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Abstract
Recently, many research contributions focus on showing that specific real-life phenomena or
measured quantities of our everyday life obey a power-law, a scale free distribution. Inspired
by the numerous studies in power-laws, in this paper, we explore the existence of power-law
relationships in musical data. We provide the context where such power-laws do exist, and we
give experimental results that validate our assumptions. The results are based on several musi-
cal collections related to classic, European and Asian music.
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1. Introduction

In contrast to many measurements that seem to assume values around a specific mean
value (e.g., distribution of the heights of humans, distribution of car speeds in a mo-
torway [Newman (2006)], there are many other cases where the measured values fol-
low a power-law. Essentially, this means that although the vast majority of the meas-
urements assume relatively small values, there is a part of the population that assumes
significantly larger values than the usual measurements. A random variable obeys a
power-law distribution, if the probability density function is given by the following
formula, where a and C are real-valued constants and p(X) is the probability of an
event to occur if the value of variable X is equal to a certain value:

p(x) =Cx™* 1)

Constant a is the exponent (or slope) of the power-law, and it is the most important
part. Constant C is less important, since it can be easily calculated by enforcing that
all values of p(X) must sum to unity (this will be clarified later).

Similar to the power-law is the Zipf law. The main difference is that in the case of the
Zipf law, the rank-frequency plots are used which are equivalent to the cumulative
distribution of the variable under study. In fact, if a variable obeys a power law distri-
bution with exponent a then the corresponding slope for the Zipf law will be a-1.



94

Figure 1(a) depicts a power-law distribution of synthetic data, reliant to a power-law
generator from [Newman (2006)], with 10.000 data and slope a=2. Figure 1(b) is the
plot of the population (X axis) with respect to the percentage of cities (y axis), using as
data the population of US cities. It is obvious that the figures are different because of
the definition of the function. Data in Zipf law appear in an almost straight line, but in
power-law they appear more scattered, especially at the end of the graph, which is
called the tail. The long tail that is formed in both graphs represents data with much
larger value, in Figure 1(b) are cities with much larger population.
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Figure 1. Plots in log-log scale of power law and Zipf law distributions

The existence of a power law reveals the fact that the data are scale-free, i.e. the sta-
tistical properties of the fraction resemble those of the whole data set [Faloutsos et. al.
(1991)]. Thus, the existence of a power-law is a strong evidence of the self-similarity
properties of the data under study. To decide if a specific distribution follows a
power-law, Zipf law or not, there are two important issues that be considered: (i) the
observed data should fit to a power-law distribution for specific values of a and C,
and (ii) the exponent of the power-law should assume values between 2 and 3 (be-
tween 1 and 2 for Zipf law), according to the majority of power-laws met in nature
[Newman (2006)] (however in some cases, values near 1.8, 1.9 or 3.1, 3.2 are also
accepted). In the sequel, we give some illustrative examples of variables that obey a
power-law distribution:

e Word frequency: In [Estoup (1916)] the author has observed that the fre-
quency with which words are used appears to follow a power law.

e Web hits: The number of hits received by web sites during a single day from
a subset of the users of the AOL Internet service provider, obeys a power-law
[Adamic, Huberman (2000)].
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e Magnitude of earthquakes: the magnitude of earthquakes that have occurred
in California between 1/1910 and 5/1992, as recorded in the Berkeley Earth-
quake Catalog, follows a power-law. The power-law relationship in the earth-
quake distribution is a relationship between amplitude and frequency of oc-
currence [Newman (2006)].

e Diameter of moon craters: the diameter of moon craters obeys a power-law
distribution, as it has been shown in [Neukum, Ivanov (1994)].

o Intensity of solar flares: it has been reported in [Lu, Hamilton (1991)] that the
gamma-ray intensity of solar flares obeys a power-law.

Here, we investigate the existence of power-laws in repeating patterns of symbolic
musical data. In particular, given a music collection and a set of repeating patterns in
this collection, we study the probability distribution of these patterns in the collection,
based on some metrics, such as the support, the pattern length and frequency. The
existence of a power-law can be utilized in: (i) the quantification of the self-similarity
properties of a collection, (ii) the determination of the significance of musical patterns
towards more efficient music information retrieval, (iii) the comparison of different
collections based on the parameters of the power-law distribution.

The rest is organized as follows. In Section 2 we describe related work on power-law
discovery in musical data, whereas Section 3 contains some fundamental mathemati-
cal background related to the decision of whether a specific distribution follows a
power-law or not. Section 4 contains our study regarding searching power-laws in
repeating patterns of musical data. Experimental results are given and discussed in
Section 5, whereas Section 6 concludes the work.

2. Related Work and Contribution

In all previous works regarding power-laws in musical data, authors discovered scale
free distributions based on variables with low musicological meaning.

Voss and Clarke [Voss, Clarke (1975)] discovered that pitch and loudness fluctuation
in music (classical, jazz, blues and rock radio station recorded continuously over 24
hours) follow Zipf distribution. Additionally, they tried to compose music through a
program, using a Zipf distribution generator to generate individual music events.

The authors in [Hsu, Hsu (1991)] discovered that the changes of acoustic frequency
of a collection of J.S. Bach's musical pieces obey a scale free distribution.

Manaris, Purewal and McCormick [Manaris et. al. (2002)] used a data set of music
from different genres and composers. The variables were based on pitch and duration
of musical events. Self-similarity was observed in these variables.
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Zanette [Zanette (2006)] discovered that note pitch and duration of obey Zipf's law.
The data set consists of music works from J.S. Bach, W.A. Mozart, C. Debussy and
A. Schoenberg.

Although there are many observations for scale free distributions in musical data,
there is no work investigating these issues in repeating patterns (i.e., patterns of notes
that are present more than once in the corpus) of symbolic musical data. Existing re-
search has focused in variables with low musicological concept, for example pitch,
duration of single notes and changes in frequency of music signal. It is evident that a
single note is not representative for a composer, because all notes can be used by any
composer. We believe that repeating patterns characterize more adequately the style
of a composer than low-level features can do.

3. Mathematical Background
By applying logarithms in both parts of Equation 1 we take:

log(p(x)) = —alog(x) +1og(C) )

By assuming a log-log scale, the above equation corresponds to a straight line with
slope a and shift log(C). Exploring power-law relationships requires that we decide if
the observed data follow a power-law distribution. Towards this goal, we need an
evaluation tool to help us take this decision.

Mostly, the power-law behavior appears for values of x larger than a threshold Xpin.
Note that Xmi, 1S not the minimum observed value, but the minimum value for which
the power-law behavior is observed. Since linear regression models for estimating the
exponent does not provide satisfactory results [Newman (2006)], usually the maxi-
mum likelihood estimation (MLE) technique is being used [Milton, Arnold (1995)].

There are two approaches followed to determine a and C depending on whether we
have a discrete or a continuous random variable. In both cases, the constant C is de-
termined by noting that since p(x) is a probability density function, all possible values
will sum to unity. By omitting any further details we obtain Equations 3 and 4 for the
continuous case:

a=1+ n[ilnxi} (3)

min

C=(a-1x! (4)

min
For the discrete case the corresponding parameters are given by Equations 5-6, where

{(a) is the Riemann Zeta function and equals z X" and £'(a) its first derivative.

X=Xmin
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The determination of parameters a and C is the first step towards exploring power-
laws. If the determined exponent a ranges between 2 and 3, then this is a strong evi-
dence that the data may follow a power-law distribution. The second, and most im-
portant step, involves the evaluation of how well the observed data fit to the power-
law distribution. To facilitate this, the most common technique is to employ the Kol-
mogorov-Smirnov test, which is a widely used goodness-of-fit test [Kolmogorov
(1933)]. In case the data are power-law distributed, the null hypothesis will be ac-
cepted, whereas if the data distribution deviates significantly from a power-law distri-
bution, the null hypothesis will be rejected.

4. Power—Laws in Repeating Patterns

4.1 Preliminaries

In our study, we focus on symbolic music representations where the notes of each
musical score are available. A pattern of length m is a sequence of m consecutive
notes that appear in the collection at least once. A repeating pattern [Hsu (2001)] of
length m is a sequence of m consecutive notes that appear in the collection at least
twice. We term the set of unique repeating patterns distinct repeating patterns. Evi-
dently, the less notes a (repeating) pattern contains the larger the probability of occur-
rence. Although there is a plethora of variables that could have been explored, we
restrict our focus on the following: (i) support, the number of musical scores that a
repeating pattern is contained in, taking into account the whole collection, (ii) length
L, the number of notes contained in the repeating pattern, and (iii) frequency, the
number of occurrences of a repeating pattern in the same musical score.

We give a simple example to illustrate how the variables of interest are computed.
Assume we have three musical scores each containing 5 notes. S; = ACCDD, S, =
ACCAD and S; = ACCAA. The repeating patterns in our collection compose the set
RP which contains the patterns A, C, D, AC, CC, CA, ACC, and CCA. Table 1 de-
picts the support, length and frequency values for the above repeating patterns. In the
frequency column, three numbers appear, one for each musical score.

Evidently, larger the support, larger the significance of the patterns, as long patterns
appearing in many musical scores are more powerful and less intuitive than small
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ones. Also, longer the patterns, larger the significance. Finally, the frequency meas-
ures the significance of the pattern in the same musical score.

Table 1. Support, length and frequencies of patterns

Pattern | Support | Length | Frequency
A 3 1 1,2,3
C
D
AC
CcC
CA
ACC
CCA
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The data sets used for the experimentation pertain to real musical data in the kern and
midi format, obtained from KernScores (http://kern.humdrum.org) and Multimedia
Library (http://www.multimedialibrary.com/barlow). We have used musical pieces of
Bach, Corelli and Haydn (data sets BACH, CORELLI, HAYDN) a part of the collec-
tion of musical themes described in the work of Barlow and Morgenstern [Barlow,
Morgestern (1978)] (BARLOW data set) and a part of the Essen collection, contain-
ing European and Asian music (data sets EUROPE and ASIA). As far as BARLOW,
EUROPE and ASIA data sets are concerned, the musical pieces included therein are
purely monophonic and thus repeating pattern extraction is rather trivial. On the other
hand, the pieces of BACH, CORELLI and HAYDN data sets, which are all poly-
phonic, required special treatment. In each of these data all voices have been assumed
in a sequential manner, one after the other, while taking into consideration that repeat-
ing patterns are not allowed to be found over connections of voices. We have done so,
under the assumption that repeating patterns tend to occur in single voices and not
distributed among them. In total, we have 570 works in BACH, 228 in CORELLI,
160 in HAYDN, 2,245 in ASIA and 6,201 in EUROPE. Finally, there are 9,811
themes in the BARLOW data set. Tables 2-4 give some basic characteristics regard-
ing the data sets used in the experiments.

Table 2. CLASSIC collection (BACH, CORELLI and HAYDN data sets)

data set | scores | rep. patterns | distinct rep. patterns

BACH 570 61,429 12,606
CORRELI | 228 33,176 11,627
HAYDN 160 22,450 7,970

Total 958 117,055 26,223
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Table 3. ESSEN collection (ASIA and EUROPE data sets)

data set | scores | rep. patterns | distinct rep. patterns
EUROPE | 6,201 86,479 12,746
ASIA 2,245 46,407 10,262
Total 8,446 132,886 20,484

Table 4. BARLOW collection (9,811 themes)

pattern length | patterns | distinct rep. patterns
2 186,205 2,008
3 175,334 15,257
4 163,502 49,389
5 152,515 86,546
6 142,789 109,216
7 133,679 117,928

4.2 Experimental Results

In the sequel, we give some representative results showing that in several cases
power-laws do exist in musical data. Note that, these results are preliminary, and
more research is required to draw some conclusions regarding the interpretation of
these laws. We note that patterns are described by using only the pitch information of
each note, and not its duration.

Figures 2-3 depict some results for the support of repeating patterns in the CLASSIC
collection. In each graph we give the exponent (slope) a, the constant C, the Xpin
threshold, and the L length. Figure 2 shows the results for repeating patterns of length
at least 3, whereas the results of Figure 3 refer to repeating patterns of length at least
4. Table 5 summarizes the results for BACH, CORELLI and HAYDN data sets.
Rows that appear bold, illustrate that there is a power-law, based on Komogorov-
Smirnov test. In the last column of the table, we give also the percentage of the popu-
lation of the distinct repeating patterns obeying the power-law (power-law tail).

From Figures 2-3 and Table 5 we observe that power-laws do exist for BACH,
CORELLI and HAYDN data sets. More specifically, power-laws in BACH data set
are related to more scores than CORELLI and HAYDN, and this can be realized by
observing the population column of Table 5. Moreover, in BACH there is a power-
law even for larger repeating patterns, whereas this is not true for CORELLI and
HAYDN that require repeating patterns of smaller size to form the power-law.

Figures 4-5 and Table 6 depict some representative results for the support of repeating
patterns in the ESSEN collection. Power-laws do exist for this collection too, for re-
peating patterns of length larger than or equal to 3. This is true for both ASIA and
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EUROPE data sets. An interesting observation is that the percentage of population
obeying the power-law is larger for ASIA than EUROPE, meaning that the self-
similarity property of the first data set is more evident than the second. Moreover, we
observe that by considering patterns of length L>2, the power-law existence is mar-
ginal, since the corresponding slope in Figure 4(a) and Figure 5(a) is less than 2.

X% 8, o See
(a) BACH (b) CORRELI (c) HAYDN
Figure 2. Power — laws for L > 3
(a) BACH (b) CORRELI (c) HAYDN

Figure 3. Power — laws for L > 4

Table 5. BACH, CORELLI and HAYDN summary of results for support.

data set L a C Xmin | POpulation %
BACH |>1|190]| 382 | 5 11.51
BACH |>2|196| 449 | 5 13.25
BACH |>3(218]| 801 | 5 10.00
BACH |>4273|27.70| 5 6.86
CORRELI |>1 |201| 522 | 5 8.32
CORRELI |>2 | 212 | 6.86 | 5 8.91
CORRELI | >3 |2.60 | 1492 | 4 7.07
CORRELI | >4 | 3.09 | 38.06 | 4 2.60
HAYDN |>1/209| 6.36 | 5 8.77
HAYDN | >2 224|930 | 5 9.32
HAYDN | >3 1279|2165 4 6.29
HAYDN | >4 1298|3060 | 4 2.20
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Figure 5. Support based power -laws for EUROPE

Table 6 ASIA and EUROPE summary of results for support

data set L a C Xmin | poOpulation %
ASIA >11190| 450 | 6 7.65
ASIA >2 1195 437 | 5 9.83
ASIA >3(215| 7.41 | 5 7.40
ASIA >4 | 274 119.64 | 4 5.44
EUROPE |>1|1.82| 583 | 11 4.56
EUROPE |>2 | 1.81 | 2.98 5 8.46
EUROPE |>3|203| 656 | 6 4.92
EUROPE |>4|351|1737| 5 3.10

Next we search for power-laws in the BARLOW collection. Table 7 summarizes the
results for the support of the patterns. Again, the interesting cases are depicted in bold
text. For patterns of length 3 and 4, the tail of the distribution follows a power-law,
which means that the self-similarity property applies here as well.
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Table 7. BARLOW summary of results for support

Ll a C Xmin | POpulation %
31219 | 60.67 | 27 8.94
41239 | 4448 | 12 4.43
513.05]1067.64 | 21 0.56
6 |3.07 | 153.76 8 0.78
71275| 8247 9 0.17

Up to now, we have investigated the existence of power—laws in the support of re-
peating patterns. Regarding the length of the patterns, power-laws have been detected
only for the BACH data set, for which we give the log-log plot of the cumulative dis-
tribution in Figure 6. The parameters of the power-law are, a=2.59, C=71.04 and
Xmin=11, whereas the percentage of the repeating patterns obeying the law is ~10%. As
in the previous, the power-law is detected in the distribution tail.
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Figure 6. Cumulative distribution for length in BACH data set

Finally, we did discover power-laws for frequency by considering all repeating pat-
terns (i.e. L>1). However, the value of this law is limited because evidently, small
patterns (containing 1 or 2 notes) are expected to occur frequently in a musical score.
For this reason, the results are not given. However, musical scores of different genres
may contain more significant power-laws with respect to frequency, and this should
be further investigated in order to draw solid conclusions.

5 .Concluding Remarks

Power-laws appear frequently in nature, highly related to fractals and self-similarity.
In this paper, we investigate the existence of such laws in symbolic musical data. The
main result of our research is that power-laws do exist in music. We have inspected
three different variables: support, length and frequency of repeating patterns. Regard-
ing support, all collections show some degree of self-similarity, with different expo-
nents and constants. Moreover, there is a difference in the percentage of the popula-
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tion that fit to a power-law distribution. In fact, all experiments have shown that
power-laws exist in the distribution tails. Regarding the repeating patterns lengths,
fewer power-laws have been detected. Specifically, in the CLASSIC collection
power-laws in length have been detected only for BACH. Finally, no significant
power-laws have been detected for repeating patterns frequencies.

The results of our study show that repeating patterns obey power-laws, which actually
means that the existence of these patterns follow a scale-free distribution. This can
lead to the conclusion that a part of a musical piece shows similar statistical proper-
ties as the whole piece does. This result can be used as an auxiliary technique to in-
vestigate the differences among diverse music collections. Additionally, it is a fun-
damental step in exploring the rules of the mathematic structures of music. Conse-
quential, a possible future application is to develop systems, which they could com-
pose music based on statistical properties.

Moreover, we could explore the applicability of power laws to music classification.
This can be accomplished by applying power-law metrics to extract various features
of each composer's piece, as a first phase and as a second phase to classify musical
pieces based on these features. An approach to the identification and the classification
of a composer or style of a musical piece has been implemented in [Manaris et. al.
(2002)]. After the feature extraction, data mining and artificial intelligence techniques
are applied to classify each piece to a specific composer or to a style of music. Our
study could help towards this direction. Finally, the self-similarity properties of music
collections can be used for improved compression techniques.
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