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Abstract—Storage management in wireless sensor networks is
an area that has started to attract significant attention, and
several methods have been proposed, such as Local Storage
(LS), Data-Centric Storage (DCS) and more recently Location-
Centric Storage (LCS). Several modern applications, like context-
dependent information dissemination for pervasive computing,
on-demand warning in surveillance sensor networks and roadway
safety warning, require that each originating event is stored
around its point of origin. LCS is a suitable approach for such
applications. Though, LCS does not take into consideration the
origin of the queries, which is equally important to the storage
method, because it has immediate influence on the experienced
latency. This paper proposes a simple yet effective way of
reducing the network latency, namely the Query Sensitive Storage
(QSS) protocol. QSS makes certain that not only will the queries
be answered, but all subsequent queries that originated in the
same area will be answered faster. The experimental evaluation
using the J-Sim simulator attests that with the proposed QSS
protocol we can achieve smaller network latency at a minimum
storage cost as compared to its state-of-the-art competitor, namely
LCS.

I. INTRODUCTION

Wireless sensor networks (WSNs) have emerged as an
efficient way of monitoring the physical world and have been
an area of significant research in recent years [1]. The advances
in technology have made it possible to build sensors, which
are devices with microprocessors, memory, sensing and radio
communication capabilities. The low cost of these devices
enables deploying them in large numbers in the application
environment. There is an increasing number of applications
and fields where sensors can be used [6]. Some examples
would be to monitor the environment [11] (severe weather,
fires, earthquakes, volcanoes), to help in constructions (en-
ergy preserving buildings, building integrity) and agriculture
(effective watering), to use for military purposes [3], [8] (sense
mines, target detection and tracking) and many more. All these
applications have different characteristics, which mean that
often different protocols need to adapt the network architecture
to satisfy each one.

Storage management is an area that has started to attract
significant attention in the context of wireless sensor networks.
In all the forementioned applications, it is apparent that the
storage management approach for the WSN should address

efficiently the following two goals:

• Minimize the size of stored data (per sensor). Since the
sensors are devices with inherently limited capabilities,
minimizing the size of data that need to be stored leads to
improved data retention, since the network can continue
storing data for longer periods of time.

• Perform efficient query execution. Whether the queries
are dynamically generated or static, storage management
can influence the efficiency of query execution. Query
execution efficiency can be measured in various terms,
but two of the most important are the completeness, i.e.,
whether the querer gets any answers, and the second is
the incurred latency, i.e., the time elapsed until the querer
gets the responses.

Although storage minimization is very significant, the re-
cent advances in NAND flash storage [9] (i.e., they become
cheaper, larger and more common) have made the former goal
less important as compared to the latter. Recent market pre-
dictions forecast that within the next three years the capacity
of the flash memories (e.g., NAND) will be at the order of
Terabytes 1. Presently, the NAND flash devices can store a
few gigabytes data [2]. Therefore, the goal of minimizing the
latency prevails over the storage minimization, and thus we
could trade some storage to improve query latency. In the next
subsection, we briefly outline the motivation and contributions
of the present work.

A. Motivation and article’s contributions

There exist four major families of data storage techniques
in the context of WSNs, namely External Storage (ES), Local
Storage (LS), Data-Centric Storage (DCS), and Location-
Centric Storage (LCS). In the sequel, we will briefly describe
these approaches; a more thorough description can be found
in Section II.

In External Storage, data are transferred outside the network
to a sink, which compared to a sensor is not resource-starving;
data can then be processed as in traditional database systems.
The obvious drawback of this method is the communication
overhead that the sensors incur, especially the ones closest

1http://www.techworld.com/storage/news/index.cfm?NewsID=4387.
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to the sink as they are more likely to become hotspots. In
Local Storage the data is stored locally at the sensor that
sensed the event. Thus the queries must flooded inside the
sensornet in order to find the sensors that sensed the event
of interest. In Data-Centric Storage [10], the data is stored
according to its name and location; it uses geographic hash
tables to map data to specific locations in the network. Thus,
an event could be stored at a location that is far from the
location where the event originated. Considering the mine-
warning application described earlier, we can easily deduce
that this kind of storage could have fatal consequences. Be-
sides, similar to LS, DCS creates hot spots. Finally, Location-
Centric Storage [14] stores the generated events in concentric
circles with gradually larger radii, around the sensor where the
event was originated. Although this storage protocol is suitable
for our target applications, it suffers from the drawback that a
querer can be informed about the events of his/her interest only
when s/he approaches the origin sensors; thus his/her queries
will probably experience high latency.

In light of the preceding discussion, we can conclude that
for the target applications of this work, none of the existing
storage management protocols is appropriate, in the sense that
they can not efficiently avoid hot-spots and at the same time
guarantee low latency.

The contribution of the present article is to design a dynamic
on-demand storage protocol that stores data closer to the
user that initiated a specific query so that subsequent queries
instigated by users can receive an answer at a smaller latency.
Specifically, the article’s contributions can be summarized as
follows:

• Description of a dynamic on-demand storage protocol
that improves upon the state-of-the-art relevant protocols.

• Performance evaluation of the protocol and comparison
with the state-of-the-art method, using an established
simulation package (J-Sim).

The rest of the paper is organized as follows. In Section IIwe
will discuss the relative research that has been done on the
subject of storage. Section III presents our method description
in detail, while Section IV evaluates the proposed method
against the state-of-the-art relevant method. Finally, the paper
concludes with Section V.

II. PREVIOUS WORK

Ratnasamy et al. propose the third protocol, DCS [10],
which uses hash tables to match events with storage locations.
This way, events with similar names can be stored at the same
or near by locations. Thus the necessity for query flooding is
avoided since the user knows where the respective data to his
query are stored. Therefore, the data is stored at a location
which can be quite far, depending on the hash function, from
the point of generation. The DCS protocol also suffers from
a single point of failure. Since all data with the same name
are stored at a sensor at a specific location, a sudden battery
loss or malfunction of the sensor would compromise the data
stored. The proposed way to solve the problem according to

Ratnasamy et al. is to replicate the data locally, around the
hashed location.

A variation of the DCS protocol is based on Rendezvous
Regions [12]. In this case, data are mapped to a whole region
rather then a single point. Data in this region are spread
according to decisions made by certain elected nodes in that
region. This variation is less susceptible to network changes
and has better scalability but the drawback lies in the battery
depletion of the elected clustered heads. Various optimization
to the original approach have been described [7], [5], [4]
after the introduction of the method, but the hardly heal the
aforementioned drawbacks.

Figure 1. (Left) Location Centric Storage. (Right) Query Sensitive Storage.

LCS [14], [15] is a distributed storage protocol where
each event is associated with in intensity value (σ), which
determines the geographical propagation of the event record.
The protocol then builds concentric circles of records with
specific radii based on σ (see left part of Figure 1). The
difference between LCS and the previous protocols is that none
of the later take into consideration the query origin. In ES the
user is querying the database in the base station. In LS data
are stored locally and remain static throughout the execution
of the protocol. Finally, in DCS data not only can be stored
far from the originating query but also do not adapt to the
query source.

III. QUERY SENSITIVE STORAGE

The key idea of the proposed QSS method, which is
described in this section, is to propagate the records in such
a way so that it is certain that an incoming query will be
answered and also that it will be answered with the smallest
latency possible. The protocol consists of two components: a)
the storage subprotocol, and b) the querying subprotocol.

Storage management. The first part of QSS involves the
propagation of the records. A record is built by the home
sensor with an initial TTL and intensity σ values. The home
sensor broadcasts the record whose intensity value will deter-
mine how far away from the home sensor it will travel. The
sensors that receive the record will only store it if (a) their
X coordinate ε {x + 21 − 1, x + 22 − 1, ..., x + 2σ − 1}, and
their Y coordinate ε{y + 21 − 1, y + 22 − 1, ..., y + 2σ − 1},
where σ and (x,y) are the intensity of the generated record and
its originating coordinates respectively. If the two conditions
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are not met then the sensor will re-broadcast the record if its
distance to the home sensor is smaller than 2σ , otherwise it
will drop the record.

The TTL value of the record starts to decrease the moment
it is stored. When the TTL value reaches zero, the packet is
dropped. Each time a sensor stores a record, it increases its
TTL value by 10 seconds and then re-broadcasts it if the 2σ

condition is met. This means that the further away the packet
travels, the more the TTL value increases resulting in more
packets staying alive on the outer concentric circles. Therefore
it is more likely that the user will be notified in time. This is
clearly shown later in our experiments.

Query management. As far as the querying phase is
concerned the protocol behaves as followed:

1) The queries are generated with an intensity value σ of
their own. This value determines how far the query will
travel away from the user issuing the query.

2) When a sensor receives a query, it checks to see if the
answer is stored in its memory. If the answer does not
exist then it decreases the intensity and re-broadcasts the
query. If the answer record exists then it is sent back to
the user.

3) Each sensor that receives this answer record on the
way to the user, will store the record, increase its TTL
value and then re-forward it to the user. This way the
packet leaves a “trail" with increasing TTL values, while
travelling to the user.

4) Each sensor has a small cache where a certain number of
queries is stored. Whenever a new record is received, it is
checked to see if it is an answer to a previously received
query. If it is an answer, then the record is sent to the
user, otherwise the normal procedure is followed. This
small cache is updated with new queries every second.

A. Comparison of QSS to LCS

We mentioned earlier, that one of the main motives for the
development of QSS is the need to make the sensornet to adapt
also to the origin of the queries and not only to replicate the
events around their “birth" location. Let us illustrate the major
differences between QSS and LCS with a concrete example,
i.e., the deployment of sensors in a minefield in search of
situated mines. According to the LCS protocol, the sensors
would propagate the data by placing it in concentric circles
with the maximum radius being dictated by the σ value.
The moment that data are stored at some sensor, its TTL
value starts to decrease. When it reaches the value 0, data
are dropped. This approach is depicted in the left part of
Figure 1, where the sensor at the center (black dot) propagates
the records, which in turn are stored at the positions denoted
as white circles.

On the other hand, in the right part of Figure 1 we can see
the effects of using QSS in the sensornet. At the beginning
of the propagation, data are stored at the same positions as
the initial LCS protocol dictates. The difference is that the
TTL value of each record is increased as the packets travel
further away from the source. This means that the packets on

the outer circles will stay alive for longer and consequently
users will have a better chance of being notified of a certain
event. In our example, the user will have a greater chance of
being notified of a nearby mine as he walks toward it.

Moreover, QSS is able to exploit the spatial locality of
queries, i.e., a query for an event will probably be followed by
another one for the same event. In our minefield example, since
several army units pass through the minefield, it makes sense
to try and notify faster the units that follow the first one. This
procedure is pointed out in the right part of Figure 1 with the
black dots. As the answer travels toward the user (at the upper
right corner), data are stored at every sensor that it passes by
without considering the rules that LCS protocol dictates, as
to where the data is to be stored. Also, the TTL value of the
answer data increases as the record travels toward the user.

IV. EVALUATION OF QUERY SENSITIVE STORAGE

We evaluated the performance of the QSS protocol through
simulation experiments and compared its performance to that
of the state-of-the-art storage protocol for surveillance sensor
networks, namely LCS [14].

A. Simulation model

We have developed a simulation model based on the J-
Sim simulator [13]. In our simulations, the AODV routing
protocol is deployed to route the data traffic in the wireless
sensor network. We use IEEE 802.11 as the MAC protocol
and the free space model as the radio propagation model. The
wireless bandwidth is assumed to be 2 Mbps. We performed
a large number of experiments with various sensor network
topologies, and parameter setting, but for the interest of space,
we present here a subset of the experiments with a setting that
is similar to that of [14].

The sensors were placed in two grids. The dimensions of
the two grids were 23×23 and 32×32, having 529 and 1024
sensors respectively. The sensors in both grids were placed in
the middle of each cell. The simulation details are as followed:

• The simulation time was 300 seconds. The records were
produced in the first half of the simulation time while the
queries were sent in the second half.

• The intensity σ of each record in the 23 × 23 grid
was randomly chosen from [0,3]. The respective value
in the 32 × 32 grid was [0,6]. The reason behind the
change in values is that in a smaller network, having a
large intensity value would mean that the record could
be stored in a large area making the results difficult to
interpret, since the originated records would be stored in
almost each and every sensor of the sensornet.

• The TTL value was randomly chosen from [150,160] in
the 23 × 23 grid, while the values in the 32 × 32 grid
were [150,180]. A value smaller 150 would imply that
the records would to be dropped inside the first half of
the simulation.

• While the record is propagated in the network, its TTL
value is increased by 10 seconds each time the record
is stored at a sensor. As soon as a record is stored
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Parameter Default value Values
# sensors 1024 529, 1024

λe 0.512 0.128, 0.256, 0.512, 0.768
λq 0.512 0.128, 0.256, 0.512, 0.768

Table I
SIMULATION PARAMETERS.

at a sensor, its TTL value starts to decrease by 1 on
each second passed. When the TTL value reaches zero,
the record is dropped and space is freed in the internal
storage.

• The events and queries are generated according to a
Poisson distribution with the rates λe and λq taking the
values 0.128, 0.256, 0.512 and 0.768.

• The queries originate at sensors whose geographical
position follows the Zipfian distribution, i.e., some sensor
generate more queries than others.

Our measured quantities include the number of stored records
at each sensor in the network, the number of queries generated,
the number of answers received, the query latency, the number
of messages transmitted and so on. In the figures that follow,
we plot the impact of the event generation rate λe on query
latency, the effectiveness of the examined storage protocols
described as the Hit Ratio (HR), i.e., the percentage of queries
which receive an answer, and finally, the efficiency of the
protocols in avoiding hot spots, defined as the ratio of HR to
the maximum number of event records stored by any sensor
during the course of the simulation. Table I summarizes the
simulation parameters.

B. Evaluation

Impact of event generation rate on HR. Our first experi-
ment investigated the influence of the event generation rate on
the effectiveness of the competing storage protocols (Figure 6,
Figure 7). QSS is practically insensitive to the event generation
rate, and manages to deliver the same percentage of answers
irrespectively of the size of the sensornet. It is 30% to 70%
better than LCS and the performance gap widens in the case
of larger networks. For large sensornets, the fact that LCS
stores the events only around the neighborhood where they
were generated results in a poor HR, whereas QSS exploits
the spatial locality of queries to deliver high HR.

Impact of event generation rate on query latency. Our
second experiment investigated the impact of the event gen-
eration rate on the experienced latency. The obtained results
are illustrated in Figures 4 and 5. For small networks, when
the event generation rate increases, so does the latency since
more packets are travelling inside the network and congest it.
For larger networks though, the situation is somehow different
since there are alternative paths to avoid congested paths and
latency decreases, until the event generation rate becomes
really large and the network can not deal with the traffic. In
summary, there is a threshold in the event generation rate that
beyond that value, the sensornet becomes congested. In all
cases, QSS outperforms LCS at factor that ranges from 15%
to 100%.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
it 

ra
tio

 (
i.e

., 
an

sw
er

s/
qu

er
ie

s)

event generation rate

Effectiveness: 529 sensors

lcs
qss
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Figure 3. Hit ratio for 1024 sensors.

Finally, since QSS increases the number of stored event
records inside the sensornet in order to deliver improved
performance in terms of latency and hit ration, we investigated
whether this increase in storage pays off. In Figures 2 and
3 we illustrate the ratio of HR to the maximum number of
stored event records in any sensor network. We observe that
only the network is large but produces very few events, is the
LCS better than QSS, which is expected since QSS capitalizes
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on the spatial locality of queries in order to achieve high
performance.
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V. CONCLUSIONS

Storage management in wireless sensor networks is an area
that has started to attract significant attention. The need for
storage management arises mainly in the class of WSNs where

the information collected by the sensors need not or should
not be relayed to outside-of-the-network observers at first
place. The three canonical storage models, namely External
Storage, Local Storage and Data-Centric Storage can not
support efficiently such applications, whereas the recently pro-
posed Location-Centric Storage is query-agnostic. The present
article identified the drawbacks of the aforementioned storage
methods and proposed the Query Sensitive Storage protocol,
which capitalizes on the spatial locality of queries in order
to deliver improved performance in terms of percentage of
answered queries and latency. The proposed protocol was
evaluated using an established simulation tool, i.e., J-Sim, and
the experimental evaluation attested the superiority of QSS
over LCS.
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