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ABSTRACT
The performance of large scale applications, such as those
enabled by service-oriented, grid and cloud technologies, heav-
ily relies on aspects related to the network topology and
latency. As such, predicting the actual communication la-
tencies is of high interest. The current state-of-the-art so-
lutions to the problem of estimating the latency among dis-
tributed nodes comprise algorithms that tend to build upon
the notion of network coordinates (NCs). Since network con-
ditions change continuously, NCs need to be updated very
frequently and, thus, are prone to oscillations. We present
a variant of the pioneer NC algorithm, called Vivaldi, which
encapsulates a change detection mechanism to prohibit NCs
updates unless the network conditions change significantly.
The contribution of this paper is twofold: first, to assess the
impact of change detection and, second, to evaluate the NC
algorithms in a realistic service-based environment where
real measurements refer to large data transfers, contrary to
current approaches that collect feedback from much smaller
data transmissions, such as pings. The evaluation shows
that our variant improves both performance and stability
with less overhead.

1. INTRODUCTION
Distributed computing has gained ground due to the sig-

nificant computational capabilities that it provides. Modern
grid and cloud computing infrastructure, through offering
transparent access to a dynamic set of heterogeneous com-
putational and storage resources, allow end users to deploy
large-scale applications that have been deemed infeasible un-
til very recently. One of the most important parameters
that affect the performance of distributed applications, e.g.,
query processing [12], is network delay, which depends on
network topology and traffic conditions. For this reason it
is important to monitor and accurately estimate delays.

There exist several approaches to extract network delay
data. A straightforward one is to continuously collect la-
tency measurements among all pairs of participating hosts,
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as done by the all pairs ping service on PlanetLab; how-
ever, due to its limited scalability and its inherent draw-
backs, i.e., it increases the amount of traffic that is sent
over the network, this approach is not employed. More ad-
vanced methods try to predict the network delays among
two arbitrary hosts utilizing information obtained from the
underlying network. The methods fall into two categories:
in the first one, a network delay model is built and updated
utilizing end-to-end network delay measurements [8], while
in the second one, a structural network model is constructed
using BGP tables, traceroute and other measurements [7].
The pioneer algorithm of the first category is Vivaldi [4].

Vivaldi embeds the end-to-end measured network delays
in an euclidean space, where each host is associated with net-
work coordinates (NC), such that the distance between any
two arbitrary NCs provides an estimate of the actual net-
work delay. Vivaldi, and its extensions use measured delays
that correspond to transmissions of small data sets, includ-
ing ping messages. Due to the fact that the network de-
lays continuously change during the lifetime of a distributed
application, NCs are prone to oscillations. To improve sta-
bility, the work in [6] differentiates between system- and
application- level NCs. System-level NCs are updated as
soon as a new delay measurement becomes available, while
the updates are not propagated to the applications unless a
specific event has occurred, e.g., the system-level NCs have
changed significantly.

This work aims to study an alternative technique for mit-
igating the oscillations in NCs in a real environment, which
does not update the NCs at all unless the observed network
delays change significantly. To this end, our technique em-
ploys a change detection algorithm. In addition, we focus
on delays experienced during the transmission of larger data
sets (at the orders of MBytes) through a web service inter-
face, since such settings are common in practice. The effi-
ciency of the proposed technique is evaluated with the help
of a network delay dataset that is collected from PlanetLab
([3]). To the best of our knowledge, it is the first evaluation
of NC-based algorithms using communication cost measure-
ments referring to large transfers. Interestingly, our proposal
not only performs less work because it does not update the
NCs continuously and thus is characterized by improved sta-
bility, but also is more accurate.

The paper is organized as follows. Section 2 presents the
related work. Section 3 presents the collected dataset. Our
technique and the experimental comparison appear in Sec-
tions 4 and 5, respectively. Section 6 concludes the paper.



2. RELATED WORK
Our work mainly relates to the areas of (i) prediction,

(ii) analysis and (iii) estimation of network delays. Before
presenting the related work, we will disambiguate the terms
latency, RoundTrip Time (RTT), which also called latency
in the literature, and throughput. The RTT between two
endpoints is defined as the total delay to transmit data from
the sender to the destination endpoint plus the delay of the
reply message sent by the destination endpoint to reach the
sender endpoint. On the other hand, network throughput is
defined as the average rate of successful data delivery over
the network and is measured in bits per second, and is in-
versely proportional to network latency [12].

As stated in the introduction, there exists a plethora of
work that aim to predict the data transmission delays among
hosts without performing direct network delay measurements
[8], [7]. In this work, we consider a variant of the Vivaldi
algorithm that belongs to a broader category of methods
that embed the network delay space into a metric space [4].
Many extensions to Vivaldi have been proposed in the liter-
ature; however, the majority of these methods assume static
network delays. The evolution of network conditions is con-
sidered in [6] that proposes ways for rendering Vivaldi more
stable, but still updates the NCs continuously. Our work
shares the goal of [6] to improve stability but updates the
NCs only when significant changes in the measured delays
are detected.

In [11], [10], the network delay data is analyzed and intrin-
sic properties of such delays are identified. For example, the
work in [11] studies the triangle inequality violation (TIV)
property of the Internet delay space, while the work in [10]
studies the structure of the Internet. This work does not
deal with the dynamic nature of the network delays. The
work in [9] deals with the issue of addressing the effects of
routing changes on network delays. Our work aims to study
the dynamic characteristics of network delay data collected
from PlanetLab and present a NC-based prediction algo-
rithm that is aware of the changes.

Regarding the collection of network delay measurements,
one approach is to use the ping utility (e.g.,[1]). A different
approach is followed by the King tool [5], which issues recur-
sive DNS queries to measure the network delay between two
DNS name servers and through this measurement it infers
the actual network delay between two endpoints that are
topologically close to these DNS servers. Another approach,
which we follow, is to estimate latency by taking the inverse
of network throughput [12].

3. PROFILES OF NETWORK DELAYS DUR-
ING LARGE DATA TRANSFERS

This section begins by presenting the methodology adopted
to collect the latency measurements and it continues by pre-
senting part of the most frequent patterns that the latency
measurements of a link may follow and a statistical analysis
of the collected measurements.

In total, three datasets were collected during a twenty-one
day period between November 21 and December 19 2011
utilizing 136 randomly chosen hosts from PlanetLab EU [3].
The approach that we employed to create the three datasets
is presented below. First, we created a set of all host pairs
and then divided this host pair set into three subsets by ran-
domly assigning each host pair to one of the subsets (and
thus three datasets were created). During one day, we col-

lected network latency measurements only for one host pair
subset utilizing the following approach. For each host pair
(h1, h2), we were initiating a synchronous transmission of 4
MB from h1 to h2 every 5 minutes. We chose to send 4 MB
of data between the hosts in order to better distinguish the
network delays among different host pairs and monitor those
delays for large data transmissions. Each network latency
measurement for the link connecting h1 with h2 corresponds
to the total time spent in order to send the 4 MB of data
from h1 to h2 plus the time to send an acknowledgment
message of few bytes from h2 to h1.

The data transmissions were performed through web ser-
vices. In particular, in each host, we deployed a web service
with two methods, namely send(String block, String destHost)
and get(String block). The first one is responsible for send-
ing the string block to the host named destHost. It performs
that task by synchronously invoking the get method of the
web service that is hosted on destHost host with parameter
block. Note that we have set block to a string of 4 MB size.
The web services are developed using the JAX-WS 2.0 API
and the Apache Tomcat 6.0.9 Servlet/JSP Container.

We are interested in latency measurements that are syn-
chronized (at least roughly) so that they can reveal the
global network conditions at a given time. The final datasets
that we used include 3155 host pairs in total (952, 942, 1261
from the first, the second and the third dataset, respectively)
with 1220 latency measurements each, where the τ−th mea-
surement of any of these pairs is taken roughly at the same
time. The reason that we did not use all the measurements
taken is that due to hardware failures or memory leaks some
Tomcat servers became unavailable during the measurement
collection procedure. In order to avoid cases where the col-
lected latency measurements from different links are not syn-
chronized, we discarded the measurement collection proce-
dure for all host pairs belonging to the same subset at the
time at least one host could not send or receive data through
its web service. Apart from that, some hosts were unavail-
able for one or more days during the measurement collec-
tion procedure and, as a consequence, we could not collect
latency measurements for the links which had these hosts as
endpoints. The latency measurements that are related with
those hosts were excluded from the final datasets.

In the following, we show some representative patterns
that the observed latency measurements of a link may ex-
hibit along time. The pattern of Figure 1(a) has some la-
tency spikes of short duration and of short amplitude (less
than 1 sec) and these spikes are somehow uniformly dis-
tributed in time. The dashed vertical lines separate latency
measurements collected during different days. In contrast
to the pattern of Figure 1(a), the pattern shown in Figure
1(b) has a relatively higher number of latency spikes. These
spikes have short duration, but larger amplitude (e.g., more
than 5 sec). The pattern shown in Figure 1(c) comprises a
different paradigm, where latency measurements have signif-
icantly larger duration and amplitude from the ones depicted
on the two latter figures, e.g., some latency measurements
have more than 50 sec amplitude. Continuing our discus-
sion, Figure 1(d) shows an example of a link, where the
measured network delays do not only have spikes, but the
average network delay changes between days. For example,
in Figure 1(d), the latency measurements that are collected
during the second, the third and the fourth days exhibit a
drift of approximately 50 msec.
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Figure 1: Typical patterns that of the observed latency measurements of a link.

Figure 2(a) shows the cumulative distribution of the mea-
sured network latencies. In particular, for each pair of hosts,
we took the 95% percentile out of the distribution formed
by the measured latencies. The x-axis of Figure 2(a) shows
the 95% percentiles that are collected from 3155 host pairs.
The first observation is that the 90% of the host pairs sends
4MB of data within less than 5 sec.

Next we study the changes that may happen within one
network link along time. Figure 2(b) shows the cumulative
distribution of the standard deviation of the latency mea-
surements within a link. We can see that for the 90% of
links, the standard deviation is less than 3.9 sec. For each
pair of hosts, we also examined the maximum difference be-
tween the collected latency measurements. Figure 2(b) also
shows the cumulative distribution of the maximum differ-
ences between the measurements of the links. We can see
that the 90% of links may have a maximum delay difference
of no more than 89 sec. Finally, for each pair of hosts, we
took the 95% percentile out of the distribution formed by
the differences of the collected latency measurements for the
corresponding pair. Figure 2(b) shows the cumulative dis-
tribution of the collected 95% percentiles. We can see that
for the 90% of the profiled links, the 95% percentile of the
delay differences is more than 10 sec. From the cumulative
distribution functions of Figure 2(b) we can conclude that
the latency fluctuations that may happen within a link are
not negligible and can be as high as two orders of magnitude
large.

4. CHANGE-AWARE NC ESTIMATES
In this section, we present our proposal which extends

the original Vivaldi algorithms, as well as, we provide brief
descriptions of the original Vivaldi algorithm and its variant
presented in [6]. We call the proposed Vivaldi variant CA-
Vivaldi.

In Vivaldi, each of the remote hosts is embedded in an

euclidian metric space, where each host maintains its coor-
dinate and a confidence value associated with it [4]. Net-
work embedding is done utilizing latency measurements col-
lected among the hosts and the actual network delays can
be estimated through the distances among the hosts’ coor-
dinates. During the embedding procedure, each host up-
dates its coordinate every time a new latency value becomes
available. This latency value corresponds to the actual net-
work delay from the specific host to one of its neighbors
and can be taken through any of the methods described
in Section 2. Let lτi,j , τ > 0, be the network delay be-
tween the i − th host and its neighbor j − th at time τ .
In brief, when a latency measurement lτi,j appears on node
i, the latter updates its coordinates employing the following
steps. First, it computes the error ǫτi,j of this measurement

as ǫτi,j = lτi,j − ||xτ−1

i −xτ−1

j ||, where xτ−1

i and xτ−1

j are the
coordinates of nodes i and i, respectively, at time τ − 1 > 0.
Second, it computes the direction along which node i has to
be moved (according to the newly presented measurement)
and, finally, it moves a small step in this direction. The
neighbors of each node can be either chosen randomly, or,
in the extreme case, can include all of the remaining network
hosts. Full details regarding Vivaldi can be found in [4].

In order to deal with fluctuations in the observed network
latencies, which lead to significant oscillations of the NCs,
the work in [6] introduced a smoothing step to the Vivaldi
algorithm. According to [6], a host does not update its co-
ordinate utilizing the exact new latency measurements, but
employs a percentile of the latency measurements that have
been presented to this host in the recent past. In order
to employ this technique, also known as Moving Percentile
(MP) filtering, each host must maintain for each of its neigh-
bors a sliding window of historic latency measurements. For
example, let Wi,j be the sliding window, which stores a por-
tion of the most recent latency measurements presented to
host i. Then, every time a latency measurement is supplied
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Figure 2: (a) Cumulative distribution of the 95% percentile values taken out of the distributions formed by
the measured latencies of the profiled links. (b) Cumulative distributions for the standard deviation, the
maximum delay difference and the 95− th percentile of differences of the latency measurements within a link.

to host i, the latter updates its coordinate using a percentile
from Wi,j .

The rationale of the proposed variant can be summarized
as follows; only when the network delay of a link changes
along time, the coordinates of the endpoint hosts are up-
dated. In other words, the host i updates its coordinate
only when the supplied lτi,j latency measurements show a
drift. Detecting changes on the network delay of a link can
be done using a variety of change detection algorithms (e.g.,
[2]). However, in this work, we employ a simple and com-
putationally efficient approach. It is assumed that the net-
work delay of a link changes when two consecutive latency
measurements differ significantly. Following this rationale, a
host i updates its coordinate at time τ only when lτi,j differs
from the most recent latency measurement lκi,j , 0 < κ < τ ,
that the host i has used to update its coordinate with respect
to its neighbor j, i.e., |lκi,j − lτi,j |/|l

τ
i,j | > θ, θ > 0.

The difference between the proposed Vivaldi variant and
the two other techniques is that the former updates a host’s
coordinate only when a significant change in the measured
network latencies is detected. As will be shown in Section
5, this change increases both the accuracy and the stability
of the resulting network embedding, decreasing at the same
time the total running time because of fewer NC updates.

5. EXPERIMENTAL EVALUATION
The goal of this section is to experimentally compare the

proposed Vivaldi variant (CA-Vivaldi) along with the Vi-
valdi algorithm and the Vivaldi variant proposed in [6], also
called MP-Vivaldi. The comparison is done in terms of ac-
curacy and NC stability. We also study how the size of the
neighborhood of each node, as well as, other parameters of
the Vivaldi variants affect the above performance criteria.
The performance of the considered algorithms for finding
NCs is evaluated both utilizing the collected raw latency
measurements and also a smoothed version of them. The
purpose of smoothing the collected latency measurements
was to eliminate the latency spikes of unit-width from the
ground truth, assuming that these spikes do not reflect a
highly loaded network but are due to highly loaded hosts.
More details regarding smoothing the collected latency mea-
surements are given at the end of this section. The main ex-

perimental conclusions are: (i) the proposed Vivaldi variant
produces more accurate and more stable NCs than Vivaldi,
(ii) the proposed variant is faster than Vivaldi, (iii) the Vi-
valdi variant proposed in [6] is less accurate (up to an order
of magnitude) and less stable (up to an order of magnitude)
than our variant and Vivaldi itself.

The following summarize the parameter values that we
considered when we conducted the experiments. The default
dimensions of the NCs are three. We also considered that
each host might have a neighborhood of size two or eight, i.e.,
the NC are updated based on the measurement of either two
or eight links. For parameters |W | and α, which correspond
to the size of the sliding window and its percentile when the
hosts employ MP-Vivaldi, respectively, we considered the
following assignments: W = 4 and α = 0.25, W = 4 and α =
0.5, W = 6 and α = 0.5, W = 8 and α = 0.125 motivated
by the results in [6]. Regarding the proposed variant, the
possible values that we consider for the change detection
threshold parameter θ are 0.05, 0.1 and 0.25, respectively.

We conducted experiments utilizing all the three collected
datasets, as well as, considering 5-dimensional NCs. How-
ever, since the derived experimental conclusions were sim-
ilar, we only present the experimental results for the first
dataset for 3 dimensions. Recall that the first dataset con-
sists of 952 host pairs and for each host pair we collected
latency measurements at τ = 1, . . . , 1220 timepoints.

Regarding the performance criteria of interest, accuracy is
measured through the relative error measure. The relative
error for the network link connecting the hosts i and j at
time τ is given by rτi,j = |||xτ

i − xτ
j || − lτi,j |/l

τ
i,j . In this

formula, xτ
i and xτ

j correspond to the coordinates of the
hosts i and j, respectively, after the latency measurements
that are taken up to and including the τ−th time point have
been presented to the hosts and lτi,j refers to the latency of
the link connecting the hosts i and j measured at time τ .
Stability refers to the degree of change of the positions of
the found NC along time. Similar to [6], the stability of a
host is quantified using the NC movement measure, which
is computed at time τ > 2 by ||xτ

i −xτ−1

i ||. As the collected
latency measurements are in msec, the NC movement for a
host at time τ is also measured in msec. The experimental



Approach \ Criterion Median RE Median TM

CA-Vivaldi (2 neighbors per host)

(θ=005) 0.48 96.67
(θ=01) 0.48 100.89
(θ=025) 0.46 75.34

MP-Vivaldi (2 neighbors per host)

(|W |=4,α=0.25) 8 419.70
(|W |=4,α=0.5) 3 270.8
(|W |=6,α=0.5) 9 488.4
(|W |=8,α=0.125) 4 192.59

Vivaldi (2 neighbors per host)

0.48 111.53

Approach \ Criterion Median RE Median TM

CA-Vivaldi (8 neighbors per host)

(θ=005) 0.32 380.46
(θ=01) 0.40 365.87
(θ=025) 0.34 289.24

MP-Vivaldi (8 neighbors per host)

(|W |=4,α=0.25) 6 2318.40
(|W |=4,α=0.5) 7 3644.50
(|W |=6,α=0.5) 18 3744.75
(|W |=8,α=0.125) 9 4298.68

Vivaldi (8 neighbors per host)

0.40 387.34

Approach \ Criterion Median RE Median TM

CA-Vivaldi (2 neighbors per host)

(θ=005) 0.38 58.14
(θ=01) 0.40 101.49
(θ=025) 0.36 62.60

MP-Vivaldi (2 neighbors per host)

(|W |=4,α=0.25) 4 203.5
(|W |=4,α=0.5) 20 479.73
(|W |=6,α=0.5) 25 492.02
(|W |=8,α=0.125) 6 216.84

Vivaldi (2 neighbors per host)

0.40 72.35

Approach \ Criterion Median RE Median TM

CA-Vivaldi (8 neighbors per host)

(θ=005) 0.28 252.69
(θ=01) 0.32 209.39
(θ=025) 0.26 391.62

MP-Vivaldi (8 neighbors per host)

(|W |=4,α=0.25) 87 9697.34
(|W |=4,α=0.5) 24 4832.85
(|W |=6,α=0.5) 23 7671.64
(|W |=8,α=0.125) 97 5356.46

Vivaldi (8 neighbors per host)

0.36 440.89

Table 1: Median relative error (RE) and median to-
tal movement (TM) of the proposed variant, Vivaldi
and MP-Vivaldi for different parameter assignments
and different neighborhood sizes. The results are ag-
gregated along τ = 1, . . . , 1220. Upper-part: The col-
lected latency measurements are utilized as ground
truth. Lower-part: The collected latency measure-
ments are pre-processed to remove spikes of unit-
width.

results are summarized in Table 1.
In the first experiment, we compare the accuracy of the

three alternatives for finding NC assuming a neighborhood
of size two for every host. The rest of the parameters of the
Vivaldi variants are set to θ = 0.25, and W = 4, α = 0.25,
respectively. Following the presentation style adopted in [6],
Figure 3(a) shows the cumulative distribution of the 95− th
percentile relative error per host after all of the 1220 col-
lected latency measurements have been supplied to each host
pair. In particular, for each host i, we computed the relative
errors for the links having the specific host as their source
endpoint, rτ=1220

i,j , and then we took the 95 − th percentile
out of these relative errors. The set of the collected 95− th
percentiles of relative errors that are computed for every
host comprise the data of the x-axis. From this plot, we can
observe that the accuracy of the proposed variant is higher
than the accuracy of the other two alternatives. The maxi-
mum 95−th percentile relative error of the proposed variant
is approximately 30 (the latency of a link that is estimated
using NC is 30 times higher than the actual latency), while
it is 130 and 400, for Vivaldi and for the MP-Vivaldi, re-
spectively. Another observation is that all alternatives may
be inaccurate by orders of magnitude. The cumulative dis-
tributions of the 95 − th percentile relative error per host
after the 50% and the 75% of the collected latency measure-
ments have been supplied to each host pair, respectively, are
also studied. Due to space limitations we will only mention
that these cumulative distribution functions also show that
the proposed variant is more accurate than the other two
alternatives and the results do not change significantly.

In order to study how does the parameter θ affect the per-
formance of the proposed variant, we repeated the previous
experiment only for the proposed variant changing θ to 0.05
and 0.1, respectively, keeping the size of the neighborhood
the same. Recall that parameter θ affects the sensitivity of
the variant in delay fluctuations; as θ increases the variant
becomes more robust to temporal delay fluctuations. Figure
3(b) summarizes the results of this experiment. We can see
that the accuracy of the proposed variant increases as pa-
rameter θ increases, as well, while the the maximum 95− th
percentile relative error of the proposed variant is lower than
that of Vivaldi independently of θ. For example, the maxi-
mum 95−th percentile relative error of the proposed variant
is approximately 50 for θ 0.05 or 0.1 (three times lower than
the corresponding value when employing Vivaldi). Similar
to Figure 3(b), Figure 3(c) shows the results after execut-
ing MP-Vivaldi for the following W,α parameter combina-
tions: W = 4, α = 0.25, W = 4, α = 0.5, W = 6, α = 0.5,
W = 8, α = 0.125. We can see that its accuracy changes sig-
nificantly for different selections of the parameters W and α,
however, it is always worse than that of the proposed variant
and Vivaldi. Especially, in some cases, the maximum 95−th
percentile relative error exceeds 1000.

We have summarized in the upper-left part of Table 1 the
median relative errors of any of the considered three alterna-
tives for finding NCs. These errors are computed taking into
account all of the links at any timepoint τ = 1, . . . , 1220, i.e.,
each cell in the second column of the upper-left part of Ta-
ble 1 is computed as median∀i,j,i6=j,τ∈{1,...,1220}{r

τ
i,j}. This

table shows that the median relative error of the proposed
variant is lower than that of Vivaldi, while the accuracy of
MP-Vivaldi is approximately an order of magnitude worse
than that of the other two solutions.
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Figure 3: 95 − th Percentile relative error per host
after all of the latency measurements taken at τ =
1, . . . , 1220 have been supplied to each host pair. The
size of each host’s neighborhood is 2.

Apart from accuracy, we also study the stability of the
proposed variant. Figure 4 shows the median total move-
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Figure 4: Median total movement of all hosts along
τ = 1, . . . , 1220. The size of each host’s neighborhood
is 2.

ment of all hosts along time. In particular, at any timepoint
τ > 0 we computed the total movement of a host i that
us incurred during updating its coordinate for the latency
measurements lτi,j , i 6= j. Figure 4 is created after taking the
median total movement of the hosts at a specific timepoint
τ > 1. From this figure, we can see that the proposed vari-
ant is more stable than Vivaldi and the MP-Vivaldi variant.
Especially, as time passes by, the proposed variant becomes
more stable, which is not the case for Vivaldi and the MP-
Vivaldi variant.

The third column in upper-left part of Table 1 shows the
median total movement of the hosts for the studied Vivaldi
alternatives for different settings of their parameters aggre-
gating along τ = 1, . . . , 1220. For example, the value of the
cell that contains the median total movement of the hosts
when employing Vivaldi is the median of the values of the
line shown in Figure 4 that corresponds to Vivaldi. This
table further supports our claim that the proposed variant
is more stable than Vivaldi and its MP-variant.

We repeat the above experiments increasing the size of
the neighborhood from 2 to 8. The results are shown in
Figures 5(a)-(c) and 6 and the upper-right part of Table 1.
From these figures we can conclude the following regard-
ing accuracy: (i) the accuracy both of the proposed Vivaldi
variant and Vivaldi is higher comparatively with their accu-
racy when the neighborhood size was two, (ii) the accuracy
of the proposed Vivaldi variant is higher than that of Vi-
valdi for θ = 0.25, while it is approximately the same for
θ = 0.05 and θ = 0.1, and (iii) the accuracy of MP-Vivaldi
is worse than that of the aforementioned algorithms. An
interesting phenomenon that we observed for MP-Vivaldi is
that its accuracy is worse than that when the size of each
host’s neighborhood was 2, e.g., see the median relative er-
ror columns from the upper-left and the upper-right parts
of Table 1 for |W | = 4, α = 0.5, |W | = 6, α = 0.5 and
|W | = 8, α = 0.125. Regarding stability, the total move-
ments of the hosts increase, which is expected as the size of
the neighborhood of every host is bigger. As it was the case
for a two-size neighborhood, the proposed variant is more
stable than Vivaldi and MP-Vivaldi.
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Figure 5: 95 − th Percentile relative error per host
after all of the latency measurements taken at τ =
1, . . . , 1220 have been supplied to each host pair. The
size of each host’s neighborhood is 8. Figure (b) has
been created after zooming in Figure (a).

We close this section by presenting the results derived af-
ter feeding the algorithms with a smoothed version of the
collected latency samples. As discussed in Section 3, the
collected latency data comprise many abrupt and of high
amplitude latency measurements. Since we collected this
dataset through utilizing web services, part of these latency

spikes may be a byproduct of overloaded Tomcat servers, in-
stead of a highly loaded network. We made the assumption
that latency spikes of unit-width, are due to highly loaded
endpoints and, as such, must be removed from the ground
truth. The task of smoothing is performed as follows: for
the latency measurements lτi,j of a host pair i, j we substi-

tuted lτi,j , τ > 2, with the average of the values lτ−1

i,j and lτ+1

i,j

if lτi,j is five times higher both from lτ−1

i,j and lτ+1

i,j . The re-
sults for a two-size and eight-size neighborhood per host are
summarized in the lower-left and lower-right parts of Table
1, respectively. From these sub-tables we can see that the
accuracy of both the proposed Vivaldi variant and Vivaldi
becomes higher, while the proposed Vivaldi variant is more
accurate relatively with the other two alternatives. Similar
conclusions can be drawn for stability.
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Figure 6: 95 − th Percentile relative error per host
after all of the latency measurements taken at τ =
1, . . . , 1220 have been supplied to each host pair. The
size of each host’s neighborhood is 8.

6. CONCLUSIONS
Predicting the actual delays among the endpoints of a net-

work is a problem of high importance in modern distributed
applications. This paper proposes a novel solution for pre-
dicting the actual network latencies building upon the state-
of-the-art Vivaldi algorithm, which relies on the notion of
NCs. The proposed Vivaldi variant is guided by changes in
the underlying network; as such, it updates the hosts’ NCs
only when the network latencies change significantly. The
experimental comparison shows that the proposed variant
improves both accuracy and NC stability. Another contri-
bution of this paper is that, in contrast to existing work, the
evaluation is performed after collecting real latency measure-
ments corresponding to large data transfers from PlanetLab;
and as such is of interest for many real-world distributed ap-
plications.
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