
Optimal Tradeoff Between Energy Consumption
and Response Time in Large-scale MapReduce Clusters

Pavlos Paraskevopoulos
Dept. of Informatics,

Aristotle University of Thessaloniki, Greece
Email: paparask@csd.auth.gr

Anastasios Gounaris
Dept. of Informatics,

Aristotle University of Thessaloniki, Greece
Email: gounaria@csd.auth.gr

Abstract—The increasing growth of the size of the digital
databases has given rise to the need for the development of
infrastructures, such as large scale data centers and compu-
tational clusters, which are capable of storing and processing
very large volumes of data. To date, most clusters have been
designed for performance. Due to non-linear speed-ups that
are common to typical applications, performance maximization
involves the decision of the number of the nodes to process a
specific (intensive) task, as opposed to the utilization of the full
cluster. In addition, energy consumption has recently attracted
significant attention, given that the cost to operate a cluster may
well exceed its acquisition cost. This issue calls for judicious use
of resources as well. The aim of this study is to present a method
that achieves the optimal tradeoff between energy consumption
and response time in distributed clusters, such as MapReduce
clusters. To this end, we propose an algorithm that derives the
fraction of the nodes that minimizes the energy consumption
without sacrificing performance (in terms of response time)
more than a user-defined threshold. Moreover, we present a
generic and configurable framework to describe performance
and energy consumption as a function of the nodes used; our
framework can accommodate the widely spread MapReduce-
like parallel executions in a straightforward manner. The
evaluation results show that our methodology can lead to
significant energy savings with acceptable performance penalty
in many realistic situations.

Keywords-energy consumption, response time, map-reduce

I. INTRODUCTION

Large-scale clusters typically consist of a high number
of nodes that can run in parallel with a view to speeding-
up data- or computation-intensive processes. However, there
are several barriers to linear speed-up, such as process
initialization and interference overheads [1], which may even
lead to performance degradation if the number of the cluster
nodes used exceeds an application-dependent value [2].

Another challenge in achieving efficient parallelism, apart
from the potential performance degradation, stems from
the energy consumption. According to [3], direct monthly
energy cost makes up 23% of the total monthly costs
that a data center needs for the servers, the power and
the infrastructure cost. The cost for the cooling and the
power distribution make up 82% of the infrastructure cost.
Consequently, the total energy cost is a significant portion
of the cluster’s operating cost. Furthermore, considering that

server costs are falling, it is estimated that, by 2012, the three
year cost of electricity per server will exceed the initial cost
of the server purchase by 3 to 22 times [4]. In addition,
recent studies show that energy inefficiency problems are
aggravated when the nodes are under-utilized [5], i.e., they
are not used at their full potential. According to the studies
in [5] and taking into account the under-utilization of the
machines when they are in cluster [3], a large portion of the
total monthly operating cost due to power consumption can
be reduced if we increase energy efficiency of the nodes
during low utilization periods. This can be achieved by
keeping some nodes inactive (i.e., powered down) rather than
idle during process execution.

In this paper, we present a method that achieves the
optimal tradeoff between energy consumption and response
time in distributed clusters, such as MapReduce clusters.
To this end, we propose an algorithm that derives the
fraction of the nodes that minimizes the energy consumption
without sacrificing performance (in terms of response time)
more than a user-defined threshold. More specifically, the
contributions of our paper are as follows:

• We present a generic and configurable framework to
describe response time and energy consumption as a
function of the nodes used; our framework can ac-
commodate the widely spread MapReduce-like parallel
executions in a straightforward manner emphasizing
on the way speed-up is achieved and the initialization
overheads.

• We present an algorithm that achieves the optimal
tradeoff between the response time and the energy
consumption, in the sense that energy consumption is
minimized while the maximum performance degrada-
tion does not exceed a user-specified threshold.

• We evaluate our methodology and the results show that
our approach can lead to significant energy savings with
acceptable performance penalty in many realistic situ-
ations, whereas there are cases in which both response
time and energy consumption are minimized.

The structure of this paper is as follows. In Sec. 2, we
briefly discuss the studies on which our method is based and



other related work. In Sec. 3, we present our algorithm and
the accompanying framework. The evaluation is in Sec. 4,
and Sec. 5 concludes the paper.

II. RELATED WORK

Many techniques and frameworks to handle and process
data in a distributed system have been developed. In this
work, we concentrate on distributed systems that parallelize
tasks according to the MapReduce framework (with some
extensions). MapReduce is basically a programming model,
the implementation of which (e.g., Hadoop) renders paral-
lelization and fault-tolerance issues transparent to the user
[6]. In MapReduce applications, a specific node plays the
role of the coordinator, which assigns workload to the work-
ing nodes and supervises the execution. An interesting ap-
plication of MapReduce to generic data management tasks,
namely multi-way joins that appear in several applications,
is described in [7]. Two features of the work in [7] include
i) the fact that the optimal parallelization of some tasks may
lead to sublinear speed-ups even if there are no barriers due
to task initialization overheads, and ii) some applications
may include parts that cannot be parallelized. In our work,
we consider these interesting cases explicitly.

Nowadays, most of the MapReduce algorithms that have
been proposed focus on performance only thus ignoring en-
ergy consumption issues. However, there exist some studies
that take into account both the energy consumption and the
response time (e.g., [8], [9], [10]). In [8], two methods that
target at the minimization of the energy consumption by
activating or deactivating the nodes are presented. The main
idea behind these methods is that, by deactivating some
nodes, utilization and energy efficiency is improved thus
leading to lower energy consumption. The first method uses
the minimum set of the nodes, which may lead to serious
performance degradation. The second method utilizes all
the nodes in the cluster, and, upon the completion of
task execution, powers down the nodes to avoid the high
energy consumption at idle state. Several powered down
states are examined in [8] from which hibernation seems
the most efficient in terms of the trade-off between energy
consumption and transition time (from online to offline state
and vice versa). Our approach can be regarded as a hybrid
of these two methods with the addition that we consider
the case where high degrees of parallelism may not be
beneficial. Also, the energy consumption functions in our
work are based on those in [8].

The work in [10] performs energy aware-resource alloca-
tion by matching hardware resource usage characteristics to
process requirements. Energy consumption is considered in-
directly by maximizing resource utilization, which is known
to be more energy efficient. Finally, a query optimizer that
takes into consideration both the execution time and the
energy consumption is presented in [9].

Table I
NOTATION

N Number of available nodes in the cluster
k Number of online (non powered-down) nodes
T (k) Response time
E(N, k) Energy consumed
P Power cost of an active node (per time unit)
Ttr Time to transition a node from offline to online state (or vice

versa)
Ptr Power cost to transition a node from offline to online state

(or vice versa)
Ph Power cost during hibernate (offline) state (per time unit)
a Parallelizable cost (in time units)
b Initialization cost per node (in time units)
c Non-parallelizable cost (in time units)
s Skew parameter
δ Performance degradation parameter

III. OUR APPROACH

As explained above, the main rationale of our algorithm
is to power down some nodes with a view to minimizing
energy consumption while the increase of response time is
below a threshold. In other words, we trade performance for
higher energy efficiency, when these goals are contradictory.
Table I summarizes the notation used.

A. Algorithm Description

Let T (k) be the response time of a task that employs k
nodes in a cluster with N nodes (1 ≤ k ≤ N ). The algorithm
to compute the tradeoff between response time and energy
consumption is shown in Fig. 1. In the first step of algorithm,
the number of nodes that minimizes the response time is
computed. If T (k) is (strictly) monotonical, then utilizing
all the nodes in the cluster leads to minimal response time.
However, in practice T (k) is unimodal, and approaches such
as golden section search can be employed to detect the
extremum value of k and the value range. The average-
case complexity of such approaches is logarithmic, i.e.,
the approaches are extremely fast. The second step of the
algorithm computes a range of k values, for which the
performance degradation does not exceed a parameter δ.
Finally, the value of k within this range that minimizes
the energy consumption is computed and the algorithm
finishes. The output of the algorithm defines the exact
number of the machines to be used, whereas all the other
nodes are powered down, e.g., to the hibernate state, which
is characterized by low transition time and low energy
consumption as explained in [8]. Because of the unimodality
of the function, the tradeoff between energy and response
time given a specific degradation threshold is optimal; any
solution outside the range of values examined is inferior.

B. Framework for Estimating Response Time and Energy
Consumption

1) Response Time: We assume that the nodes in the
cluster are homogeneous with regards to their technical
characteristics. We divide each task’s cost into two parts,
namely the parallelizable cost a and the non-parallelizable



Algorithm: int FindOptimalTradeoff (N, δ)

1. find k
′

s.t. T (k) is minimized;
2. find range [k

′
min, k

′
max], k

′
min ≤ k

′
≤ k

′
max

s.t. T (k) ≤ (1 + δ)T (k
′
)

3. find k ∈ [k
′
min, k

′
max] s.t. E(N, k) is minimized

4. return k

Figure 1. Outline of the algorithm.

cost c. Furthermore, each node selected to participate in the
task execution is initialized in b time units. According to
these, the response time is given by the following equation:

T (k) =
a

f(k)
+ b · g(k) + c (1)

f(k) defines the speed-up of the parallelizable part of
the task (without considering initialization and other types
of overheads). Simple tasks achieve linear speed-up (LS),
which corresponds to the case where f(k) = k. However,
there are several cases, in which the optimal speed-up is
sublinear. In [7], a case is described, for which f(k) =

3
√
k2.

We will use this case as a representative of sublinear speed-
up (SLS) cases.
g(k) defines the aggregate impact of node initialization

on the task response time. We consider two common cases.
First, when nodes are initialized by a coordinator in a
sequential manner before the beginning of execution. In
this case, which will be referred to as serial initialization
(SI), g(k) = k. The response time can be decreased if
the initialization phases of all nodes overlap, e.g., when the
nodes form a (potentially temporary) hierarchy during ini-
tialization phase according to which each node is responsible
for initializing its children at the next hierarchy level. Such
hierarchical initialization (HI) is described by a logarithmic
function g(k) = ln(k).

Eq. (1) can be easily extended to capture the cases in
which the system is not fully balanced, e.g., because of
skew in workload distribution. In the following equation,
we have inserted parameter s, 1/k ≤ s ≤ 1. Smaller values
correspond to totally unbalanced scenarios (i.e., all the work
is allocated to a single node), whereas s = 1 denotes that
workload is equally distributed.

T (k) =
a

s · f(k)
+ b · g(k) + c (2)

Overall, there are four cases:
LS-HI: T (k) = a

s·k + b · ln(k) + c
SLS-HI: T (k) = a

s
3√
k2

+ b · ln(k) + c

LS-SI: T (k) = a
s·k + b · k + c

SLS-SI: T (k) = a

s
3√
k2

+ b · k + c

2) Energy Consumption: We assume that, initially, all
nodes in the cluster are online. As such, N − k nodes are
powered down, since non-fully utilized machines result in

both energy and performance inefficiency if they are kept
online. For each machine that is powered down, we spend
Ptr ·Ttr power to change their state; after this transition, we
spend Ph for the whole duration of the task execution. The
total energy that the system consumes during execution is:

E(N, k) = k ·P ·T (k)+(N−k) ·(Ptr ·Ttr+Ph ·T (k)) (3)

The first term describes the energy consumption attributed
to the online nodes, while the second term gives the energy
consumption of the offline nodes. Note that more sophis-
ticated equations can be derived that take into account
several offline states and the overlap of transition time of
offline nodes and the execution time; such extensions are
not examined here and are left for future work.

¿From Eq. (3), it can be observed that the ratio between
the power costs at different states is a key factor. According
to [8], we can make the assumption that Ptr is similar
to the power P when the cluster is fully on and running
a workload. However, Ttr is defined by the capabilities
of the hardware and the operating system; in general, we
expect this to be orders of magnitude smaller that the total
response time of intensive tasks. If Ttr is relatively high,
the delays to change the state of a node may become
unacceptable. Finally, our approach makes more sense when
Ph is significantly smaller than P , in order to yield energy
benefits. In practice, there is a trade-off between Ph and Ttr,
and modern systems support several powered down states
with different levels of trade-offs.

IV. EVALUATION

In this section, we evaluate our approach by showing
how our algorithm can yield significant energy savings
with low performance penalty. Essentially, we compare our
solution against approaches that target optimal performance
regardless of the energy consumption.

The default characteristics of the cluster are as follows: P
= Ptr = 10, Ph = 1, Ttr = 0.1. According to these parameters,
the power cost per time unit for online nodes is the same as
the cost to power down a node and an order of magnitude
higher than the offline cost; this is a realistic assumption
as explained earlier. Initially, we assume that the task is
parallelized in a balanced manner (s=1) and the maximum
performance degradation allowed is 10% (δ = 0.1). We
experiment with all four types of parallelization (namely LS-
HI, LS-SI, SLS-HI, SLS-SI). The parameters a, b and c are
chosen in such a way that the parallelizable cost may differ
from 0 (for non intensive tasks) to 2 orders of magnitude
(for intensive tasks). More specifically, a, b and c can take
two values each: a = 10, 100, b, c = 1, 10. We also assume
that the cluster consists of either 100 or 10000 nodes. The
combination of these parameters correspond to cases where
the cluster is both under-utilized and fully utilized.

We first examine the LS-HI case. For each case, we
investigate all 23 = 8 combinations of a, b and c for



Table II
LS-HI (FOR N=10000)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 10 10 [5,29] 10
10 1 10 10 9 [3,92] 9
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 100 72 [39,413] 72
100 1 10 100 57 [26,1189] 57
100 10 1 10 10 [5,26] 10
100 10 10 10 10 [5,29] 10

Table III
LS-HI (FOR N=100)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 10 4 [5,29] 5
10 1 10 10 3 [3,92] 3
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 100 14 [39,100] 39
100 1 10 100 9 [26,100] 26
100 10 1 10 5 [5,26] 5
100 10 10 10 4 [5,29] 5

N = 10000 (Table II) and N = 100 (Table III). In each
table, we show i) the value of k that minimizes T (k), which
is computed at the first step of the algorithm and is denoted
by kt, ii) the value of k that minimizes E(N, k) regardless
of any performance degradation, which is denoted by ke,
iii) the range [k

′

min, k
′

max] which is computed at the second
step of the algorithm, and iv) the final value of k found by
the algorithm.

If our system has 10000 nodes, the cluster is basically
under-utilized and the values of kt, ke and k are either
identical or very close to each other, i.e., energy and
performance are both (near-)optimal, apart from the cases
where a and b differ by two orders of magnitude. In the
latter cases, which is also the most commonly encountered
in real-world intensive tasks, the output of our algorithm k
equals ke, which is significantly lower than kt. For c = 1,
our algorithm employs 72 nodes instead of 100 (benefitting
from 28 machines being powered down). The energy savings
are greater when c = 10, where 57 nodes instead of 100
are employed. When N = 100, the cluster may become
fully utilized. In these cases (where again a and b differ
by two orders of magnitude), k is higher than ke, but still
significantly lower than kt, which means that the energy cost
can be reduced by several factors (e.g., from 100 machines
down to only 26) at the expense of tolerable time cost.

Interestingly, for LS-SI, the energy benefits are less sig-
nificant even for intensive jobs. This is due to the fact that,
for the parameters chosen, the optimal level of parallelism
according to both criteria is particularly low, whereas our
algorithm is more suitable for large scale parallelism. The
results are shown in Tables IV (for N = 10000) and V (for
N = 100).

In SLS-HI (see Tables VI and VII for N = 10000 and
N = 100, respectively), we encounter cases where the

Table IV
LS-SI (FOR N=10000)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 3 3 [2,4] 3
10 1 10 3 3 [2,6] 3
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 10 10 [7,15] 10
100 1 10 10 10 [6,17] 10
100 10 1 3 3 [3,4] 3
100 10 10 3 3 [2,5] 3

Table V
LS-SI (FOR N=100)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 3 3 [2,5] 3
10 1 10 3 2 [2,6] 2
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2

100 1 1 10 7 [7,15] 7
100 1 10 10 6 [6,17] 6
100 10 1 3 3 [3,4] 3
100 10 10 3 3 [2,5] 3

Table VI
SLS-HI (FOR NODES=10000)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 17 16 [6,75] 16
10 1 10 17 14 [4,252] 14
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 544 166 [138,3938] 166
100 1 10 544 117 [87,10000] 117
100 10 1 17 16 [7,64] 16
100 10 10 17 15 [6,75] 15

Table VII
SLS-HI (FOR NODES=100)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 17 4 [6,75] 6
10 1 10 17 2 [4,100] 4
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 100 12 [67,100] 67
100 1 10 100 8 [52,100] 52
100 10 1 17 4 [7,64] 7
100 10 10 17 4 [6,75] 6

Table VIII
SLS-SI (FOR N=10000)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 3 3 [2,5] 3
10 1 10 3 3 [2,6] 3
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 12 12 [8,21] 12
100 1 10 12 12 [7,22] 12
100 10 1 3 3 [2,5] 3
100 10 10 3 3 [2,5] 3

minimum response time is achieved if several hundreds of
nodes are used. The behavior is similar to the case of LS-
HI with the difference that the energy savings are more
significant. For example, our algorithm may employ up to
nearly five times less nodes (117 instead of 544) for intensive



Table IX
SLS-SI (FOR N=100)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 3 2 [2,5] 2
10 1 10 3 2 [2,6] 2
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2

100 1 1 12 6 [8,21] 8
100 1 10 12 6 [7,22] 7
100 10 1 3 2 [2,5] 2
100 10 10 3 2 [2,5] 2

Table X
SLS-HI (FOR N=10000, Ttr=1)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 17 16 [6,75] 16
10 1 10 17 14 [4,252] 14
10 10 1 2 2 [2] 2
10 10 10 2 2 [2] 2
100 1 1 544 176 [138,3938] 176
100 1 10 544 120 [87,10000] 120
100 10 1 17 16 [7,64] 16
100 10 10 17 16 [6,75] 16

Table XI
SLS-HI (FOR N=10000, S=0.8)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 24 21 [8,110] 21
10 1 10 24 18 [5,366] 18
10 10 1 2 2 [2,3] 2
10 10 10 2 2 [2,3] 2
100 1 1 761 195 [188,5759] 195
100 1 10 761 137 [119,1000] 137
100 10 1 24 21 [8,95] 21
100 10 10 24 21 [8,110] 21

Table XII
SLS-HI (FOR N=10000, δ=0.05)

a b c kt ke [k
′
min, k

′
max] k

10 1 1 17 16 [8,46] 16
10 1 10 17 14 [5,99] 14
10 10 1 2 2 [2,3] 2
10 10 10 2 2 [2,4] 2
100 1 1 544 166 [197,2030] 197
100 1 10 544 117 [137,3992] 137
100 10 1 17 16 [9,42] 16
100 10 10 17 15 [8,46] 15

parallelizable tasks. Again, if the full cluster should be
utilized to achieve minimum response time, ke is lower than
k, but still, the energy consumption is decreased. For SLS-
SI, the same observations as in the LS-SI apply (Tables VIII
and IX).

In the last part of the evaluation, we investigate the effects
of TTr, s and δ. Due to lack of space, we present results only
for the SLS-HI case. The key findings are summarized as
follows. Even if there is a ten-fold increase in Ttr, the impact
on the algorithm’s efficiency is very small (see Table X).
The energy savings may increase even further in unbalanced
intensive executions (see Table XI), whereas a decrease in
δ to the half has small impact on energy consumption (see
Table XII).

V. CONCLUSION

In this paper, we presented an algorithm that achieves an
optimal tradeoff between the response time and the energy
consumption in large-scale clusters. Our algorithm computes
the portion of the cluster that should be powered down in
order to maximize energy savings without increasing the re-
sponse time above a threshold. Our algorithm is particularly
effective in settings, where the following conditions apply:
(i) the parallelizable cost is at least an order of magnitude
higher than the non-parallelizable one (note that, if this is
not the case, running the task in a large-scale cluster is
questionable); and (ii) the parallelizable cost is at least two
orders of magnitude higher than the node initialization cost.
Both these conditions are commonly encountered in real-
world massively parallel (e.g., MapReduce-based) applica-
tions. Our work can be extended in several ways, the most
important of which include the direct comparison against [8]
and the consideration of multiple offline states.

REFERENCES

[1] D. J. DeWitt and J. Gray, “Parallel database systems: The
future of high performance database systems.” Commun.
ACM, vol. 35, no. 6, pp. 85–98, 1992.

[2] A. N. Wilschut, J. Flokstra, and P. M. G. Apers, “Par-
allelism in a main-memory DBMS: The performance of
PRISMA/DB.” in VLDB, 1992, pp. 521–532.

[3] J. Hamilton, “Cooperative expendable micro-slice servers
(cems): Low cost, low power servers for internet-scale ser-
vices,” in CIDR, 2009.

[4] K. G. Brill, “Data center energy efficiency and productiv-
ity,” in The Uptime Institute - White Paper available at
http://www.uptimeinstitute.org, 2007.

[5] L. A. Barroso and U. Hölzle, “The Case for Energy-
Proportional Computing,” Computer, vol. 40, no. 12, pp. 33–
37, 2007.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI ’04, 2004, pp. 137–
150.

[7] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-
reduce environment,” in Proceedings of the 13th International
Conference on Extending Database Technology, 2010, pp. 99–
110.

[8] W. Lang and J. M. Patel, “Energy management for mapreduce
clusters,” Proc. VLDB Endow., pp. 129–139, 2010.

[9] W. Lang, R. Kandhan, and J. M. Patel, “Rethinking query
processing for energy efficiency: Slowing down to win the
race,” in Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 2011.

[10] W. Xiong and A. Kansal, “Energy efficient data intensive
distributed computing,” in Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2011.


