
Brief Announcement: ART: Sub-Logarithmic Decentralized
Range Query Processing with Probabilistic Guarantees

Spyros Sioutas
Department of Informatics

Ionian University
sioutas@ionio.gr

George Papaloukopoulos
Department of Computer

Engineering and Informatics
University of Patras

papalukg@ceid.upatras.gr

Evangelos Sakkopoulos
Department of Computer

Engineering and Informatics
University of Patras

sakkopul@ceid.upatras.gr
Kostas Tsichlas

Department of Informatics
Aristotle University of

Thessaloniki
tsichlas@csd.auth.gr

Yannis Manolopoulos
Department of Informatics

Aristotle University of
Thessaloniki

manolopo@csd.auth.gr

Peter Triantafillou
Department of Computer

Engineering and Informatics
University of Patras

peter@ceid.upatras.gr

ABSTRACT
We focus on range query processing on large-scale, typically
distributed infrastructures. In this work we present the ART
(Autonomous Range Tree) structure, which outperforms
the most popular decentralized structures, including Chord
(and some of its successors), BATON (and its successor) and
Skip-Graphs. ART supports the join/leave and range query
operations in O(log log N) and O(log2

b log N + |A|) expected
w.h.p number of hops respectively, where the base b is a
double-exponentially power of two, N is the total number of
peers and |A| the answer size.

Categories and Subject Descriptors
H.2 [Database Management]: Decentralized Query Pro-
cessing

General Terms
Algorithms, Design, Measurement, Performance, Verifica-
tion

Keywords
Distributed Infrastructures, P2P Overlays

1. INTRODUCTION AND MOTIVATION
Existing structured P2P systems can be classified into

three categories: distributed hash table (DHT) based sys-
tems, skip list based systems, and tree based systems (for
details see the survey book [1]). The available solutions for
architecting such large-scale systems are inadequate for our
purposes, since at the envisaged scales (trilions of data items
at millions of nodes) the classic logarithmic complexity (for
point queries) offered by these solutions is still too expen-
sive. And for range queries, it is even more disappointing.
Our aim with this work is to provide a solution that is com-
prehensive and outperforms related work with respect to all
major operations, such as lookup (insert/delete), join/leave

Copyright is held by the author/owner(s).
PODC’10, July 25–28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

and to the required routing state that must be maintained
in order to support these operations. Specifically, we aim
at achieving a sub-logarithmic complexity for all the above!
Thus, we present ART, an exponential-tree structure, which
remains unchanged w.h.p., and organizes a number of fully-
dynamic cluster peers in efficient way.

2. OUR SOLUTION
First, we build the LRT (Level Range Tree) structure, one

of the basic components of the final ART structure. LRT
will be called upon to organize collections of peers at each
level of ART.
Building LRT structure: LRT is built by grouping nodes
having the same ancestor and organizing them in a tree
structure recursively. The innermost level of nesting (re-
cursion) will be characterized by having a tree in which no
more than b nodes share the same direct ancestor, where b is
a double-exponentially power of two (e.g. 2,4,16,...). Thus,
multiple independent trees are imposed on the collection of
nodes. Figure 1 illustrates a simple example, where b = 2.

9

8

10

11

1
 keys in range [0, lnn - 1]

2
 3

.

.

.

LSI

CI

CI

LSI
 LSI

4
 6
 7

CI

5
.
 .
 .
 .

LSI
 LSI
 LSI
LSI

8
 9
 10
 11

CI

12
 13
 14
 15

 [lnn, 2lnn - 1]
 [2lnn, 3lnn - 1]

13

12

14

15

Figure 1: The LRT structure

The degree of the overlay peers at level i > 0 is d(i) = t(i),
where t(i) indicates the number of peers at level i. It holds
that d(0)=2 and t(0)=1. Let n be w-bit keys. Each peer

118

with label i (where 1 ≤ i ≤ N) stores ordered keys that
belong in the range [(i − 1) ln n, i ln n–1], where N = n/lnn
is the number of peers. We also equip each peer with a
table named Left Spine Index (LSI), which stores pointers to
the peers of the left-most spine (see pointers starting from
peer 5). Furthermore, each peer of the left-most spine is
equipped with a table named Collection Index (CI), which
stores pointers to the collections of peers presented at the
same level (see pointers directed to collections of last level).
Peers having the same father belong to the same collection.
Lookup Algorithm: Assume we are located at peer s and
seek a key k. First, we find the range where k belongs. If
k ∈ [(j−1) ln n, j ln n−1], we have to search for peer j. The
first step of our algorithm is to find the LRT level where the
desired peer j is located. For this purpose, we exploit a nice
arithmetic property of LRT. This property says that for each
peer x located at the left-most spine of level i, the following
formula holds:

label(x) = label(father(x)) + 22i−2

(1)

For each level i (where 0 ≤ i ≤ log log N), we compute
the value x of its left most peer by applying Equation (1).
Then, we compare the value j with the computed value x.
If j ≥ x, we continue by applying Equation (1), otherwise
we stop the loop process with current value i. The latter
means that node j is located at the i-th level. Then, we
follow the i-th pointer of the LSI table located at peer s.
Let x the destination peer, that is the leftmost peer of level
i. Now, we must compute the collection in which the peer j
belongs to. Since the number of collections at level i equals
the number of nodes located at level (i − 1), we divide the
distance between j and x by the factor t(i − 1) and let m
the result of this division. Then, we follow the (m + 1)-th
pointer of the CI table. Since the collection indicated by the
CI[m+1] pointer is organized in the same way at the next
nesting level, we continue this process recursively.
Analysis: Since t(i) = t(i−1)d(i−1), we get d (i) = t (i) =

22i−1

for i ≥ 1. Thus, the height and the maximum num-
ber of possible nestings is O(log log N) and O(logb log N) re-
spectively. Thus, each key is stored in O(logb log N) levels at
most and the whole searching process requires O(logb log N)
hops. Moreover, the maximum size of the CI and RSI ta-
bles is O(

√
N) and O(log log N) in worst-case respectively.

Building ART structure: The backbone of ART is ex-
actly the same with LRT. During the initialization step
we choose as cluster peer representatives the 1st peer, the
(ln n)-th peer, the (2 ln n)-th peer and so on. This means
that each cluster peer with label i′ (where 1 ≤ i′ ≤ N ′)
stores ordered peers with keys belonging in the range [(i′ −
1) ln2 n, . . . , i′ ln2 n − 1], where N ′ = n/ ln2 n is the num-
ber of cluster peers. ART stores cluster peers only, each of
which is structured as an independent decentralized archi-
tecture. Moreover, instead of the Left-most Spine Index
(LSI), which reduces the robustness of the whole system,
we introduce the Random Spine Index (RSI) routing table,
which stores pointers to randomly chosen (and not specific)
cluster peers (see pointers starting from peer 3). In addition,
instead of using fat CI tables, we access the appropriate col-
lection of cluster peers by using a 2-level LRT structure.
Load Balancing: We model the join/leave of peers inside
a cluster peer as the combinatorial game of bins and balls
presented in [2]. In this way, for a µ(·) random sequence
of join/leave peer operations, the load of each cluster peer

never exceeds Θ(polylog N ′) size and never becomes zero in
expected w.h.p. case.
Routing Overhead: The 2-level LRT is an LRT structure
over log2c Z buckets each of which organizes Z

log2c Z
collec-

tions in a LRT manner, where Z is the number of collec-
tions at current level and c is a big positive constant. As
a consequence, the routing information overhead becomes
O(N1/4/ logc N) in the worst case (even for an extremely
large number of peers, let say N=1.000.000.000, the routing
data overhead becomes 6 for c = 1).

1

2
 3

RSI

RSI
 RSI

4
 6
 7
5
.
 .
 .

RSI
 RSI
 RSI
RSI

8
 9
 10
 11

Cluster_Peer 1

12
 13
 14
.
 15
 i

Decentralized Architecture of

Peer_Node
1
,Peer_Node
2
,......,Peer_Node
lnn

Cluster_Peer i

Decentralized Architecture of

Peer_Node
(i-1)lnn+1
Peer_Node
(i-1)lnn+2

,......,Peer_Node
ilnn

i

9
 10

11

8

13

12

14

15

2-level LRT

Figure 2: The ART structure

Lookup Algorithms: Since the maximum number of nest-
ing levels is O(logb log N) and at each nesting level i we

have to apply the standard LRT structure in N1/2i

col-
lections, the whole searching process requires O(log2

b log N)
hops. Then, we have to locate the target peer by searching
the respective decentralized structure. Through the poly-
logarithmic load of each cluster peer, the total query com-
plexity O(log2

b log N) follows. Exploiting now the order of
keys on each peer, range queries require O(log2

b log N + |A|)
hops, where |A| the answer size.
Join/Leave Operations: A peer u can make a join/leave
request at a particular peer v, which is located at clus-
ter peer W . Since the size of W is bounded by a polylogN
size in expected w.h.p. case, the peer join/leave can be car-
ried out in O(loglogN) hops.
Node Failures and Network Restructuring: Obviously,
node failure and network restructuring operations are ac-
cording to the decentralized architecture we use in each clus-
ter peer.
Performance Evaluation: Our experimental performance
studies include our development of BATON*. The source
code of the whole evaluation process, which showcases the
improved performance, scalability, and robustness of ART
is publicly available at http://code.google.com/p/d-p2p-sim/.

3. REFERENCES
[1] J. F. Buford, H. Yu, and E. K. Lua. P2P Networking and

Applications. Morgan Kaufman Publications, California,
2008.

[2] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas,
and C. Zaroliagis. Improved bounds for finger search on a
ram. In Proceedings 11th Annual European Symposium on
Algorithms (ESA), pages 84–89. 325-336, September 2003.

119

