
www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 1419–1444
Parallel bulk-loading of spatial data

Apostolos Papadopoulos, Yannis Manolopoulos *

Department of Informatics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

Received 8 April 2002; accepted 12 May 2003
Abstract

Spatial database systems have been introduced in order to support non-traditional data

types and more complex queries. Although bulk-loading techniques for access methods have

been studied in the spatial database literature, parallel bulk-loading has not been addressed in

a parallel spatial database context. Therefore, we study the problem of parallel bulk-loading,

assuming that an R-tree like access method need to be constructed, from a spatial relation that

is distributed to a number of processors. Analytical cost models and experimental evaluation

based on real-life and synthetic datasets demonstrate that the index construction time can be

reduced considerably by exploiting parallelism. I/O costs, CPU time and communication costs

are taken into consideration in order to investigate the efficiency of the proposed algorithm.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Parallel databases; Spatial access methods; Bulk-loading; Query processing
1. Introduction

Parallel DBMSs have been developed as research prototypes [9,31] and complete

commercial systems. The benefits of these systems can be easily understood taking
into consideration the large computational power and the huge amounts of data that

modern applications require. Another research area with major interest is supporting

space in database systems (spatial database systems) [15], where objects are not sin-

gle-valued and range from points in a multidimensional space to complex polygons

with holes. In order to efficiently support applications requiring non-conventional

data, a number of spatial access methods have been proposed. The most important

characteristic of these methods is their efficiency in answering user queries involving
*Corresponding author. Tel.: +30-31-996363; fax: +30-31-996360.

E-mail address: manolopo@csd.auth.gr (Y. Manolopoulos).

0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.05.003

mail to: manolopo@csd.auth.gr

1420 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
spatial relationships between the objects [2,16,24,29]. An excellent survey on multi-

dimensional index structures has been reported in [13].

Basically, there are two approaches that can be followed in order to build a spatial

access method. The first technique involves individual insertions of the spatial ob-

jects, meaning that the access method must be equipped to handle insertions. The
second technique involves building the access method by using knowledge of the un-

derlying dataset. Evidently, the second technique requires that the data are available

in advance. However, this situation occurs quite frequently even in dynamic environ-

ments. For example, data can be archived for many days in data warehouses and in

order to answer queries efficiently, access methods must be constructed first. Several

clustering methods and other data mining tasks require the presence of an index

structure. Moreover, even in conventional relational database systems, a user may

create an index on demand on a specific attribute of a relation (e.g. using SQL on
can pose: CREATE INDEX SALIDX ON TABLE EMPS (salary)) in order to

speed-up join queries based on this attribute. These observations have triggered re-

searchers in the database community to investigate bulk-loading techniques towards

fast access method generation. The benefits of bulk-loading are summarized below:

• the access method can be constructed faster than by using individual insertions,

• the quality of the produced access method can be optimized since the underlying

data are known in advance,
• the space utilization is usually much better (in some cases approaches 100%) and

therefore less disk operations are required to answer a query.

Although the literature is rich in bulk-loading techniques for spatial access meth-

ods, to the best of the authors’ knowledge the problem of parallel bulk- loading in

spatial database systems has not been given much attention. The challenge is to ex-

ploit parallelism in order to fulfill both efficient index generation and high quality of

the produced index. Therefore, we study parallel techniques for bulk-loading, where
we assume that the environment is composed of a number of processors based on a

shared-nothing architecture, where each processor manages its own disk(s) and main

memory. The method is studied for both the efficiency during index generation and

the quality of the produced index. Moreover, the speed-up, size-up and scale-up of

the method is studied and several experimental results are demonstrated based on

real-life and synthetic datasets.

During our study we assume that no reorganization of the data takes place. In

other words, after the completion of the index construction process, the data remain
assigned to the same processor. However, in order to guarantee load balance during

index construction, it is necessary for some processors to transmit the spatial infor-

mation of the objects to other processors, without transmitting the whole record or

the objects’ detailed geometry.

The rest of the paper is organized as follows. The next section presents the appro-

priate background and related work on sequential bulk-loading techniques. Section

3 presents the phases of parallel bulk-loading and provides a cost model to estimate

the cost of the parallel bulk-loading algorithm. In Section 4 results are given based

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1421
on experimental performance evaluation. Finally, Section 5 concludes the paper and

motivates for further research.
2. Background and related work

The architecture of a parallel spatial database system is depicted in Fig. 1(a). Each

processor manages its own memory and disk(s), and interprocessor communication

is achieved by using messages over the interconnection. No assumptions are posed

with respect to the nature of the interconnection. Therefore, the algorithms can be

applied in loosely or tightly coupled multiprocessors.

Let SR be a spatial relation, with a spatial attribute sa and several alphanumeric

attributes. Each processor contains a portion of SR. The distribution of the data to
the processors may follow range partitioning, hash partitioning or any other declu-

stering approach [11]. Moreover, one or more attributes may participate in the par-

titioning process. No assumptions are made for the partitioning method that has

been used to decluster the relation. As an example, Fig. 1(b) depicts the case where

the relation CITIES has been partitioned using range partitioning on the population

attribute. The spatial attribute location corresponds to points in the 2-D Euclidean

space. Each location may be the map coordinates of the corresponding city. Without

loss of generality, we will assume that the spatial relation has only one spatial attri-
bute. The case for multiple spatial attributes can be handled in a similar manner, by

applying the method for each spatial attribute. The problem that is investigated is

stated as follows:

Problem definition. Given a spatial relation SR with one spatial attribute sa, which
is declustered across a number of processors, determine an efficient way to construct

a spatial access method with respect to the spatial attribute sa, by exploiting paral-

lelism.

The process of constructing an index from scratch is also known as bulk-loading.

There are three methods that can be applied in order to construct a multidimensional

access method for a dataset:
Interconnection

P1 P2 P3

D1 D2 D3

Name Population Location

Athens 4,000,000

Thessaloniki

Larissa 300,000

Patras

Kavala

Drama

1,000,000

200,000

150,000

100,000

50,000

CITIES

Processor P1

Processor P2

Processor P3

400, 400

500, 1000

300, 700

100, 400

100, 500

600, 1000

700, 1000

Heraklion

(a) (b)

Fig. 1. (a) Architecture of a parallel database system with three processors and (b) range partitioning of

relation CITIES with respect to attribute population, using three processors.

1422 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
• Individual insertions. The dataset is scanned and each object is inserted into the

access method by exploiting the specific insertion algorithm.

• Bottom-up. The dataset is sorted with respect to a criterion that preserves spatial

proximity, the leaf level of the access method is formulated and finally the upper

tree levels are constructed by the same procedure.
• Top-down. The dataset is partitioned according to a splitting decision policy, and

each partition is further repartitioned until the minimum node capacity require-

ment is fulfilled.

The problem has been studied in the literature and a number of very promising

methods have been proposed. In [27] the authors propose a packing algorithm for

the R-tree access method. This method was later refined by Kamel and Faloutsos

in [18], where the Hilbert value of each object is used, and then a total order of
the objects is performed. Another approach to bulk-loading R-trees is proposed in

[21]. The dataset is partitioned in chunks and a number of R-tree nodes is created

for each chunk. An algorithm for grid-file bulk-loading has been presented in [22].

The authors in [8] illustrate a way to bulk-load an access method that is based on

metric distances (called the M-tree). A generic approach in bulk-loading has been

proposed in [3]. The authors propose a method that can be applied to the majority

of the access methods, and considerably speeds-up the index construction process.

However, the construction process does not take into account all the available data.
The index is constructed faster than the one-at-a-time approach, but no improve-

ments on the quality and space utilization are achieved according to the authors.

An improvement on this idea has been reported in [1]. Another approach for

bulk-loading is proposed in [4] where the authors introduce the concept of non-bal-

anced splitting, in order to guarantee the efficiency of the resulting access method in

multidimensional query processing. Finally, in [5] generic bulk-loading techniques

are categorized and evaluated.

The main common characteristic of the aforementioned approaches is that a uni-
processor system is assumed. Given that parallel database systems is one of the re-

search directions towards efficient query processing, it is important to provide

parallel bulk-loading operations for spatial databases.
3. Parallel bulk-loading

Although the problem of index bulk-loading has been studied by many research-
ers, the parallel version of the problem did not receive the required attention. Parallel

database systems are currently operational in large companies and organizations,

and there is a lot of activity in the area, towards improving the performance of mod-

ern demanding applications. Efficient index construction techniques need to be de-

veloped, in addition to efficient query processing engines, exploiting the potentials

of the system (e.g., many processors, many disks). In the case of a simple 1-D index,

such as the Bþ-tree, the problem of parallel bulk-loading can be solved by applying

efficient parallel external sorting algorithms [10,34]. However, there is no work

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1423
addressing this problem for higher dimensionalities, to the best of the authors’

knowledge. The following two realistic assumptions are introduced, in order to at-

tack the problem:

• the spatial relation is horizontally fragmented across all or a subset of the proces-
sors,

• the number of processors in the system is a power of two. 1

As mentioned in the previous section, the spatial relation may be partitioned ac-

cording to one or more attributes. Therefore, we can not guarantee that objects that

are close in the spatial domain are stored on the same processor. For example, if the

records are partitioned according to a hash function on a non-spatial attribute, two

objects close in space are likely to be positioned in different processors. The same ap-
plies to other partitioning techniques like range partitioning. The benefits of con-

structing a spatial index in such an environment is twofold.

(1) Efficient query processing techniques can be applied, since the sequential scan-

ning of the data in each processor is avoided. Consequently, range queries, near-

est-neighbor queries and spatial join queries can be answered more efficiently.

(2) The constructed index can serve as a yardstick towards redistribution of the re-

cords based on the spatial attribute. For example, in [20] the authors propose a
declustering technique in order to distribute the leaf level of an R-tree across a

number of workstations. In order to apply such a page distribution scheme, at

least the leaf level of the index must be available.

3.1. Methodology

We decompose the parallel bulk-loading procedure into a number of phases. Then

we illustrate techniques in order to implement each one of these steps. Table 1 con-
tains the symbols used for the rest of the study.

3.1.1. Random sampling

One of the processors is selected as the coordinator. Each of the other processors

selects Sj records from its local data by using random sampling. Random sampling

assumes that each object has the same probability to be selected from a population

of Nj objects. Then, the spatial attribute of these Sj records is transmitted to the co-

ordinator. Evidently, the sample size plays an important role for the quality of the
produced index. If the sample size is too small, the data distribution is not reflected

properly. On the other hand, a large sample size will cause performance degradation

due to interconnection and I/O overheads. This trade-off will be investigated in detail

during the performance evaluation.
1 Later we discuss how this assumption can be relaxed.

Table 1

Symbols and definitions

Symbol Definition

f Sampling factor, f 2 ð0; 1�
s Average number of samples per processor

Sj Sample size of jth processor

Sj Sample set of the jth processor

D Data space dimensionality

N Total number of objects (records of the spatial relation)

Nj Number of objects hosted in processor Pj
P Number of processors in the system

Pj jth processor

Ri ith region

jRij Number of sampled objects in partition Ri

kRik Total number of objects in partition Ri

Op Total number of objects preserved to the same processor

Ot Total number of objects transmitted to other processors

kij Number of objects from the sample set of processor Pj contained in region R
nij Total number of objects from processor Pj contained in region Ri

1424 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
i

In this study we assume that the sampling factor f is the same for all processors.

Therefore, processor Pj collects Sj ¼ Nj � f records from its local data. Using this
technique, the more records a processor contains, the more data are contained in

the sample set of this processor. This is needed because some processors may contain

more data than the others (data skew), and therefore more samples are needed in or-

der to capture the distribution of the spatial attribute. In our investigation we also

use the parameter s which is the average number of samples produced by each pro-

cessor. If initially the processors contain the same number of data objects, then

Sj ¼ s 8j. The sampling factor f and the parameter s are related with the following

equation: f � N ¼ P � s.

3.1.2. Space partitioning and region assignment

The first action that should be performed is to create a suitable partitioning of the

data space. Then, each partition of the space will be assigned to a single processor.

The key issue here is to exploit the sampled data that have been collected in the pre-

vious phase.

The collected spatial information is used to construct the partitioning of the

space, using space decomposition. The output of the decomposition process is P re-
gions of the space. The decomposition is performed in a way similar to the construc-

tion of a kd-tree (Fig. 2).

The next issue is to assign each of the regions to a processor. Each partition con-

tains objects from one or more processors. Therefore, the partition Ri can be de-

scribed as a vector Vi ¼ ðki1; ki2; . . . ; kiP Þ where kij is the number of objects from

the sample of processor Pj that are contained in the current partition. The challenge

is to assign regions to processors in such a way that the number of objects preserved

to the same processor is maximal. Fig. 3 illustrates two possible assignments. For

Algorithm spacePartitioning(int nb_regions)
1. begin
2. int regions;
3. regions = 0;a4o&o4a

4. while (regions < nb_regions)
5. begin
6. split_axis = splitAxis();
7. split_pos = splitPos(split_axis);
8. performSplit();
9. regions++;
10. end;
11. end;

(a) (b)

Fig. 2. (a) Space partitioning algorithm and (b) example of a 2-D space decomposition with eight regions.

P1 P2 P3 P4

R1

R2

R3

R4

3 0 2 0

1 1 0 3

0 2 3 0

P1 P2 P3 P4

R1

R2

R3

R4

3 0 2 0

1 1 0 3

0 2 3 0

1 2 0 2 1 2 0 2

Objects exchanged = 9 Objects exchanged = 12

Fig. 3. Two possible assignments of four regions to four processors. The assignment on the left is optimal

with respect to the number of transmitted objects.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1425
each assignment the number of objects exchanged among the processors is illus-

trated. Columns represent the processors and rows represent the data space regions.

The values in the cells of the matrix are the nij values. A circle in the position (Ri; Pj)
of the matrix denotes that partition Ri has been assigned to processor Pj.

Evidently, there are P ! possible assignments of regions to processors. If P is small,
the best assignment can be determined using exhaustive search. However, if P is large

which is very common in massively parallel computers (hundreds of processors) a

more efficient assignment algorithm is needed. By observing the problem it is not dif-

ficult to realize that it is equivalent to the weighted bipartite graph matching problem

[7]. The graph bipartitions are the data space regions (vertex set R) and the proces-

sors (vertex set P). The weight of each edge connecting a data space region Ri to a

processor Pj declares the number of objects from Pj that are enclosed by region Ri.

Therefore, the cost of the matching is equivalent to the total number of objects that
are preserved to the same processor. Evidently, the number of preserved objects Op

and the number of transmitted objects Ot are related by: Op ¼ N � Ot.

Alternatively, a more simple greedy algorithm can be used in order to avoid the

high complexity of the bipartite matching algorithm. Each space region is assigned

1426 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
to the processor that dominates in the corresponding region. A processor Pj domi-

nates in a region Ri if the majority of the sample points contained in Ri belong to

processor Pj. The regions are sorted according to the domination information. Then,

the sorted regions are checked one-by-one and each region is assigned to a processor.

If a processor has already received a region it is not considered any more. Although
this algorithm does not produce always the optimal solution, it is a good alternative

which requires less computation overhead.

3.1.3. Load balancing

The next target is to assign approximately the same number of objects to each

processor, in order to guarantee that each one receives the same amount of work

to perform.

Fig. 4 illustrates the load balancing algorithm that is executed in each processor.
The objective is twofold: (i) to send the spatial attribute of the objects that have been

assigned to other processors and (ii) to receive the spatial attribute from other pro-

cessors. Evidently, in the ideal case, no data exchange is needed. However, in the

general case several objects must be send from one processor to another. We note

that only the value of the spatial attribute of each object is needed and not the entire

record.

The issue that need to be investigated at this point, is if load balancing is achieved.

In other words, does the partitioning phase guarantee that each processor receives
approximately the same amount of work? The following propositions answer this

question positively.

Proposition 1. If the sampling factor f is sufficiently large, then each processor will
receive approximately the same number of objects after the load balancing phase.

Proof. ‘‘f is sufficiently large’’ means that the number of produced samples is ade-

quate to capture the distribution of the data objects. Recall that the partitioning
phase partitions the sample set in P regions each containing f � N=P sample points.

Let kij denote the number of sample points from Pj contained in Ri and nij denote the
total number of data points from Pj contained in Ri. Therefore
Fig. 4. The loadBalance method executed in each processor.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1427
jRij ¼
XP�1

j¼0

kij ¼ f � N
P

The total number of points in a region Ri is given by
kRik ¼
XP�1

j¼0

nij
If the data distribution is well described by the produced sample set, then the number

of objects from Pj and the number of sample objects from Pj are related with the
following equation (evidently the data distribution is best described by setting f ¼ 1,

i.e., all data objects are selected as samples):
kij ¼ nij � f
By combining the above equations we obtain
kRik ¼
XP�1

j¼0

kij
f

¼ 1

f
� f � N

P
¼ N

P
� ð1Þ
The above proposition can be used in order to define a simple model regarding the

number of objects assigned to a processor after the completion of the load balancing

phase. However, this model cannot be used to determine the probability that a re-
gion assigned to a processor may contain many more objects than the average.

Therefore, we continue by providing a more detailed model which is based on similar

analytical considerations regarding parallel sorting [6,30] and it is adapted for mul-

tidimensional datasets.

Let Ei be the event that after the load balancing phase, region Ri contains more

than rskew � N=P data objects, where rskew P 1. Intuitively the factor rskew represents

the deviation of the number of objects in a region from the average value N=P , which
is the ideal case. We are interested in determining the probability that at least one
region will contain more than rskew � N=P data objects after the completion of the

load-balancing phase. Let Ri be an arbitrary region of the space which contains ex-

actly rskew � N=P data objects. We search the probability that from a total of P � s
samples generated by all processors fewer than s samples exist in Ri, where s satisfies
the equation: P � s ¼ f � N . The space partitioning method assigns exactly s sample

points to each region Ri. Therefore, if less than s sample points are required to guar-

antee that exactly rskew � N=P data points are in region Ri, Ri will contain more than

rskew � N=P data points.

Proposition 2. Let Ri be an arbitrary region of the space containing exactly rskew � N=P
data points. Let also X be a random variable representing the number of sample points
contained in Ri. Then, the probability Prob½X < s� that less than s sample points are
contained in Ri is given by

1428 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
Prob½X < s� ¼
Xs�1

x¼0

rskew � N=P
x

� �
� N � rskew � N=P

P � s� x

� �
N
P � s

� �
Proof. Assume that the rskew � N=P objects of region Ri are painted ‘‘red’’ and the rest

N � rskew � N=P objects are painted ‘‘blue’’. if P � s points are selected randomly from

the N data points without replacement, the probability Prob½X ¼ x� that exactly x
out of P � s sample points are colored ‘‘red’’ (i.e. they belong in region Ri) is given by

the hypergeometric distribution as follows:
Prob½X ¼ x� ¼

rskew � N=P
x

� �
� N � rskew � N=P

P � s� x

� �
N
P � s

� �
Therefore the probability that less than s sample points are contained in Ri can be

calculated as follows:
Prob½Ei� ¼ Prob½X < s� ¼
Xs�1

x¼0

Prob½X ¼ x� �
Let E the event that at least one region contains more than rskew � N=P data points.

Obviously E ¼ E0 [E2 [� � � [EP�1. The events Ei for i ¼ 0; . . . ; P � 1 are not mutu-

ally exclusive. Therefore the sum of their individual probabilities is greater than the

probability of their union
Prob½E� <
XP�1

i¼0

Prob½Ei�
In [30] an upper bound is derived for the above expression
Prob½E�6 P � rsskew � P � rskew
P � 1

� �ðP�1Þ�s

; s ¼ f � N
P

ð2Þ
Fig. 5 depicts a graphical representation of Eq. (2) and illustrates the relationship

among the number of processors, the number of samples per processor and the skew
ratio rskew. The probability of the event that at least one region contains more than

rskew � N=P data points is set to 0.999, and the total number of data points N is

1,000,000. It is shown that for constant skew ratio more samples are needed as the

number of processors increases.
3.1.4. Local index construction

After the completion of the load-balancing step, each processor contains a collec-

tion of triplets of the form (recordID, processorID, point), where recordID is a record
identifier, processorID is the processor where the record details are stored and point is
the value of the spatial attribute of the record. The next step is to build a local (par-

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
skew ratio (rskew)

0
20

40
60

80
100

120
140

#processors (P
)

0
5

10
15
20
25
30
35
40
45
50
55

#samples per processor (s)

Fig. 5. Relationship among the number of processors, the number of samples per processor and the skew

ratio.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1429
tial) index for these triplets, based on the values of spatial attribute. As we have al-

ready mentioned in a previous subsection, several techniques have been proposed for

building an R-tree like spatial access method in a uniprocessor system, using bulk-

loading. Any one of these techniques can be applied to construct the local spatial in-

dex of each processor.

3.1.5. Global index composition

The final step that completes the parallel bulk-loading algorithm is the composi-

tion of the global spatial index. Each processor submits the upper levels of its local

index to the coordinator. The coordinator receives this information and composes a

global index, by constructing a common root. Each of the local indexes becomes a

subtree of the new root. A potential problem that may arise is that the heights of

the local trees may be different. This problem as well as several alternatives are dis-

cussed later.

3.2. Cost model

The existence of a cost model aids the query optimizer in selecting an appropriate

query execution plan (QEP). Often, during query execution, indexes need to be con-

structed ‘‘on-the-fly’’. For example, consider a query that requires a join between two

subsets of two relations R and S. Two different query execution plans are illustrated

in Fig. 6.
In the first QEP two selection operations are performed and then the nested-loop

join algorithm is used to perform the join. In the second QEP, each selection oper-

ation is followed by a bulk-loading operation which constructs a temporary index for

each subset. Finally, the join is performed by exploited the constructed indexes. In

Relation R Relation S

nested-loop join

select

select

Relation R Relation S

index join

select

select

bulk-loading bulk-loading

(a) QEP A (b) QEP B

Fig. 6. Two different query execution plans.

1430 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
order to determine the most promising QEP regarding the query execution time, ac-

curate cost models are required, at least for the estimation of the major costs in-

volved. Towards this direction, in the remaining of this section we provide

analytical expressions for the major costs of the parallel bulk-loading algorithm.

A cost is assigned to every major step of the parallel bulk-loading algorithm. This
cost measures the estimated elapsed time (in seconds) for the completion of the cor-

responding phase. Although in some cases this cost is very small, it is included for

completeness. Table 2 illustrates the cost-model parameters. The values of the pa-

rameters Tcomp, Tmove, Tswap and Tsample have been determined on a 2.4 GHz Intel Pen-

tium IV machine running Windows 2000.

The spatial relation is composed of records. Each record is composed of the re-

cord identifier (Snumber bytes), the value of the spatial attribute (D � Snumber bytes)

and the rest irrelevant attribute values with total size 128 bytes. Therefore each re-
cord has a total size of: Srec ¼ ðDþ 1Þ � Snumber þ 128 bytes.

The cluster size Scluster denotes the maximum number of disk pages that can be

fetched in a single I/O operation. Therefore, the cost of reading 4 consecutive pages

costs one random access plus the number of retrieved bytes divided by the disk trans-

fer rate. If x clusters must be read, the corresponding time is:
Ti=oðxÞ ¼ x � ðTcluster þ Tcpu-ioÞ ð3Þ
The cost of transmitting x bytes through the interconnection can be approximated by

the following equation:
TtransðxÞ ¼
xþ Sheader � x=Smsg

B
þ x

Smsg

� �
� Tmsg ð4Þ
This costs includes the transmission cost of the physical media and the overhead

incurred per message. Based on these two fundamental costs, next we give the cost

for each of the phases of the parallel bulk-loading algorithm.

Random sampling (RS). The cost of the random sampling phase is dominated by
the processor that has to produce the largest sample set. Evidently, this is the proces-

Table 2

Parameters of the cost model

Parameter Definition Default value

B Interconnection bandwidth 100 MBit/s

Tpage Time spent on the disk for a ransom page I/O 0.01 s

Tcluster Time spent on the disk for a ransom cluster I/O 0.01 s

Tmsg Time spent on CPU to compose a message 0.001 s

Tcomp Time spent on CPU to perform number comparison 2.5· 10�9 s

Tmove Time spent on CPU to move a number to another memory location 2.6· 10�9 s

Tswap Time spent on CPU to swap the contents of two memory locations 1.9· 10�8 s

Tsample Time spent on CPU to produce a random sample 2.6· 10�8 s

Tcpu-io CPU overhead for each I/O 0.0001 s

Snumber Size of a number 4 bytes

Spage Size of a disk page 4096 bytes

Scluster Cluster size 4 pages

Smem Size of a processor memory 100 pages

Smsg Size of a message for data transmission (IEEE 802.3) 1500 bytes

Sheader Size of the message header for IEEE 802.3 protocol 72 bytes

Srec Size of a record 128 bytes

rskew Skew ratio (maxNj=avgNj, j ¼ 1; . . . ; P)
rmax maxNj=N , j ¼ 1; . . . ; P

If the value of a parameter is not given, the default value is assumed.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1431
sor which contains maxfNjg (j ¼ 1; . . . ; P) number of records. Let Pk be this proces-
sor. Therefore, Pk produces Nk � f samples. Each sample costs one disk access plus
the time spent on the CPU. The total sampling cost is given by the following equa-

tion:
CRS ¼ N � rmax � f � ðTpage þ Tcpu-io þ TsampleÞ ð5Þ

Sample transmission (ST). The samples selected from each processor need to be

sent to the coordinator. Each value of the spatial attribute needs D � Snumber bytes

for representation. Therefore, a total of N � f � D � Snumber bytes need to be transmitted

through the interconnection, and
CST ¼ TtransðN � f � D � SnumberÞ ð6Þ

Space partitioning (SP). We assume that the available memory at the coordinator

is sufficient to hold the sampled data. Therefore, the sampled data are gathered di-

rectly in the main memory of the coordinator. Let S be the sample size of all the pro-

cessors. Initially the sample points are sorted once for each dimension. Before each

split, the data variance must be calculated, meaning that all points in the region must
be scanned. Every time a split is occurred in a region, two new regions are produced.

By assuming the existence of an internal heapsort algorithm, sorting n elements costs

n � log n comparisons and data exchange operations in the worst case. Therefore, the

total cost of this phase is
CSP ¼ ð2 � S � log2ðSÞÞ � ðTcomp þ TswapÞ þ
Xlog2ðP Þ
i¼0

S
2i

 !
� Tcomp ð7Þ

1432 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
Processor assignment (PA). As stated previously, the assignment can be performed

by either exploiting a bipartite weighted matching algorithm or using the simpler

greedy alternative. For example, in LEDA [23] an Oðn � ðmþ n log nÞÞ matching al-

gorithm is implemented, where n is the number of vertices and m the number of edges

in the graph. The complexity gives the number of numeric computations to calculate
the matching. In our case, n equals 2 � P and m equals P 2.

The greedy algorithm is based on sorting. In order to determine the number of

samples per processor for each region we need to scan the samples in each region.

Since there are f � N sample points this requires f � N � Tcomp time. Assuming an inter-

nal heapsort algorithm sorting the regions requires P � log2 P � ðTcomp þ TswapÞ time.

Therefore the total cost for processor assignment is
2 If

the me
CPA ¼ f � N � Tcomp þ P � log2 P � ðTcomp þ TswapÞ ð8Þ

Region transmission (RT). All processors need to be notified for the region they

are going to handle. Therefore, the coordinator formulates pairs of the form (pro-
cessorID, rect) where processorID is the processor identification and rect is the de-

scription of the region, which is composed of 2 � D numbers (the lower-left and the

upper-right corners). A total of P pairs are sent to each processor. 2 This costs
CRT ¼ P � TtransðP � ðSnumber þ 2 � DÞÞ ð9Þ

Load balancing (LB). During this phase, the processors exchange data in order to

achieve load balancing. We assume for simplicity that the data in each processor fol-

low a uniform distribution with respect to the spatial attribute. Therefore, processor

Pj preserves Nj=P objects and sends P�1
P � Nj objects to other processors. Summing for

all processors we get that the total number of preserved objects and the total number

of transmitted objects are given by
Op ¼
XP
j¼1

Nj

P
¼ 1

P
�
XP
j¼1

Nj ¼
N
P

Ot ¼
XP
j¼1

P � 1

P
� Nj ¼

P � 1

P
�
XP
j¼1

Nj ¼
P � 1

P
� N
The load balancing phase is decomposed to three subphases. First, the processors

perform a sequential scan of their data in order to determine the data that must be

sent to other processors. The cost of this subphase is dominated by the processor

which contains the largest amount of data:
Cread ¼ Ti=o
N � rmax � f � Srec
Scluster � Spage

� �� �
Second, for each object that must be transmitted, processor Pj sends the identifica-
tion of Pj, the record identifier and the associated spatial attribute. Therefore,
the system supports broadcasting, this operation can be performed in a single step (i.e. by sending

ssage(s) to all the processors simultaneously).

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1433
2 � Snumber þ D � Snumber bytes are transmitted per record. The cost of data transmis-

sion is given by the following equation:
Ctrans ¼ Ttrans
ðP � 1Þ � N � ð2 � Snumber þ D � SnumberÞ

P

� �
Finally, each processor writes the data to the disk. This cost is dominated by the

processor that contains the largest amount of data after data exchange.
Cwrite ¼ Ti=o
N � rskew

P � Spage � Scluster
� ð2 � Snumber

��
þ D � SnumberÞ

��
Therefore, the total cost of this phase equals:
CLB ¼ Cread þ Ctrans þ Cwrite ð10Þ

Local index construction (LIC). We assume that the cost of this phase is equivalent

to external sorting of the data. For example, in [18] the bulk-loading technique pro-

posed is based on external sorting, where the spatial objects are sorted with respect to

the Hilbert value of the objects’ centroids. The methods proposed in [21,27] are also

based on external sorting. External mergesort can be used to fulfill the sorting re-
quirements, as it is described in [14,28]. Therefore, a number of level-0 sorted runs

are first generated, and then these runs are merged in order to produce a number

of level-1 sorted runs. This procedure is repeated until the whole data collection is

sorted in a single run. Evidently, the size of the available main memory is very im-

portant, and it should be included in the cost model.

If Sdata denotes the size of the local data in pages of the dominating processor,

then:
Sdata ¼
N � rskew

P
� 2 � Snumber þ D � Snumber

Spage

� �
The number of level-0 runs is given by
U ¼ Sdata
Smem

� �
The number of data points in each run is given by
#pointsPerRun ¼ Smem � Spage
Snumber � ðDþ 2Þ

� �
Assuming an internal heapsort algorithm for sorting the data, the CPU cost to sort

the level-0 runs is
CCPU level-0 ¼ U � ð#pointsPerRunÞ � log2ð#pointsPerRunÞ � ðTcomp þ TswapÞ

The number of clusters contained in each level-0 run is given by
#clustersPerRun ¼ Sdata
Scluster � U

� �

1434 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
Therefore, the time to read and write the level-0 runs is
Ci=o level-0 ¼ U � 2 � Ti=oð#clustersPerRunÞ
Due to external m-way mergesort, the number of merging steps performed is given

by:
#merges ¼ 1þ log#clustersPerRun�1ðUÞd e

The I/O cost for the merging phase is
Ci=o merge ¼ #merges � Ti=o 2 � Sdata
Scluster

� �� �
Since every point is moved to an output run #merges times and every time #clus-
tersPerRun) 1 comparisons are performed, the CPU cost for the merging phase is
CCPU merge ¼
rskew � N

P
� #merges � ðð#clustersPerRun� 1Þ � Tcomp þ TmoveÞ
By summing the above I/O and CPU costs the final cost of this phase is obtained
CLIC ¼ CCPU level-0 þ Ci=o level-0 þ CCPUmerge þ Ci=omerge ð11Þ
Global index composition (GIC). The last phase of the algorithm involves the com-

position of the global index. Each processor reads and transmits the upper levels of

the local index to the coordinator. The leaf level of each local index is not transmit-
ted. Finally, the coordinator composes the global index. The cost of the first sub-

phase is dominated by the processor that contains the largest amount of points,

because the corresponding local index contains more nodes. The corresponding costs

are as follows:
Cread ¼ Ti=o
upperNodesmax

Scluster

� �� �

Ctrans ¼ TtransðP � upperNodesavg � SpageÞ

Cwrite ¼ Ti=o
P � upperNodesavg

Scluster

� �� �
In the above equations, upperNodesavg is the average number of R-tree nodes per
processor and upperNodesmax ¼ nodesavg � rskew is the maximum number of R-tree

nodes that depends on the skew ratio rskew. For brevity, we do not include the for-

mula that gives the number of R-tree nodes. We just mention that it is a function of

the tree fanout, the page capacity and the total number of objects (see [12]).
CGIC ¼ Cread þ Ctrans þ Cwrite ð12Þ

If we combine the equations from (8)–(12), the total cost of the parallel bulk-loading
algorithm is determined as a function of the various parameters (e.g., number of

processors, sampling factor). The total cost is determined by summing-up the costs

of the individual phases. This leads to a simple formula that can be adjusted ac-

cording to the characteristics of the parallel system.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1435
Moreover, ‘‘what-if’’ scenarios can be investigated, by changing the values of the

parameters that participate in the cost model. For example, if the values of all pa-

rameters except the sampling factor are given, the optimal sampling factor can be

determined in order to minimize the overall elapsed time. This can be performed

by setting the first derivative of the cost function to zero and determining the value
of rskew. The impact of other parameters can be investigated as well. For example, the

importance of the network bandwidth, the processor memory size, the database size,

the number of processors, the space dimensionality can be studied by varying the re-

spective parameter, keeping the rest constant. Several of these issues are covered in

Section 4 which studies the performance of the parallel bulk-loading algorithm.

3.3. Design and implementation alternatives

The first issue that must be addressed is the algorithm for space decomposition.

The two fundamental steps are the selection of the split axis and the determination

of the split position. The split axis can be selected by using either the maximum ex-
tend heuristic or the maximum variance heuristic. Usually, the maximum variance
heuristic produces better space decomposition, meaning that the produced regions

cover approximately the same volume of the space. In our implementation, we used

both heuristics. However, the impact to the overall performance was not significant.

The second important issue is the selection of the bulk-loading algorithm in each
processor. The selection of this algorithm has an important impact on the efficiency

of the local index construction phase, and also to the quality of the produced global

index. Methods that are based on sorting [18,21] are likely to have the same perfor-

mance with respect to bulk-loading efficiency. The differences with respect to the

quality of the global index is anticipated to be equivalent to these for the non-parallel

counterparts. However, using bulk-loading methods that avoid sorting, like the ones

that are based on buffer trees [1,3], is expected to be more efficient with respect to the

index construction time. It is noted that the cost model can be modified in order to
reflect the cost of the bulk-loading algorithm executed in each processor. In our per-

formance study we used the algorithm reported in [18].

The third issue we raise is the composition of the global index, when the local in-

dexes are of different height. We propose three solutions to this problem.

(1) The coordinator inserts underflow nodes (possibly with only one descendant) in

order to guarantee that all local indexes have the same height. Then, a common

root is created (and some other internal nodes if necessary) in order to link the
local indexes.

(2) Each processor is forced to build an index with a specific height. This height can

be determined by selecting the minimum among the heights of the local indexes.

From the number of records assigned to each processor, this value can be deter-

mined. When the threshold height in each processor is reached, the remaining re-

cords are sent to the coordinator, where insertions are performed one-by-one.

(3) Again, each processor builds an index having the same height. The difference

with 2 above is that we allow each processor to pack the remaining records in

1436 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
pages. Then these pages are sent to the coordinator and bulk insertions [19] are

used in order to complete the global index composition.

In our performance evaluation study we exploited the third alternative.

Finally, it is important to discuss how we can handle the case when the number of
processors is not a power of two. Two solutions can be applied:

(1) In the first solution the space decomposition algorithm does not change. How-

ever, if balanced splits are introduced at the end of the decomposition phase

some regions will occupy approximately two times more records than others.

This has an impact on the local index construction phase as well as on the com-

position of the global index.

(2) In the second solution, we introduce non-balanced splits during the space de-
composition phase. For example, if there are 12 records and three processors

the first split generates two regions Ra and Rb such as Ra contains four records,

and Rb contains eight records (non-balanced split). Then, region Rb is split into

two regions Rb1 and Rb2 each containing four records (balanced split). Therefore,

each region contains the same number of records.
4. Performance evaluation

In the sequel, a performance evaluation study of the parallel bulk-loading Algo-

rithm is illustrated. The main objective is to investigate the following issues:

• the comparison between the real and the estimated value of the skew ratio rskew,
• the effectiveness of load balancing and the cost of the phases of the algorithm,

• the behavior of the algorithm for different parameters such as the sampling factor,

the number of processors, the size of the input.
• the quality of the produced index, by inspecting its performance against queries,

and

• the performance comparison between the parallel bulk-loading algorithm and its

uniprocessor counterpart.

The following real-life and synthetic datasets are used for the experimentation: (a)

SEQ1 contains 63,000 locations (Sequoia project), (b) SEQ2 contains 537,118 loca-

tions (Sequoia project), (c) LB contains 54,000 road intersections in Long Beach
(Tiger/Line data) and (d) GAUSS contains up to 50,000,000 points following

the Gaussian distribution. The datasets are depicted in Fig. 7. We refer to [32,33]

for a detailed description of the real-life datasets.

4.1. Accuracy of rskew estimation

In this section we investigate the accuracy of Eq. (2) which relates the number

of samples per processor (or alternatively the sampling factor f) with the skew

Fig. 7. Datasets used for the experimentation.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1437
ratio rskew. Four separate experiments have been conducted with various datasets and

different number of processors. The value for the probability is set to 0.999. The re-

sults are illustrated in Fig. 8.

By observing Fig. 8 we obtain that the estimated value is near the real value. The

average observed difference is around 17%, which is accurate to a certain degree. The

main observation is that the data skew decreases by increasing the number of sam-

ples. With more samples per processor, the coordinator performs a better space de-
composition with respect to the contents of each region, and therefore the data

points are distributed more evenly to the processors. However, as it is shown in

the next section, the price paid is that as the number of samples increase the sampling

cost becomes significant.

4.2. Experiments

The parallel bulk-loading algorithm and the packed R-tree variant based on
the Hilbert space filling curve have been implemented in C/C++. The cost model

presented in the previous section is used in order to measure the performance of

the proposed algorithm. Therefore, the cost of each operation is determined accord-

ing to the corresponding formula for the CPU cost, the I/O cost and the network

1

1.1

1.2

1.3

1.4

1.5

1.6

0 50 100 150 200 250

sk
ew

 r
at

io
 (

rs
ke

w
)

samples per processor (s)

dataset: 45,669 LB points, processors: 8

real skew ratio
estimated skew ratio

(a) dataset: TIGER, processors: 8

1

1.2

1.4

1.6

1.8

2

2.2

0 50 100 150 200 250 300

sk
ew

 r
at

io
 (

rs
ke

w
)

samples per processor (s)

dataset: 100,000 gaussian points, processors: 16

real skew ratio
estimated skew ratio

(b) dataset: GAUSS, processors: 16

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 50 100 150 200 250 300 350 400 450

sk
ew

 r
at

io
 (

rs
ke

w
)

samples per processor (s)

dataset: 537,118 SEQ2 points, processors: 64

real skew ratio

(c) dataset: SEQ2, processors: 64

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 50 100 150 200 250 300 350 400 450 500

sk
ew

 r
at

io
 (

rs
ke

w
)

samples per processor (s)

dataset: 537,118 SEQ2 points, processors: 128

real skew ratio
estimated skew ratio

(d) dataset: SEQ2, processors: 128

estimated skew ratio

Fig. 8. Comparison between real and estimated value of rskew.

1438 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
transmission cost. The real value of rskew is used instead of the analytical one, since

the number of objects assigned to each processor is known during the execution of

the algorithm.
In order to increase the accuracy of our results, event-driven simulation is used to

study the behavior of the proposed algorithm. The query execution cycle is decom-

posed to several phases that each one contribute to the overall cost of the index con-

struction. An example query execution cycle is illustrated in Fig. 9.

The next issue we study is the impact of the sampling factor to the overall perfor-

mance of the method. The experiment is conducted for the SEQ2 dataset (Fig. 10(a))

and for a synthetic one (Fig. 10(b)). The synthetic dataset is composed of 2,000,000

points in 2-D space following the Gaussian distribution. The number of processors is
set to 8 and the number of buffer pages in each processor is set to 100 (400 KB). By

inspecting Fig. 10 the impact of the number of samples to the overall performance is

clear. As the number of samples increases, the skew ratio decreases, whereas the sam-

pling cost increases. The overall construction time continues to drop up to a point.

After this point, the total cost increases significantly because the costs of random

sampling and sample transmission become significant.

The next issue we consider is (a) the speed-up achieved by the parallel bulk load-

ing algorithm (PBULK), and (b) its relative performance with respect to a central-
ized counterpart (CBULK). The centralized bulk loading algorithm used is the

P1

P2

P3

C

CPU or I/O Network Idle

timeRS, ST SP, PA, RT LB LIC GIC

Fig. 9. Query execution cycle example.

9
10
11
12
13
14
15
16
17
18
19

1 10 100 1000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

samples per processor

dataset: SEQ2, processors: 8

(a) SEQ2

30

35

40

45

50

55

60

1 10 100 1000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

samples per processor

dataset: 2M GAUSS, processors: 8

(b) 2M GAUSS

Fig. 10. Index construction time vs. number of samples per processor.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1439
packing method proposed by Kamel and Faloutsos in [18], since this is the method

applied by every processor in the parallel algorithm. Alternatively, other bulk-load-
ing methods can be considered, as long as the same method is applied to the parallel

algorithm. Fig. 11(a) and (b) illustrate the index construction time with respect to the

number of processors, for the SEQ2 dataset and for a Gaussian dataset containing

20,000,000 points. Each processor has 100 pages (400 KB) of available memory, and

each processor generates 50 samples. The same graphs illustrate the performance of

the centralized algorithm for 100, 200 and 1000 pages of available memory. It is ev-

ident that the parallel method outperforms significantly the centralized counterpart.

However, if the number of samples increases, then the performance of the centralized
method may be marginally better than the parallel one for a small number of proces-

sors. This is illustrated in Fig. 12 where each processor produces 500 samples.

Next, we investigate the impact of the database size and the size of the processor

memory. It is anticipated that by increasing the database size, more time is required

to build the index. The database size affects almost all the phases of the parallel al-

gorithm. The size of the memory is very important, especially for large datasets. The

larger the main memory of the processors the less time is required by the local index

10

12

14

16

18

20

22

24

26

28

30

32

1 10 100 1000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

processors (P)

SEQ2 dataset, 500 samples/processor

parallel mem 100
centralized mem 100
centralized mem 200

centralized mem 1000

Fig. 12. Speed-up for SEQ2 dataset for 500 samples per processor.

0

5

10

15

20

25

30

35

1 10 100 1000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

processors (P)

SEQ2 dataset, 50 samples/processor

PBULK mem 400KB
CBULK mem 400KB
CBULK mem 800KB

CBULK mem 4MB
CBULK mem 40MB

(a) SEQ2

0
200
400
600
800

1000
1200
1400
1600
1800

1 10 100 1000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

processors (P)

20M GAUSS dataset, 100 samples/
 processor, 100MBit network

PBULK mem 400KB
CBULK mem 400KB
CBULK mem 800KB

CBULK mem 4MB
CBULK mem 40MB

(b) GAUSS

Fig. 11. Speed-up for two datasets for 50 samples per processor.

1440 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
construction phase. The impact of the database size and memory size is depicted in

Fig. 13. By increasing the memory size the construction time decreases until we reach

the limit in which all local data fit in main memory. Beyond this point, no further
improvement is achieved by increasing the memory size.

The next experiment investigates the scale-up capabilities of the method. The ta-

bles in Fig. 14 illustrate the total construction time by varying the number of records

and the number of processors. The number of samples per processor is 100 and each

processor has 4MBytes of available memory. The scale-up ratio ranges between 1.08

and 1.76. By increasing the number of dimensions, more bytes are required to store

the value of the spatial attribute, and therefore all phases of the parallel bulk-loading

method are affected. However, it is observed that satisfactory results are achieved.
Another important issue that is studied is the impact of the space dimensionality

on the performance of the parallel bulk-loading algorithm. It is anticipated that as

more dimensions are required to describe the data points, more time is spent on

1

10

100

1000

10 100 1000 10000 100000

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

database size (N x 1000)

GAUSS datasets, 16 processors, 100
 samples/processor, 100MBit network

PBULK mem 400KB
PBULK mem 800KB

PBULK mem 4MB
PBULK mem 40MB

(a) impact of database size

180

190

200

210

220

230

240

250

0.1 1 10 100

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

memory size in MBytes

20M GAUSS dataset, 8 processors, 100
 samples/processor, 100MBit network

(b) impact of memory size

Fig. 13. Impact of database size and memory size.

Pro cessors Records Elapsed Time 2-D (sec) Elapsed Time 16-D (sec)

2 0.5M 14.53 68.12

4 1M 15.76 74.07

8 2M 18.23 85.96

16 4M 23.17 109.76

32 8M 33.06 157.34

64 16M 52.84 252.51

128 32M 92.39 442.86

Fig. 14. Scale-up for 2-D and 16-D.

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1441
the network for transmission, more space is required to store the data and more time

is required for each processor to process its local data. In addition, the space parti-

tioning algorithm requires more time to decompose the address space. The impact of

the dimensionality is illustrated in Fig. 15.
The last experiment investigates the quality of the produced index with respect to

the sampling factor f . Rectangular range queries have been posed to the produced

index and the average query execution time has been recorded. Fig. 16 illustrates

these results for the TIGER dataset and for 100,000 points in the 5-D space uni-

formly distributed. The number of processors that have generated the index is 8.

The index performance is fairly constant and therefore the index quality does not de-

pend significantly on the sampling factor. However, there is an implicit relationship

between the sampling factor and the index quality. If the data skew is large (which is
very likely for small sampling factors) then the restructuring procedure presented in

Section 3.2 will result in a small increase in the number of R-tree nodes. Conse-

quently, performance degradation takes place whose significance depends on the dif-

ferences of the tree heights of the local indexes. In our experiments, these differences

were not significant, and therefore the index quality remains constant for all tested

datasets. A stronger correlation between the sampling factor and the index quality

1

10

0.0001 0.001 0.01 0.1 1P
er

fo
rm

an
ce

 o
f r

an
ge

 q
ue

rie
s

(s
ec

on
ds

)

Sampling factor (f)

(a) index quality for TIGER dataset

1

10

0.0001 0.001 0.01 0.1 1P
er

fo
rm

an
ce

 o
f r

an
ge

 q
ue

rie
s

(s
ec

on
ds

)

Sampling factor (f)

(b) index quality for 5-D uniform dataset

Fig. 16. Index quality vs. sampling factor.

100

1000

10000

1 10 100

in
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

space dimsnsionality (D)

20M GAUSS dataset, 16 processors, 100 samples/processor, 100MBit network

Fig. 15. Impact of database dimensionality.

1442 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
for non-point objects is anticipated, because the overlap in the index nodes is more

significant.
5. Concluding remarks and future work

In this work we have studied the problem of parallel bulk-loading multidimen-

sional index structures on a shared-nothing architecture. A methodology has been

developed in order to decompose the problem to simpler ones. A cost model has

been presented that can be exploited by a query optimizer and aids in predicting
the bulk-loading cost. Moreover, experiments have been conducted in order to eval-

uate the performance of the method for different parameter values (sampling factor,

number of processors, dimensionality, etc). The results have shown that the pro-

posed technique is efficient and exploits parallelism to a sufficient degree. The pro-

A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444 1443
posed technique can handle cases where the spatial relation is not fragmented to all

processors. The load balancing phase guarantees that the empty processors will con-

tribute to the local index construction phase. The resulting index can be used in order

to answer spatial queries efficiently, or can be exploited in order to redistribute the

records according to the values of the spatial attribute. In the latter case, a consid-
erable improvement in terms of query response time is anticipated, as it has been re-

ported in [17,20,25,26]. Further research may include:

• The consideration of non-balanced splits [4] in the space decomposition algo-

rithm. Such a scheme produces regions that do not necessarily contain the same

number of objects. Therefore load balancing is sacrificed for the benefit of a better

index, especially for large number of dimensions.

• The performance study for non-point objects, where the overlap between index
entries is anticipated to be more significant, and therefore the space decomposi-

tion algorithm is expected to be crucial to the quality of the produced index.

• The study of overpartitioning techniques where the number of generated space re-

gions is larger than the number of processors. In such a case, more than one re-

gion must be assigned to a processor. It is interesting to investigate the impact to

the performance of the parallel algorithm.

• The study of the method performance on a network of workstations (NOW),

where bulk-loading operations are allowed to be intermixed with other query
types.

• Finally, it is interesting to design parallel bulk-loading algorithms for shared-

memory architectures, where there is no need to exchange messages among the

processors.
References

[1] L. Arge, K.H. Hinrichs, J. Vahrenhold, J.S. Vitter, Efficient bulk operations on dynamic R-trees,

Algorithmica 33 (1) (2002) 104–128.

[2] N. Beckmann, H.P. Kriegel, B. Seeger, The R*-tree: an efficient and robust method for points and

rectangles, in: Proceedings of 1990 ACM SIGMODConference, Atlantic City, NJ, 1990, pp. 322–331.

[3] J. van den Bercken, B. Seeger, P. Widmayer, A generic approach to bulk loading multidimensional

index structures, in: Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997, pp. 406–415.

[4] S. Berchtold, C. Bohm, H.-P. Kriegel, Improving the query performance of high-dimensional index

structures by bulk load operations, in: Proceedings of the 6th EDBT Conference,, Valencia, Spain,

1998, pp. 216–230.

[5] J. Van den Bercken, B. Seeger, An evaluation of generic bulk loading techniques, in: Proceedings of

the 27th VLDB Conference, Roma, Italy, 2001, pp. 461–470.

[6] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, M. Zagha, A comparison of

sorting algorithms for the connection machine CM-2, in: Proceedings of the 3rd Annual ACM

Symposium on Parallel Algorithms and Architectures, 1991.

[7] G. Chartrand, O. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, New York,

1993.

[8] P. Ciaccia, M. Patella, Bulk-loading the M-tree, in: Proceedings of the 9th Australian Database

Conference, Perth, Australia, 1998.

1444 A. Papadopoulos, Y. Manolopoulos / Parallel Computing 29 (2003) 1419–1444
[9] D.J. DeWitt et al., The gamma database machine project, IEEE Transactions on Knowledge and

Data Engineering 2 (1) (1990) 44–62.

[10] D.J. DeWitt, J.F. Naughton, D.A. Schneider, Parallel sorting on a shared-nothing architecture using

probabilistic splitting, in: Proceedings of the 1st PDIS Conference, Miami Beach, FL, 1991, pp. 280–

291.

[11] D.J. De Witt, P. Gray, Parallel database systems: the future of high performance database systems,

Communications of the ACM 35 (6) (1992) 85–98.

[12] C. Faloutsos, I. Kamel, Beyond uniformity and independence: analysis of R-trees using the concept of

fractal dimension, in: Proceedings of the 13th ACM PODS Symposium, Minneapolis, MN, 1994,

pp. 4–13.

[13] V. Gaede, O. Guenther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998)

170–231.

[14] G. Graefe, Query evaluation techniques for large databases, ACM Computing Surveys 25 (2) (1993)

73–170.

[15] R.H. Guting, An introduction to spatial database systems, The VLDB Journal 3 (4) (1994) 357–399.

[16] A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 1984

ACM SIGMOD Conference, Boston, MA, 1984, pp. 47–57.

[17] I. Kamel, C. Faloutsos, Parallel R-trees, in: Proceedings of 1992 ACM SIGMOD Conference, San

Diego, CA, 1992, pp. 195–204.

[18] I. Kamel, C. Faloutsos, On packing R-trees, in: Proceedings of the 2nd CIKM Conference,

Washington, DC, 1993, pp. 490–499.

[19] I. Kamel, M. Khalil, V. Kouramajian, Bulk insertion in dynamic R-trees, in: Proceedings of the 4th

SDH Symposium, 1996, pp. 3b.31-3b.42.

[20] N. Koudas, C. Faloutsos, I. Kamel, Declustering spatial databases on a multi-computer architecture,

in: Proceedings of the EDBT Conference, Avignon, France, 1996, pp. 592–614.

[21] S.T. Leutenegger, M.A. Lopez, J. Edgington, STR: a simple and efficient algorithm for R-tree

packing, in: Proceedings of the 13th IEEE ICDE Conference, Birmingham, UK, 1997, pp. 497–506.

[22] S.T. Leutenegger, D.M. Nicol, Efficient bulk-loading of grid files, IEEE Transactions on Knowledge

and Data Engineering 9 (3) (1997) 410–420.

[23] K. Melhorn, S. Noher, LEDA: A platform for combinatorial and geometric computing, Commu-

nications of the ACM 38 (1) (1995) 96–102.

[24] D. Papadias, Y. Theodoridis, Spatial relations, Minimum bounding rectangles and spatial data

structures, Journal of Geographic Information Science 11 (2) (1997) 111–138.

[25] A.N. Papadopoulos, Y. Manolopoulos, Nearest neighbor queries in shared-nothing environments,

Geoinformatica 1 (4) (1997) 369–392.

[26] A.N. Papadopoulos, Y. Manolopoulos, Similarity query processing using disk arrays, in: Proceedings

of 1998 ACM SIGMOD Conference, Seattle, WA, 1998, pp. 225–236.

[27] N. Roussopoulos, D. Leifker, Direct spatial search on pictorial databases using packed R-trees, in:

Proceedings of 1985 ACM SIGMOD Conference, Austin, TX, 1985, pp. 17–31.

[28] B. Salzberg, Merging sorted runs using large main memory, Acta Informatica 27 (3) (1989) 195–215.

[29] T. Sellis, N. Roussopoulos, C. Faloutsos, The Rþ-tree: a dynamic index for multidimensional objects,

Proceedings of the 13th VLDB Conference, Brighton, UK, 1987, pp. 507–518.

[30] S. Seshadri, J.F. Naughton, Sampling issues in parallel database systems, in: Proceedings of the

EDBT ’92, 1992, pp. 328–343.

[31] M. Stonebraker, R. Katz, D. Patterson, J. Ousterhout, The design of XPRS, in: Proceedings of the

14th VLDB Conference, Los Angeles, CA, 1988, pp. 318–330.

[32] M. Stonebraker, J. Frew, K. Gardels, J. Meredith, The Sequoia 2000 storage benchmark, in:

Proceedings of 1993 ACM SIGMOD Conference, Washington, DC, 1993, pp. 2–11.

[33] TIGER/Line Files, 1994 Technical Documentation, The Bureau of the Census, Washington, DC,

1994.

[34] D.E. Vengroff, J.S. Vitter, I/O Efficient Scientific Computations using TPIE, in: Proceedings of the

Goddard Conference on Mass Storage Systems and Technologies, NASA Conference Publication,

1996, pp. 553–570.

	Parallel bulk-loading of spatial data
	Introduction
	Background and related work
	Parallel bulk-loading
	Methodology
	Random sampling
	Space partitioning and region assignment
	Load balancing
	Local index construction
	Global index composition

	Cost model
	Design and implementation alternatives

	Performance evaluation
	Accuracy of rskew estimation
	Experiments

	Concluding remarks and future work
	References

