1 Ray Dragging
In the ray dragging problem, the input is a set S of m

points in [U ]2 where U ≥ m is an integer. Given a vertical
ray ρ = α × [β,U ] where α, β ∈ [U ], a ray dragging query
reports the first point in S to be hit by ρ when ρ moves left.
The rest of the subsection serves as the proof for:

Lemma 3. For m = (B logU)O(1), we can store S in a
structure of size O(1 +m/B) that can answer ray dragging
queries in O(1) I/Os.

Minute Structure. Set b = B log2 U . We first consider

the scenario where S has very few points: m ≤ b1/3. Let us
convert S to a set S′ of points in an m×m grid. Specifically,
map a point p ∈ S to p′ ∈ S′ such that xp′ (resp. yp′) is the
rank of xp (resp. yp) among the x- (y-) coordinates in S.

Given a ray ρ = α× [β,∞[, we instead answer a query in
[m]2 using a ray ρ′ = α′ × [β′,∞[, where α′ (resp. β′) is the
rank of the predecessor of α (resp. β) among the x- (resp.
y-) coordinates in S. Create a fusion tree [16, 25] on the
x- (resp. y-) coordinates in S so that the predecessor of α
(resp. β) can be found in O(logbm) = O(1) I/Os, which is
thus also the cost of turning ρ into ρ′. The fusion tree uses
O(1 +m/B) blocks.

We will ensure that the query with ρ′ (in [m]2) returns an
id from 1 to m that uniquely identifies a point p in S, if the
result is non-empty. To convert the id into the coordinates
of p, we store S in an array of O(1 +m/B) blocks such that
any point can be retrieved in one I/O by id.

The benefit of working with S′ is that each coordinate in
[m]2 requires fewer bits to represent (than in [U ]2), that is,
log2m bits. In particular, we need 3 log2m bits in total to rep-
resent a point’s x-, y-coordinates, and id. Since |S′| = m, the



storage of the entire S′ demands 3m logm = O(b1/3 log2 b)

bits. If B ≥ log2 U , then b1/3 log2 b = O((B2)1/3 log2(B2)) =

O(B). On the other hand, if B < log2 U , then b1/3 log2 b =

O((log2
2 U)1/3 log2(log2

2 U)) = O(log2 U). In other words, we
can always store the entire set S′ in a single block! Given a
query with ρ′, we simply load this block into memory, and
answer the query in memory with no more I/O.

We have completed the description of a structure that uses
O(1 +m/B) blocks, and answers queries in constant I/Os

when m ≤ b1/3. We refer to it as a minute structure.

Proof of Lemma 3. We store S in a B-tree that indexes
the x-coordinates of the points in S. We set the B-tree’s leaf
capacity to B and internal fanout to f = b1/3. Note that the
tree has a constant height.

Given a node u in the tree, define Ymax(u) as the high-
est point whose x-coordinate is stored in the subtree of u.
Now, consider u to be an internal node with child nodes
v1, ..., vf . Define Y ∗max(u) = {Ymax(vi) | 1 ≤ i ≤ f}. We
store Y ∗max(u) in a minute structure. Also, for each point
p ∈ Y ∗max(u), we store an index indicating the child node
whose subtree contains the x-coordinate of p. A child index
requires log2 b

1/3 = O(log2m) = O(logU) bits, which is
no more than the length of a coordinate. Hence, we can
store the index along with p in the minute structure without
increasing its space by more than a constant factor. For a
leaf node z, define Y ∗max(z) to be the set of points whose
x-coordinates are stored in z.

Since there are O(1 +m/(b1/3B)) internal nodes and each

minute structure demandsO(1+b1/3/B) space, all the minute

structures occupy O((1 + m

b1/3B
)( b

1/3

B
+ 1)) = O(1 +m/B)

blocks in total. Therefore, the overall structure consumes
linear space.

We answer a ray-dragging query with ray ρ = α× [β, U ] as
follows. First, descend a root-to-leaf path π to the leaf node
containing the predecessor of α among the x-coordinates in S.
Let u be the lowest node on π such that Y ∗max(u) has a point
that can be hit by ρ when ρ moves left. For each node v ∈ π,
whether Y ∗max(v) has such a point can be checked in O(1)
I/Os by querying the minute structure over Y ∗max(v). Hence,
u can be identified in O(h) I/Os where h is the height of the
B-tree. If u does not exist, we return an empty result (i.e., ρ
does not hit any point no matter how far it moves).

If u exists, let p be the first point in Y ∗max(u) hit by ρ when
it moves left. Suppose that the x-coordinate of p is in the
subtree of v, where v is a child node of u. The query result
must be in the subtree of v, although it may not necessarily
be p. To find out, we descend another path from v to a
leaf. Specifically, we set u to v, and find the first point p
in Y ∗max(u) (= Y ∗max(v)) that is hit by ρ when it moves left
(notice that p has changed). Now, letting v be the child node
of u whose subtree p is from, we repeat the above steps. This
continues until u becomes a leaf, in which case the algorithm
returns p as the final answer. The query cost is O(h) = O(1).
This completes the proof of Lemma 3. We will refer to the
above structure as a ray-drag tree.

3.2 Top-Open Structure on Few Points
Next, we present a structure for answering top-open queries

on small P , called henceforth the few-point structure. Re-
member that P is a set of n points in [U ]2 for some integer
U ≥ n, and a query is a rectangle Q = [α1, α2]× [β, U ] where
α1, α2, β ∈ [U ].

Lemma 4. For n ≤ (B logU)O(1), we can store P in a
structure of O(1 + n/B) space that answers top-open range
skyline queries with output size k in O(1 + k/B) I/Os.

Proof. Consider a query with Q = [α1, α2]× [β, U ]. Let p
be the first point hit by the ray ρ = α2× [β, U ] when ρ moves
left. If p does not exist or is out of Q (i.e., xp < α1), the
top-open query has an empty result. Otherwise, p must be
the lowest point in the skyline of P ∩Q.

The subsequent discussion focuses on the scenario where
p ∈ Q. We index Σ(P ) with a PPB-tree T , as in Theorem 1.
Recall that the top-open query can be solved by retrieving the
set S of segments in Σ(P ) intersecting the vertical segment
ψ = α2 × [β, β′], where β′ is the highest y-coordinate of the
points in P ∩Q. To do so in O(1 + k/B) I/Os, we utilize the
next two observations. (see the full version for their proofs):

Observation 1. All segments of S intersect ψ′ = xp ×
[yp, β

′].

Observation 2. Let T (`) be the snapshot B-tree in T
when ` is at the position x = xp. Once we have obtained
the leaf node in T (`) containing yp, we can retrieve S in
O(1 + k/B) I/Os without knowing the value of β′.

We now elaborate on the structure of Lemma 4. Besides T ,
also create a structure of Lemma 3 on P . Moreover, for every
point p ∈ P , keep a pointer to the leaf node of T that (i)
is in the snapshot B-tree T (`) when ` is at x = xp, and (ii)
contains yp. Call the leaf node the host leaf of p. Store the
pointers in an array of size n to permit retrieving the pointer
of any point in one I/O.

The query algorithm should have become straightforward
from the above two observations. We first find in O(1) I/Os
the first point p hit by ρ when ρ moves left. Then, using p,
we jump to the host leaf of p. Next, by Observation 2, we
retrieve S in O(1 + k/B) I/Os. The total query cost is
O(1 + k/B).

3.3 Final Top-Open Structure
We are ready to describe our top-open structure that

achieves sub-logarithmic query I/Os for arbitrary n. For
this purpose, we externalize an internal-memory structure
of [7]. The structure of [7], however, has logarithmic query
overhead, which we improve with new ideas based on the
few-point structure in Lemma 4. Delegating the details to
the full version, we now state our main results in rank space
and universe [U ]2:

Theorem 2. There is a linear-size structure on n points
in rank space such that top-open range skyline queries can
be answered optimally in O(1 + k/B) I/Os, where k is the
number of reported points.

Corollary 1. There is a linear-size structure on a set
of n points in [U ]2 (where U ≥ n is an integer) such that a
top-open range skyline query can be answered optimally in
O(log logB U + k/B) I/Os, when k points are reported.

4. DYNAMIC TOP-OPEN STRUCTURE
In this section, we present a dynamic data structure, which

is SABE, that uses linear space, and supports top-open
queries in O(log2Bε(n/B) + k/B1−ε) I/Os and updates in
O(log2Bε(n/B)) I/Os, for any parameter 0 ≤ ε ≤ 1. We are



inspired by the approach of Overmars and van Leeuwen [27]
for maintaining the planar skyline in the pointer machine.
As a brief review, a dynamic binary base tree indexes the
x-coordinates of P , and every internal node stores the skyline
of the points in its subtree using a secondary search tree.
More specifically, the skyline of an internal node is (L\L′)∪R,
where L (resp. R) is the skyline of its left (resp. right) child
node, and L′ is the set of points in L dominated by the
leftmost (and thus also highest) point of R.

Our approach is based on I/O-CPQAs, which are described
in Section 4.1. We observe that attrition can be utilized to
maintain the internal node skylines in [27], after mirroring the
y-axis. To explain this, let us first map the input set P to its

mirrored counterpart P̃ = {(xp,−yp) | (xp, yp) ∈ P}. In the

context of PQAs, we will interpret each point (x̃p, ỹp) ∈ P̃ as
an element with “key” value ỹp that is inserted at “time” x̃p.
To formalize the notion of time, we define the <x-ordering

of two elements p̃, q̃ ∈ P̃ to be p̃ <x q̃, if and only if x̃p < x̃q
holds. It is easy to see that element p̃ ∈ P̃ is attrited by

element q̃ ∈ P̃ , if and only if point p ∈ P is dominated by
point q ∈ P . See Figure 5 for a geometric illustration of the
mirroring transformation and the effects of attrition.

x1 x2

y

−y

Figure 5: The skyline problem (above) mirrored to
the attrition problem (below). White points are re-
ported for the gray query area [x1, x2]× [y,∞[, while
gray elements are attrited within [x1, x2].

Thus, we index the <x-ordering of P̃ in a (2Bε, 4Bε)-tree,
for a parameter 0 ≤ ε ≤ 1, and employ I/O-CPQAs as sec-
ondary structures, such that the I/O-CPQA at an internal
node is simply the concatenation of its children’s I/O-CPQAs.
To obtain logarithmic query and update I/Os, this sequence
of consecutive CatenateAndAttrite operations at an in-
ternal node must be performed in O(1) I/Os (Lemma 5).
The presented I/O-CPQAs are ephemeral (not persistent),
and thus the supported operations are destructive, as they
destroy the initial configuration of the structure. This only
allows operating on the I/O-CPQA that is the final result of
all concatenations and resides at the root of the base tree.
However, in order to support top-open queries efficiently,
accessing I/O-CPQAs at the internal nodes is required. This
is made possible by non-destructive operations. Therefore,
we render the I/O-CPQAs confluently persistent by merely
replacing the catenable deques, which are used as black boxes
in our ephemeral construction, with real-time purely func-
tional catenable deques [22]. Since the imposed overhead
is O(1) worst case I/Os, confluently persistent I/O-CPQAs
ensure the same I/O bounds as their ephemeral counterparts.
Section 4.2 describes our dynamic data structure in detail.

4.1 I/O-Efficient Catenable Attrition Priority
Queues

Here we present ephemeral I/O-efficient catenable pri-
ority queues with attrition (I/O-CPQAs) that store a set
of elements from a total order and support all operations
in O(1) I/Os. Also the operations take O(1/b) amortized
I/Os, when a constant number of blocks are already loaded
into main memory for every root I/O-CPQA, for any pa-
rameter 1 ≤ b ≤ B. We call these preloaded records critical
records. For the sake of simplicity, we identify an element
with its value. Denote by Q an I/O-CPQA and by min(Q)
the smallest element stored in Q. We denote by Q also
the set of elements in I/O-CPQA Q. Next, we re-state the
supported operations in the context of I/O-CPQAs:

• FindMin(Q) returns min(Q).

• DeleteMin(Q) returns min(Q) and removes it from Q.
The resulting I/O-CPQA is Q′ = Q\{min(Q)}, and Q
is discarded.

• CatenateAndAttrite(Q1, Q2)3 catenates I/O-CPQA
Q2 to the end of another I/O-CPQA Q1, removes all
elements in Q1 that are larger than or equal to min(Q2)
(attrition), and returns the result as a combined I/O-
CPQA Q′1 = {e ∈ Q1 | e < min(Q2)} ∪ Q2. The old
I/O-CPQAs Q1 and Q2 are discarded.

An I/O-CPQA Q consists of two sorted buffers, called the
first buffer F (Q) with [b, 4b] elements and the last buffer L(Q)
with [0, 4b] elements, and kQ + 2 deques of records, called
the clean deque C(Q), the buffer deque B(Q) and the dirty
dequesD1(Q), . . . , DkQ(Q), where kQ ≥ 0. A record r = (l, p)
consists of a buffer l of [b, 4b] sorted elements and a pointer p
to an I/O-CPQA. A record is simple when its pointer p is
nil. The definition of I/O-CPQAs implies an underlying tree
structure when pointers are considered as edges and I/O-
CPQAs as subtrees. We define the ordering of the elements
in a record r to be all elements of its buffer l followed by
all elements in the I/O-CPQA referenced by pointer p. We
define the queue order of I/O-CPQA Q to be F , C(Q), B(Q)
and D1(Q), . . . ,DkQ(Q) and L. It corresponds to an Euler
tour over the tree structure. See Figure 6 for an overview of
the structure.

C(Q) B(Q) D1(Q) DkQ−1(Q) DkQ(Q)
F (Q) L(Q)

Figure 6: I/O-CPQA Q. Critical records are shown
in gray.

Given a record r = (l, p), the minimum and maximum
elements in the buffers of r, are denoted by min(r) = min(l)
and max(r) = max(l), respectively. They appear respectively
first and last in the queue order of l, since the buffer of r is
sorted by value. Given a deque q, the first and the last records
are denoted by first(q) and last(q), respectively. Also, rest(q)
denotes all records of the deque q excluding the record first(q).
Similarly, front(q) denotes all records of the deque q excluding
the record last(q). The size |F | (|L|) of the buffer F (L) is
defined to be the number of elements in F (L). The size |r|
of a record r is defined to be the number of elements in
its buffer. The size |q| of a deque q is defined to be the

3InsertAndAttrite(Q, e) corresponds to CatenateAn-
dAttrite(Q1, Q2), where Q2 contains only element e.



number of records it contains. The size |Q| of the I/O-
CPQA Q is defined to be the number of elements (both
attrited and non-attrited) that Q contains. For an I/O-
CPQA Q we denote by first(Q) and last(Q), respectively
the first and last records out of all the records of all the
deques C(Q), B(Q), D1(Q), . . . , DkQ(Q) that exist in Q. For
an I/O-CPQA Q we maintain the following invariants:

I.1) For every record r = (l, p) where pointer p references
I/O-CPQA Q′, max(l) < min(Q′) holds.

I.2) In all deques of Q where record r1 = (l1, p1) precedes
record r2 = (l2, p2): max(l1) < min(l2) holds.

I.3) For the buffer F (Q) and deques C(Q), B(Q),D1(Q):
max(F (Q)) < min(first(C(Q))) < max(last(C(Q))) <
min(first(B(Q))) < min(first(D1(Q))) holds.

I.4) Element min(first(D1(Q))) is the smallest element in
the dirty deques D1(Q), . . . , Dk(Q).

I.5) min(first(D1(Q))) < min(L(Q)).

I.6) All records in the deques C(Q) and B(Q) are simple.

I.7) |C(Q)| ≥
∑kQ
i=1 |Di(Q)|+ kQ.

I.8) |F (Q)| < b holds iff |Q| < b holds.

I.9) If Q is a child of another I/O-CPQA then F (Q) = ∅
and L(Q) = ∅ holds.

From Invariants I.2, I.3, I.4 and I.5, we have that min(Q) =
min(F (Q)). We say that an operation improves or aggravates
the inequality of Invariant I.7 by a parameter c for I/O-
CPQA Q, when the operation, respectively, increases or
decreases by c the state of Q:

∆(Q) = |C(Q)| −
kQ∑
i=1

|Di(Q)| − kQ

To argue about the O(1/b) amortized I/O bounds we
need more definitions. The critical records of I/O-CPQA Q
are first(C(Q)), first(rest(C(Q))), last(C(Q)), first(B(Q)),
first(D1(Q)), last(DkQ(Q)) and last(front(DkQ(Q))), if it ex-
ists. Otherwise last(DkQ−1(Q)) is critical. By records(Q) we
denote all records in Q and the records in the I/O-CPQAs
pointed to byQ and its descendants. We call an I/O-CPQAQ
large if |Q| ≥ b and small otherwise. We define the following
potential functions for large and small I/O-CPQAs. In par-
ticular, for large I/O-CPQAs Q the potential Φ(Q) is defined
as

Φ(Q) = ΦF (|F (Q)|) + |records(Q)|+ ΦL(|L(Q)|),

where

ΦF (x) =

 5− 2x
b
, b ≤ x < 2b

1, 2b ≤ x < 3b
2x
b
− 5, 3b ≤ x ≤ 4b

and

ΦL(x) =


x
b
, 0 ≤ x < b

1, b ≤ x ≤ 3b
2x
b
− 5, 3b < x ≤ 4b

For small I/O-CPQAs Q, the potential Φ(Q) is defined as

Φ(Q) =
3|Q|
b

The total potential ΦT is defined as

ΦT =
∑
Q

Φ(Q) +
∑

Q,b≤|Q|

1,

where the first sum is the total potential of all I/O-CPQAs Q
and the second sum counts the number of large I/O-
CPQAs Q.

Operations. In the following, we describe the algo-
rithms that implement the operations supported by the
I/O-CPQA Q. Most of the operations call the auxiliary
operations Bias(Q) and Fill(Q), which we describe last.
Bias improves the inequality of I.7 for Q by at least 1 if Q
contains any records. Fill(Q) ensures I.8.

FindMin(Q) returns the value min(F (Q)).

DeleteMin(Q) removes element e = min(F (Q)) from the

first buffer F (Q), calls Fill(Q) and returns e.

CatenateAndAttrite(Q1, Q2) creates a new I/O-CPQA

Q′1 by modifying Q1 and Q2, and by calling Bias(Q′1),
Bias(Q2), Fill(Q′1) and Fill(Q2).

If |Q1| < b holds, then Q1 consists only of the first buffer
F (Q1). Let F ′(Q1) be the non-attrited elements of F (Q1),
under attrition by min(F (Q2)). Prepend F ′(Q1) onto the
first buffer F (Q2) of Q2. If this prepend causes F (Q2) > 4b,
then we take the last 2b elements out of F (Q2), make a new
record out of them and we prepend it onto the deque C(Q2).

If |Q2| < b holds, then Q2 only consists of F (Q2). If
|Q1| < b then we delete attrited elements in F (Q1) and
append F (Q2) to F (Q1). We now assume that |Q1| ≥ b. We
have three cases, depending on how much of Q1 is attrited
by Q2. Let r = (l, ·) = last(Q1) and let e = min(Q2).

1. e ≤ min(r): Delete r. We now have four cases:

1) If e ≤ min(F (Q1)) holds, we discard I/O-CPQA Q1

and set Q′1 = Q2.

2) Else if e ≤ max(last(C(Q1))) holds, we prepend
F (Q1) onto C(Q1), set F (Q′1) = ∅, C(Q′1) = ∅,
B(Q′1) = C(Q1), kQ′1 = 0 and L(Q′1) = F (Q2).

We call Bias(Q′1) once to restore I.7 and then call
Fill(Q′1) once to restore Invariant I.8.

3) Else if e ≤ min(first(B(Q1))) or e ≤
min(first(D1(Q1))) holds, we set Q′1 = Q1 and
kQ′1 = 0 and set L(Q′1) = F (Q2). If e ≤
min(first(B(Q1))) holds, we set B(Q′1) = ∅, else
we set B(Q′1) = B(Q1).

4) Else, let L′(Q1) be the non-attrited elements under
attrition by min(F (Q2)). If |L′(Q1)| + |F (Q2| ≤
4b then append F (Q2) to L′(Q1), else |L′(Q1)| +
|F (Q2| > 4b so take the first 4b elements of L′(Q1)
and F (Q2) and make into a new record in a new
last dirty queue of Q′1, leave the rest in L(Q′1), set
kQ′1 = kQ1 + 1 and call Bias(Q′1) twice to restore
I.7.

2. Else if e ≤ min(L(Q1)), we set Q′1 = Q1 and L(Q′1) =
F (Q2).

3. Else min(L(Q1)) < e: Let l′ be the non-attrited ele-
ments of l, under attrition by min(L(Q1)), and L′(Q1)
be the non-attrited elements, under attrition by e. If



|L′(Q1)|+ |F (Q2)| > 4b holds, we do the following: if
|l′| < |l| holds, we put the first 4b − |l′| elements of
L′(Q1) and F (Q2) into l along with l′. Moreover, if
we still have more than 3b elements left in L′(Q1) and
F (Q2), we put the first 3b elements into a new last
record of DkQ1

(Q1). Finally, we leave the remaining

elements in L(Q1). If we added a new last record to
DkQ1

(Q1), we also call Bias(Q) once.

We have now entirely dealt with the cases where |Q1| < b
or |Q2| < b holds, so in the following we assume that |Q1| ≥ b
and |Q2| ≥ b hold, i.e. any I/Os incurred in the cases (1–4)
below are already paid for, since the total number of large
I/O-CPQAs decreases by one. Let e = min(Q2).

1) If e ≤ min(F (Q1)) holds, we discard I/O-CPQA Q1 and
set Q′1 = Q2.

2) Else if e ≤ max(last(C(Q1))) holds, we prepend F (Q1)
onto C(Q1) and F (Q2) onto C(Q2). We remove the simple
record (l, ·) = first(C(Q2)) from C(Q2), set Q′1 = Q1,
F (Q′1) = ∅, C(Q′1) = ∅, B(Q′1) = C(Q1), D1(Q′1) = (l, p),
kQ′1 = 1, L(Q′1) = L(Q2) and L(Q′2) = ∅, where p points

to Q′2 if it exists. This gives ∆(Q′1) = −2, thus we call
Bias(Q′1) twice and Fill(Q′1) once.

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1)))
holds, we prepend F (Q2) onto C(Q2) and remove the sim-
ple record (l, ·) = first(C(Q2)) from C(Q2), set Q′1 = Q1,
D1(Q′1) = (l, p), kQ′1 = 1, L(Q′1) = L(Q2), L(Q′2) = ∅ and

set p to point to Q′2, if it exists. If e ≤ min(first(B(Q1)))
holds, we set B(Q′1) = ∅, else we set B(Q′1) = B(Q1).
This gives ∆(Q′1) = −2 in the worst case, thus we call
Bias(Q′1) twice.

4) Else let L′(Q1) be the non-attrited elements of L(Q1),
under attrition by F (Q2). If |L′(Q1)|+|F (Q2)| ≤ 4b holds,
then we make L′(Q1) and F (Q2) into the first record of
C(Q2). Else we make them into the first two records of
C(Q2) of size b(|L′(Q1)|+ |F (Q2)|)/2c and d(|L(Q1)|+
|F (Q2)|)/2e each. We set Q′1 = Q1, F (Q′2) = ∅, L(Q′1) =
L(Q2), L(Q′2) = ∅, remove (l2, ·) = first(C(Q2)) from
C(Q2). Moreover, we add (l2, p) as a new record in
DkQ1

+1(Q′1), where p points to the rest of Q′2, if it exists,
and set kQ′1 = kQ1 + 1. All this aggravates the inequality

of I.7 for Q′1 by at most 2, so we call Bias(Q′1) twice.

Fill(Q) restores Invariant I.8, if it is violated. In particular,

if |F (Q)| < b and |Q| ≥ b, let r = (l, ·) = first(C(Q)). If
|l| ≥ 2b holds, then we take the b first elements of l and
append them to F (Q). Else |l| < 2b holds, so we append l
to F (Q), discard r and call Bias(Q) once.

Bias(Q) improves the inequality of I.7 for Q by at least 1 if
Q contains any records. It also ensures that Invariant I.8 is
maintained. We distinguish two basic cases with respect to
|B(Q)|, namely |B(Q)| = 0 and |B(Q)| > 0.

1) |B(Q)| > 0: We have two cases depending on if kQ ≥ 1
or kQ = 0.

1) kQ = 0: Let e = min(L(Q)), if it exists. We remove the
first record r1 = (l1, ·) = first(B(Q)) fromB(Q). Let l′1
be the non-attrited elements of l1, under attrition by

element e. If |l′1| = |l1| holds nothing is attrited, so we
just add r1 = (l1, ·) at the end of C(Q).

Else |l′1| < |l1| holds, so we set B(Q) = ∅. If |l′1| ≥ b
holds, then we make record r1 with buffer l′1 into the
new last record of C(Q). Else |l′1| < b holds, so if
|l′1|+ |L(Q)| ≤ 3b also holds, we add l′1 to L(Q) and
discard r1. Else |l′1| + |L(Q)| > 3b also holds, so we
take the 2b first elements of l′1 and L(Q) and put them
into r1, making it the new last record of C(Q).

2) kQ ≥ 1: Let e = min(first(D1(Q))). We remove the
first record r1 = (l1, ·) = first(B(Q)) fromB(Q). Let l′1
be the non-attrited elements of l1, under attrition by
element e.

If |l′1| = |l1| or b ≤ |l′1| < |l1| holds, we just add
r1 = (l′1, ·) at the end of C(Q). Else |l′1| < b and
|l′1| < |l1| hold. We set B(Q) = ∅. Let r2 = (l2, p2) =
first(D1(Q)). If |l′1|+ |l2| ≤ 4b holds, we discard r1 and
prepend l′1 onto l2 of r2. Else |l′1|+ |l2| > 4b holds, so
we take the first 2b elements of l′1 and l2 and put them
in r1, making it the new last record of C(Q). If this
causes min(L(Q)) ≤ min(first(D1(Q))), we discard all
dirty queues.

If r1 was discarded, then we have that |B(Q)| = 0 and
we call Bias recursively, which will not invoke this case
again. In all cases the inequality of I.7 for Q is improved
by 1.

2) |B(Q)| = 0: we have three cases depending on the number
of dirty queues, namely cases kQ > 1, kQ = 1 and kQ = 0.

1) kQ > 1: If min(L(Q)) ≤ min(first(DkQ(Q))) holds, we
set kQ = kQ − 1 and discard DkQ(Q). This improves
the inequality of I.7 for Q by at least 2. Else let
e = min(first(DkQ(Q))).

If e ≤ min(last(DkQ−1(Q))) holds, we remove the
record last(DkQ−1(Q)) from DkQ−1(Q). This im-
proves the inequality of I.7 for Q by 1.

If min(last(DkQ−1(Q))) < e ≤ max(last(DkQ−1(Q)))
holds, we remove record r1 = (l1, p1) =
last(DkQ−1(Q)) from DkQ−1(Q), and let r2 =
(l2, p2) = first(DkQ(Q)). We delete any elements in l1
that are attrited by e, and let l′1 denote the set of
non-attrited elements. If |l′1| + |l2| ≤ 4b holds, we
prepend l′1 onto l2 of r2 and discard r1. Else we take
the first b(|l′1| + |l2|)/2c elements of l′1 and l2 and
replace r1 of DkQ−1(Q) with them. Finally, we con-
catenate DkQ−1(Q) and DkQ(Q) into a single deque.
This improves the inequality of I.7 for Q by at least 1.

Else max(last(DkQ−1(Q))) < e holds and we just con-
catenate the deques DkQ−1(Q) and DkQ(Q), which
improves the inequality of I.7 for Q by 1.

2) kQ = 1: In this case Q contains only deques C(Q)
and D1(Q). Let r = (l, p) = first(D1(Q)). If
min(L(Q)) ≤ min(first(rest(D1(Q)))) holds, we dis-
card all dirty queues, except for record r of D1(Q).

If min(L(Q)) ≤ max(l) holds, we discard all the dirty
deques and let l′ be the non-attrited elements of l. If
|l′|+ |L(Q)| ≤ 3b holds, we prepend l′ onto L(Q). Else
|l′|+ |L(Q)| > 3b holds, so we take the first 2b elements
of l′ and L(Q) and make them the new last record of
C(Q) and leave the rest in L(Q). This improves the
inequality of I.7 for Q by 1.



Else max(`) < min(L(Q)) holds, so we remove r
and insert buffer l into a new record at the end
of C(Q). This improves the inequality of I.7 for Q
by at least 1. If r is not simple, let the pointer p
of r reference I/O-CPQA Q′. We restore I.6 for Q
by merging I/O-CPQAs Q and Q′ into one I/O-
CPQA; see Figure 7. In particular, let e =
min(min(first(D1(Q))),min(L(Q))).

We proceed as follows: If e ≤ min(Q′) holds, we
discard Q′. Else if min(first(C(Q′))) < e ≤
max(last(C(Q′)) holds, we set B(Q) = C(Q′) and
discard the rest of Q′. In both cases, the inequality
of I.7 for Q remains unaffected.

Else if max(last(C(Q′)) < e ≤ min(first(D1(Q′)))
holds, we concatenate the deque C(Q′) at the end
of C(Q). If moreover min(first(B(Q′))) < e holds, we
set B(Q) = B(Q′). Finally, we discard the rest of Q′.
This improves the inequality of I.7 for Q by |C(Q′)|.
Else min(first(D1(Q′))) < e holds. We concatenate
the deque C(Q′) at the end of C(Q), we set B(Q) =
B(Q′), we set D1(Q′), . . . ,DkQ′ (Q

′) as the first kQ′

dirty queues of Q and we set D1(Q) as the last dirty
queue of Q. This improves the inequality of I.7 for Q
by ∆(Q′) ≥ 0, since Q′ satisfied Invariant I.7 before
the operation.

3) kQ = 0: If all deques are empty, L(Q) 6= ∅ and
|F (Q)| ≤ 2b hold, we take the first b elements of
L(Q) and append to F (Q). The inequality of I.7 for Q
remains ∆(Q) = 0.

D1(Q)

C(Q′) B(Q′) D1(Q′) DkQ′ (Q
′)

C(Q)
F (Q) L(Q)

Figure 7: Merging I/O-CPQAs Q and Q′. This case
can only occur when B(Q) = ∅ and kQ = 1.

Theorem 3. An I/O-CPQA supports FindMin,
DeleteMin, CatenateAndAttrite and InsertAn-
dAttrite in O(1) I/Os per operation. It occupies
O((n−m)/B) blocks after calling CatenateAndAttrite
and InsertAndAttrite n times and DeleteMin m times,
respectively.

All operations are supported by a set of ` I/O-CPQAs
in O(1/b) amortized I/Os, when M = Ω(`b), using O((n−
m)/b) blocks of space, for any parameter 1 ≤ b ≤ B.

Proof. (Sketch) The correctness follows by closely notic-
ing that we maintain Invariants I.1–I.9, which in turn imply
that DeleteMin(Q) and FindMin(Q) always return the min-
imum element of Q. The O(1) worst case I/O bound is trivial
as every operation only accesses O(1) records. Although Bias
is recursive, notice that in the case where |B(Q)| > 0, Bias
only calls itself after making |B(Q)| = 0, so it will not end up
in this case again. We elaborate on all the operations that
modify the I/O-CPQA in order to argue for the amortized
bounds:
DeleteMin: If after the call |F (Q)| ≥ b holds, no I/Os are
incurred and the amortized cost of ≤ 3

b
pays for increasing

the potential. Otherwise ΦF (|F (Q)|) ≥ 3 pays for any I/Os
to call Fill and Bias.

CatenateAndAttrite: |Q1| < b: If |F ′(Q1)|+ |F (Q2)| ≤
4b holds, Φ(|F (Q1)|) pays for any increase in potential. Else
the new record of C(Q2) is paid for by ∆(ΦT ) > 1.
|Q2| < b: In cases (1) and (2) the potential decreases. In

case (3), the potential does not change if |L′(Q1)|+|F (Q2)| >
4b. If L′(Q1) and F (Q2) still contain > 3b elements, the
change in potential is paid for by ∆(ΦT ) > 0.

In the following cases, both Q1 and Q2 are large. Since
concatenating them decreases by one the number of large
I/O-CPQA’s, the potential decreases by at least 1, which
is enough to pay for any other I/Os also incurred by Bias
and Fill. So we only need to argue that the potential does
not increase in any of the cases. In fact, in cases (1 - 3) the
potential only decreases. In case (4), if we make one record,
it is paid for by ΦF (|F (Q2)|) ≥ 1. Otherwise the second
record is paid for by ΦL(|L(Q1)|) ≥ 1 if moreover |L′(Q1)|+
|F (Q2)| > 4b holds, or by ΦL(|L(Q1)|) + ΦF (|F (Q2)|) > 2
otherwise.

All I/Os in Fill and Bias have been paid for by a decrease
in potential caused by their caller. Thus, it suffices to argue
that these operations do not increase the potential.
Fill: Indeed, ΦF (|F (Q)|) only decreases, when |F (Q)| < b
and |Q| ≥ b hold.
Bias: Indeed, cases (1) and (2.1) do not create new records.
Similarly for (2.2), unless |l′|+ |L(Q)| ≤ 3b holds, where r
pays for increasing the potential by 1. In (2.3) ΦF (|F (Q)|)
or ΦL(|L(Q)|) decreases.

Catenating a set of I/O-CPQAs. The following lemma
is required by the dynamic structure of the next section.

Lemma 5. A set of I/O-CPQAs Qi for i ∈ [1, `] can be
concatenated into a single I/O-CPQA without any access to
external memory, by calling only CatenateAndAttrite
operations, provided that for all i:

1. ∆(Qi) ≥ 2 holds, unless Qi contains only one record,
in which case ∆(Qi) ≥ 1 suffices.

2. The critical records of Qi are loaded in main memory.

4.2 Final Dynamic Top-Open Structure
The data structure consists of a base tree, implemented

as a dynamic (a, 2a)-tree where the leaves store between k
and 2k elements. We set a = d2Bεe and k = B, for a given

0 ≤ ε ≤ 1. The base tree indexes the <x-ordering of P̃ , and
is augmented with confluently persistent I/O-CPQAs with
buffer size b = B1−ε as secondary structures. In particular,
after constructing the base tree, we augment it with secondary
I/O-CPQAs in a bottom-up manner, as follows. For every
leaf we make one I/O-CPQA over its elements, and execute
an appropriate amount of Bias operations, such that the
state of the I/O-CPQA satisfies Lemma 5. We associate the
I/O-CPQA with the leaf. In a second pass over the leaves,
we gather its critical records into a representative block in
its parent. The procedure continues one level above. For
every internal node u, we access the representative blocks
that contain the critical records of the children I/O-CPQAs
of u, and CatenateAndAttrite them into a new I/O-
CPQA as implied by Lemma 5. We execute Bias on the
I/O-CPQA enough times such that its state also satifies
Lemma 5. We associate the I/O-CPQA with u. After the
level has been processed, we create the representative blocks
for I/O-CPQAs associated with the nodes of the level, in the



same way as described above. The augmentation ends at the
root node of the base tree. We will ensure that our algorithms
access the I/O-CPQA associated with a node through the
representative block stored at the parent of the node. Thus,
it will suffice to explicitly store only the representative blocks
in every internal node and not its associated I/O-CPQA.

Since every leaf contains O(B) elements, the base tree
has O(n/B) leaves and thus also O(n/B) internal nodes.
Every internal node has Θ(Bε) children, each associated with
an I/O-CPQA with O(1) critical records of size O(B1−ε).
Thus the representative blocks stored in the internal node
occupy O(1) blocks of space. Thus the structure occupies

O(n/B) blocks in total. Assume that P̃ is already sorted
by the <x-ordering. The leaves’ I/O-CPQAs are created in
O(1) I/Os, since they contain at most O(B) elements. All
representative blocks are created in O(n/B) I/Os. To create
the internal nodes’ I/O-CPQAs, we need only O(1) I/Os to
access the representative blocks and to execute Bias on the
resulting I/O-CPQA. Its representative blocks residing in
memory thus are written on disk in O(1) I/Os. Thus the
total preprocessing cost is O(n/B); the structure is SABE.

Updates. To insert (resp. delete) a point p into (resp.
from) P , we insert (resp. delete) p̃ = (x̃p, ỹp) in the structure.
In particular, we first find the leaf to insert (resp. delete)
that contains the predecessor of x̃p (resp. contains x̃p), by
a top-down traversal of the path from the root of the base
tree. For every node u on the path, we also discard the part
of its representative block corresponding to the child that
the search path goes into, and u’s associated I/O-CPQA by
executing in reverse the operations that created it. Next
we insert (resp. delete) p̃ into (from) the accessed leaf, and
rebalance the base tree by executing the appropriate splits
and merges on the nodes along the path in a bottom-up
manner. Moreover, we recompute the I/O-CPQA of every
accessed node on the path, as described above. The total
update I/Os are O(log2Bε(n/B)) in the worst case, since we
spend O(1) I/Os to rebalance every accessed node and to
recompute its secondary structures.

Queries. To report the skyline points of P that reside
within a given top-open query range [α1, α2] × [β,∞[, we
first traverse top-down the two search paths π̃1 = ππ1 and
π̃2 = ππ2 from the root of the base tree to the leaves `1
and `2 that contain points of P̃ whose <x-ordering succeed
and precede the query parameters α1 and α2, respectively.
Let node u be on the path π1 ∪ π2, and let c(u) be the
children nodes of u whose subtrees are fully contained within
[α1, α2]. For every u, we load its representative block into
memory in order to access the critical records of the I/O-
CPQAs associated with c(u) and to CatenateAndAttrite
them into a temporary I/O-CPQA, as implied by Lemma 5.
We consider the temporary I/O-CPQAs of nodes u and the
I/O-CPQAs of the leaves `1 and `2 from right to left, and we
CatenateAndAttrite them into one auxiliary I/O-CPQA.
The I/O-CPQAs for `1 and `2 are created only on the points
within the x-range [α1, α2] in O(1) I/Os.

To report the skyline points within the query range, we
call DeleteMin on the auxiliary I/O-CPQA. The procedure
stops as soon as a point with ỹp > −β is returned, or when
the auxiliary I/O-CPQA becomes empty.

There are O(log2Bε(n/B)) nodes on π1 ∪ π2 and we
spend O(1) I/Os to access the representative block of each
node. After this, the construction of the auxiliary I/O-

CPQA costs O(log2Bε(n/B)) I/Os. Reporting the k output
points costs O( k

B1−ε + 1) I/Os. Therefore the query takes

O(log2Bε(n/B) + k
B1−ε ) I/Os in total. We conclude that:

Theorem 4. There is an indivisible linear-size dynamic
data structure on n points in R2 that supports top-open range
skyline queries in O(log2Bε(n/B) + k/B1−ε) I/Os when k
points are reported, and updates in O(log2Bε(n/B)) I/Os for
any parameter 0 ≤ ε ≤ 1. The structure can be constructed
in O(n/B) I/Os, assuming an initial sorting on the input
points’ x-coordinates.

5. GENERAL RANGE SKYLINE QUERIES
We now move on to discuss the other variants of range

skyline reporting that are neither symmetric to nor subsumed
by top-open queries. It would be nice if they could be
answered in O(logB n+ k/B) I/Os by a linear-size structure.
Unfortunately, we will prove its impossibility. In fact, even
sub-polynomial query cost is already unachievable for anti-
dominance queries, let alone left-open and 4-sided queries.
In fact, anti-dominance, left-open and 4-sided are just as
hard as each other. Next, we will formally establish these
facts. Refer to the full version for the proofs.

5.1 A Query Lower Bound
By making a crucial observation on a variant of the low-

discrepancy point set proposed by Chazelle and Liu [8], we
manage to prove the next geometric fact:

Lemma 6. For any integer ω ≥ 1 and λ ≥ 1, there is a set
P of ωλ points in R2 and a set G of λωλ−1 anti-dominance
queries such that (i) each query in G retrieves d points of P ,
and (ii) at most one point in P is returned by two different
queries in G simultaneously.

We use the term (ω, λ)-input to refer to the point set P
obtained in Lemma 6 after ω and λ have been fixed. We
deploy such input sets to derive:

Lemma 7. Regarding anti-dominance queries on n points
in R2, any structure (in the indexability model) of at most

cn/B blocks must incur Ω((n/B)1/(25c)+k/B) I/Os to answer
a query in the worst case, where c ≥ 1 is a constant and k is
the result size.

Theorem 5. Regarding anti-dominance queries on n
points, any linear-size structure under the indexability model
must incur Ω((n/B)ε + k/B) I/Os answering a query in the
worst case, where ε > 0 can be an arbitrarily small constant,
and k is the result size.

Remarks. In the full version, we utilize Lemma 6 to prove
that any internal memory pointer-based data structure that
supports anti-dominance queries in O(logO(1) +k) time re-
quires Ω(n logn

log logn
) space. Thus, the dynamic structure

of [7] for 4-sided queries occupies optimal space within a
O(log logn) factor, for the attained query time.

5.2 Query-Optimal Structure
The above lower bound is tight. In fact, we are able to

prove a stronger fact: a 4-sided query can be answered in
O((n/B)ε + k/B) I/Os by a linear-size dynamic structure.
Deferring the details to the full version, we claim:



Theorem 6. There is an indivisible linear-size structure
on n points in R2 such that, 4-sided range skyline queries
can be answered in O((n/B)ε + k/B) I/Os, where k is the
number of reported points. The query cost is optimal under
the indexability model. The structure can be updated in
O(log(n/B)) amortized I/Os.
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