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We  introduce  a potential  alternative  to  current  techniques  for  generating  motif  repertoire  in  brain  connectivity  research.
We  indicate,  using  actual  functional  connectivity  graphs,  various  ways  to  exploit  the  new  technique  for gaining  insights  to assembled  connectivity
graph  datasets.
Using  the  proposed  contrastive  learning  scheme  for  motif  extraction  we  finally  score  and  rank  the  detected  motifs  according  to their  importance.
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a  b  s  t  r  a  c  t

Complex  networks  constitute  a recurring  issue  in the  analysis  of  neuroimaging  data.  Recently,  net-
work  motifs  have  been  identified  as  patterns  of interconnections  since  they  appear  in  a  significantly
higher  number  than  in  randomized  networks,  in a given  ensemble  of anatomical  or  functional  connec-
tivity  graphs.  The  current  approach  for detecting  and  enumerating  motifs  in  brain  networks  requires  a
predetermined  motif  repertoire  and  can  operate  only  with  motifs  of  small  size  (consisting  of few nodes).

There  is  a  growing  interest  in  methodologies  for frequent  graph-based  pattern  mining  in  large  graph
datasets  that  can facilitate  adaptive  design  of motifs.  The  results  presented  in  this  paper  are  based  on  the
graph-based  Substructure  pattern  mining  (gSpan)  algorithm  and  introduce  a manifold  of  ways  to  exploit
it for  data-driven  motif  extraction  in  connectomics  research.
Functional  connectivity  graphs  from  electroencephalographic  (EEG)  recordings  during  resting  state
and  mental  calculations  are used  to  demonstrate  our approach.  Relying  on either  time-invariant  or
time-evolving  graphs,  characteristic  motifs  associated  with  various  frequency  bands  were  derived  and
compared.  With  a suitable  manipulation,  the  gSpan  discovers  motifs  which  are specific  to  performing
mental  arithmetics.  Finally,  the subject-dependent  temporal  signatures  of motifs’  appearance  revealed
the transient  nature  of  the  evolving  functional  connectivity  (math-related  motifs  “come  and  go”).
. Introduction

Graphs are generic data structures which are employed in var-
ous scientific domains such as Computer Science (Faloutsos et al.,
999), Biology (De Silva and Stumpf, 2005) and Neuroscience
Rubinov and Sporns, 2010). In general, a graph models a net-

ork of relationships between objects. There is a growing interest

n the theoretical aspects of network analysis in an attempt to
odel (Simpson et al., 2012; Vértes et al., 2012), describe (Rubinov
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and Sporns, 2010) and propose new measures (Joyce et al., 2010)
for a better understanding of complex systems. Complex network
analysis was emerged with the scope of characterizing and under-
standing the underlying mechanisms that govern complex systems.
The key idea is to recognize and assess important properties of
complex systems by quantifying the topologies of their network
representations (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). Having originated in the mathematical study of networks,
this approach shares many methodologies and algorithms with the
well-established branch of graph theory.
A hypothesis regarding network complexity is the following:
as the complexity of a network increases, a restricted repertoire
of initially existing simpler networks is preserved, extended, and
combined, while it is less likely that more complex structures
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re generated entirely by new sets of subnetworks (Sporns et al.,
000; Sporns and Kötter, 2004). The above hypothesis is sup-
orted by the observation that complex networks arise from the
ddition of connections in positions that maximize the efficiency
n overall information processing (Sporns and Kötter, 2004). An
mportant approach to exploring the rules that govern the structure
f complex networks is to study the distribution of characteris-
ic building blocks which are called “motifs”. Network motifs have
een examined in the setting of gene regulatory, metabolic, and
ther biological and artificial networks (Milo et al., 2002, 2004).
otif fingerprints have been discovered in various neurobiologi-

al data (Macaque and cat cortex, Caenorhabditis elegans) where
he relationship between structural and functional motifs has been
xamined (Sporns and Kötter, 2004).

A considerable drawback of the encountered motifs in previ-
us studies is the a priori selection of the size of motifs to be
etected (usually motifs of 2, 3 or 4 nodes are considered). There is

 practical reason for fixing the size of motifs to a small number
, since all the possible motifs are first constructed and “tabu-

ated” and then matched within the given graph(s). The number
f all N-node motifs increases exponentially (3-node → 13 possi-
le classes, 4-node → 199 possible classes etc.) (Milo et al., 2002;
porns and Kötter, 2004; Rubinov and Sporns, 2010) and soon this
umber becomes prohibitive. The original network motif detection
pproach attempts to find significant frequent subnetworks in one
etwork with unlabeled vertices that are indistinguishable from
ach other and also with a fixed number of motif size (Milo et al.,
002). A relevant data mining problem with many scientific and
ommercial applications is the detection of frequent graph-based
ubstructure patterns that correspond to the same labeled nodes
ithout a priori selection of the motif size, among a given set of

raphs (Yan and Han, 2002). By resorting to these techniques we
an develop a bottom-up approach (i.e. data-driven) to construct

 motif-repertoire. An important approach of this kind, based on
epth-First Search (DFS) lexicographic order, is the gSpan (graph-
ased Substructure pattern mining) algorithm (Yan and Han, 2002).
etecting common subgraphs among a number of graphs is an

mportant issue that could improve both descriptive analysis and
odeling of network data (Kolaczyk, 2009). Subsequently, these

verrepresented sub-networks may  be linked with a potential func-
ional contribution to the global functionality of the entire network.

These new complex network methodologies show great
romise in studying brain connectivity datasets. Brain connec-
omics is an emerging field that encounters networks of brain
egions connected by anatomical tracts or by functional associa-
ions (Rubinov and Sporns, 2010). The brain is a complex system,
nd its characterization using the complex network approach is not
nly meaningful but also necessary. Such methods for characteriz-
ng the structural or functional networks are becoming extremely
opular (Achard et al., 2006; Bassett and Bullmore, 2006, 2009;
tam and Reijneveld, 2007; Bullmore and Sporns, 2009). Connec-
ivity can be recovered from brain activity recorded with various

odalities such as EEG, magnetoencephalography (MEG) and func-
ional magnetic resonance imaging (fMRI). The functional coupling
mong distinct brain regions can be quantified based on suitable
stimators depending on the nature of recorded data. In partic-
lar, for fast-recording modalities (mainly EEG/MEG) the issue
f non-stationarity is of great importance and functional con-
ectivity studies fall in two distinct categories. Those adopting

 static network approach (Micheloyannis et al., 2009; Rubinov
t al., 2009; Dimitriadis et al., 2009) and those considering time-
arying connectivity graphs (De Vico Fallani et al., 2007a,b; Valencia

t al., 2008; Dimitriadis et al., 2010a,b). Network motifs have
een employed as descriptors for both static (Sporns and Kötter,
004) and time-varying functional connectivity graphs (De Vico
allani et al., 2007). They constitute an important measure of local
nce Methods 213 (2013) 204– 213 205

network topology that describe local patterns of interconnections
and indicate important circuits for information processing (Milo
et al., 2002, 2004).

The scope of this work is twofold: (1) to introduce in brain
connectivity research a potential alternative to current techniques
for generating a repertoire of motifs and (2) to indicate, using
actual functional connectivity graphs, various ways to exploit
the new technique for gaining insights to assembled connectivity
graph datasets. For demonstration purposes we  considered brain
networks constructed from scalp EEG recordings. These recordings
correspond to normal subjects who  were either performing men-
tal arithmetic calculations or were at rest. At this point, we need to
clarify that in our framework the detected motifs refer to subgraph
patterns built over a given set of labeled nodes (the recording sites).

The rest of the paper is organized as follows. In Section 2, after
a short description of the available graph databases, we introduce
the method and three alternative implementation modes. Section
3 includes indicative results while placing them in neuroscientific
context and finally a discussion follows in Section 4.

2. Materials and methods

2.1. Functional connectivity data

The functional connectivity graph dataset was created as an
intermediate result in two previous studies (Dimitriadis et al.,
2010a,b, 2012) and hence a detailed description can be found
therein. It consists of two  types of graphs (time invariant and
time-varying graphs) that correspond to two different brain states
(resting state and mental calculations) and reflect neural synchrony
in each of the five standard frequency bands (�, ˛1, ˛2,  ̌ and
�). The original EEG signals had been recorded from 18 healthy
adults while they were performing multiplications (active con-
dition) or doing nothing (baseline condition). Starting from the
signals recorded (at sampling frequency of 500 Hz with 30 sensors
covering the head according to International 10–20 system) and
filtered within a particular frequency band, we derived functional
connectivity graphs (FCGs) by means of a phase synchrony esti-
mator (in particular phase locking value, PLV, Lachaux et al., 1999)
that quantifies functional dependence in pairwise fashion. Each FCG
has a tabular format, i.e. a [30 × 30] weighted-adjacency matrix
W description, with elements wij ∈ [0,1] denoting the strength of
functional association between the ith and the jth sensor (and
implicitly between the cortical areas underneath). In the case of
static FCGs, each graph represents connectivity estimates corre-
sponding to subject’s brain activity for long recording periods
(8 s). In the case of time-varying FCGs (time-indexed networks), a
time-series of connectivity estimates is represented, with each con-
nectivity snapshot corresponding to subject’s brain activity lasting
for few milliseconds.

2.2. The gSpan algorithm

We  consider the problem of identifying frequently occurring
patterns (motifs) in a set of unweighted graphs. In particular, pro-
vided a graph set G = {G1, G2, . . .,  GN} of N undirected graphs and a
real number � ∈ (0,1] we wish to find all subgraphs with minimum
support �. The support � means that the subgraphs occur in at least
��·N� (with “�.�” denoting the floor function) graphs in the set G. An
algorithm that can provide a solution to this problem is gSpan (Yan
and Han, 2002). gSpan has been experimentally verified to be one
of the most efficient algorithms for graph mining. In the following,

we provide a bird’s-eye view of the algorithm.

The algorithm discovers frequent subgraphs by extending them
by one node at a time. This means that large motifs are generated
after all smaller motifs that constitute them have also been
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Fig. 1. The hierarchical decomposition of the search space. The discovery starts
from trivial motifs (0-edge motifs that consist only of frequent single nodes) and
then proceeds to larger motifs. The tree is traversed in a DFS manner. Assuming that
g  = g′ , there is no need to traverse the subtree of g′ since the generated motifs have
been already reported by the traversal made in the subtree of g and thus the whole
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in the second condition at all. The largest in size motifs are ranked
based on their Dscore, and hence according to the degree of distinc-
ubtree of g′ is pruned during the search process.

iscovered. This is based on the frequency antimonotone property
Vanetik et al., 2006). This property states that if a graph g is fre-
uent then any subgraph of g is also frequent and if g is not frequent
hen any graph that contains g is also not frequent.

To facilitate the discovery of motifs, the search space is hierar-
hically decomposed as shown in Fig. 1 giving rise to the Depth-First
earch (DFS) Code Tree. The children of the root of this tree cor-
espond to graphs which consist of a single node. Notice that in
ur case the set of nodes for all Gi is the same and as a result
ll single nodes are frequent. This is used only for initialization
urposes, since single nodes are considered to be trivial motifs in
ur framework. These trivial motifs are then extended by other
odes into graphs that consist of two nodes and an edge. These
ew graphs are children of g in the DFS Code Tree and this proce-
ure continues recursively until there is no node corresponding to

 frequent graph that can be extended, in which case the algorithm
acktracks.

To generate these graphs efficiently, a lexicographic label is
ssigned to each one of them. The smaller the label for a node
he higher up in the DFS code tree resides. The enumeration of the
ubgraphs corresponding to nodes of the DFS code tree is done in
exicographic order, which is consistent with the DFS traversal of
he search space. This is because the lexicographic label of g is a
equence of symbols, called the DFS code, generated by the DFS
raversal of g. Since there are many DFS traversals which give rise
o many DFS codes, we always choose the minimal one. For this
oding scheme it holds that if a graph g is isomorphic to some
ther graph g′ then their corresponding minimal codes are also
dentical. It is this minimal DFS code that allows for the efficient
eneration of candidate subgraphs that makes gSpan an efficient
lgorithm.

Another element of the gSpan algorithm is that in the explo-
ation of the search space, represented conceptually by the DFS
ode tree, it may  be the case that multiple nodes correspond to the
ame subgraph. In this case, when we visit a node v of the DFS code
ree, which corresponds to a subgraph isomorphic to another node

 that has already been visited, node v is discarded. In addition,
ecause of the DFS traversal of the search space represented by the
FS code tree, all descendants of v are also discarded. Thus, the pro-
edure does not need to explore the subtree of v since all frequent
ubgraphs in it have been reported in the subtree of u. Details of the
lgorithm can be found in (Yan and Han, 2002). Recently, exten-
ions of gSpan (Jiang et al., 2010) have also been introduced. These

ersions extract weighted motifs in which the support takes into
ccount the weights of the edges.
nce Methods 213 (2013) 204– 213

2.3. Exploiting gSpan for FCG mining

2.3.1. Static graphs – single condition
For one particular brain condition we  collect the set of N

graphs that corresponds to the number of examined subjects. These
graphs, originally, may  be fully connected and weighted. A sparsifi-
cation (binarization) step is recommended for reducing subsequent
computational burden (to speed up the execution of gSpan to a
small fraction of time) and as a “denoising” step as well, so as
to retain the essence of underlying functional coupling manifold.
Thresholding at a user-defined value of functional connectivity
strength or based on statistical arguments (e.g. comparison with
randomized networks, van Wijk et al., 2010) are the most common
strategies for transforming connectivity Wsubj id matrices to adja-
cency matrices Asubj id with ones only at entries corresponding to
strongly coupled brain areas. We  then adjust the gSpan algorithm
to our framework, by setting appropriately parameter � and mine
motifs that appear in the vast majority of these binary graphs (for
example in a percentage ≥ 90% of graphs if � = 0.9). In general, we
prefer high � values (i.e. close to 1), since we  want to reveal sys-
tematic trends in our data. Finally, we visualize the detected motifs
in terms of the original brain topography.

2.3.2. Static graphs – contrasting conditions
One of the most intriguing topics in the study of brain con-

nectivity graphs is to compare two  (or more) distinct set of
FCGs, corresponding for instance to different clinical popula-
tions (Rubinov et al., 2009) or different recording conditions
(Micheloyannis et al., 2005) and decide about graph-related fea-
tures of high discriminability. We propose here a simple and
effective strategy so as to exploit gSpan algorithm for discrimina-
tive learning. Given two  sets of graphs G1 = {1G1,1G2, . . ., 1GN1} and
G2 = {2G1, 2G2, . . ., 2GN2}, our target is to find motifs that discrimi-
nate between these two  sets, which means that we  intend to detect
motifs that exist in one set and do not appear in the other.

The algorithm proceeds as follows. After mining common sub-
graphs from the first condition (as described in Section 2.3.1), we
identify among the largest detected motifs the ones that appear less
frequently in the graphs of the second condition. To this end, we
score each large motif mj from first condition within three steps
that include simple algebraic operations. Let A(mj) an adjacency
matrix that encodes the edges of a particular motif by means of its
nonzero entries. We  first apply Hadamard product (denoted below
with ‘⊗’ and defined as the elementwise matrix product) between
A(mj) and each one of the adjacency matrices corresponding to set
G2. For each derived matrix, we  sum all the elements so as to com-
pute a ratio Ri in [0,1] that express the matching of motif mj with the
connectivity structure of graph 2Gi (as conveyed by the adjacency
matrix after thresholding). Finally, we average the ratios Ri over the
whole population of set G2, to derive the final differentiability score
(Dscore).

Qi =
∑

row

∑

column

A(mj) ⊗ A(2Gi) (1)

Ri =
∑

row

∑
columnA(mj) − Qi∑

row

∑
columnA(mj)

(2)

Dscore (mj) =
∑N2

i Ri

N2
(3)

The Dscore of a detected motif is equal to one if it does not appear
tiveness with respect to the first condition. The most idiosyncratic
among them are visualized in terms of brain topography.



N.D. Iakovidou et al. / Journal of Neuroscience Methods 213 (2013) 204– 213 207

F ase of

2

t
{
t
v
t
m
i
f
n
A
t

3

t

ig. 2. (a) Single condition. In case of static data, graphs represent subjects and in c

.3.3. Time-varying FCG
In the setting of time-varying graphs, if we denote by tv Gi the

imeseries of functional connectivity graphs from the ith subject
Gi(t)}t=1:T, the ensemble of N × T graphs from N subjects forms a set
v G = {G1(t), G2(t), . . .,  GN(t)} that encapsulates the time-dependent
ariations in network organization. We  can apply gSpan algorithm
o such a set from a particular recording condition, so as to mine

otifs that are not only common across subjects but also persistent
n time. In a more elaborate exploration the time-varying graphs
rom two different recording conditions can be compared (in the
otion of contrastive motif extraction of the previous subsection).
fter extracting the motifs from tv G1, we rank them according to

heir frequency of occurrence in tv G2.
. Results

Fig. 2 provides a schematic outline of the procedure for
he analysis of available FCGs. Each frequency band (defined,
 time-varying data, graphs represent time instants. (b) Contrasting conditions.

conventionally, as � (4–8 Hz), ˛1 (8–10 Hz), ˛2 (10–13 Hz), ˇ
(13–30 Hz) and � (30–45 Hz)) was treated separately. We  first
mined motifs from static connectivity graphs associated with base-
line condition, then motifs appearing in mental calculations but not
in baseline condition and finally motifs appearing in time-varying
connectivity graphs while subjects were involved in mental arith-
metic. A common thresholding scheme had been performed in all
cases before motif extraction. The weights of each graph had been
sorted and a threshold was defined so as to null out the 70% of the
edges with the lower connectivity strength. The rest edges were
considered as the connectivity skeleton and assigned the value of 1.
We must mention at this point that we tested various thresholds in
the interval [50%, 90%] (Micheloyannis et al., 2006; De Vico Fallani
et al., 2007a,b). With threshold values > 70% the resultant graphs

were very sparse and the algorithm detected only a few motifs
with two  nodes or no motifs at all. On the other hand, with thresh-
old values near 50% and 60% the graphs were too dense (close to
being fully connected) and hence subgraphs could not be detected.
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Fig. 3. Significant (P-value < 0.001) motifs detected from

e  finally report the results from thresholding at 70%, since the
merged motifs were characterized by the highest significance (see
ext section). We  also verified the absence of disconnected nodes

n the binarized graphs.

.1. Resting state motifs from static FCGs

The study of resting state connectivity has recently received
normous attention (Damoiseaux 2006). Inferring resting-state

onnectivity patterns from neuroimaging data (fMRI, positron
mission tomography (PET), etc.) is a challenging task and of great
mportance for the delineation of the so-called default-mode net-

ork. It was therefore plausible, as a first demonstration of gSpan
ol condition graphs in a percentage � ≥ 90% of subjects.

application, to seek motifs from the control condition FCGs. The
most important results (in terms of motif-size and frequency of
occurrence) of this exploration are shown in Fig. 3. Of course, given
that the total number of motifs found in all bands is more than
50,000, it is impossible to show all these motifs in the current paper.
Nevertheless, we  depict in Fig. 4 some smaller motifs detected in
� band, that either are subsets of the motifs shown in Fig. 3 and
consequently included within them, or/and they have a higher P-
value (≥0.01) and so they do not share the same level of significance

with the motifs shown in Fig. 3 (the computation of significance is
described later in this subsection).

A first important common observation is that the detected
motifs constitute connected subgraphs, which is an expected
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Fig. 4. Various, non-significant, motifs detected from control condition gra

roperty for motifs (Milo et al., 2002). In �-band, motifs include
xtended fronto-central brain areas. In ˛1-band the motifs are
xtending over fronto-central areas with a lateralization in the
ight hemisphere. In ˛2-band only a single motif was  detected
ver the frontal midline. The characteristic motif for ˇ-band was
ocated over centro-parietal areas with a lateralization to the left-
emisphere. Finally, the two �-band related motifs were associated
ith frontal-central-parietal brain areas and extended in both
emispheres.
To indicate the association of detected motifs with the origi-
al EEG traces, we have included in Fig. 5 the multichannel signal
ounterpart (the signals filtered in the corresponding frequency
and from a randomly selected subject) for two  of the above
 a percentage � ≥ 90% of subjects. Their P-values are shown in parenthesis.

mentioned motifs. Since motif extraction is based on static graphs
and a phase synchrony estimator (the PLV), the brain activity sig-
nals from the sensors included in the detected motif (highlighted
waveforms) show coherent oscillations for the whole time period.

In order to justify the significance of each motif extracted via
the gSpan algorithm, we incorporated a surrogate-assisted analy-
sis step (Ansmann and Lehnertz, 2012) by generating 1000 random
adjacency matrices with the following iterative procedure. At each
iteration, we  first selected at random one of the 18 adjacency matrix

Asubj id corresponding to resting state connectivity and then shuf-
fled its entries. Adopting the strategy of permutation tests (Good
2000), the count of perfect match between a motif and the set of
random graphs (i.e. how many times the motif was  contained in
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ig. 5. Using single subject data to indicate the grouping of time series (highlighted
ig.  3) and (b) ˛1 band (left motif in Fig. 3).

he surrogates) can be interpreted as a P-value. In all cases shown
n Fig. 3, the results indicated significant deviations (P < 0.001) from

 random process. On the contrary, the motifs included in Fig. 4 are
haracterized by lower significance.

.2. Contrastive motif extraction for the multiplication task using
tatic FCGs

Task specific motifs with score ≥ 0.7 (as depicted in Fig. 2b)
elated to the cognitive processes involved in the multiplication
ere detected in �,  ̌ and � bands. In �-band, motifs were extended

n the fronto-central and in the fronto-central-temporal-parietal
ith a lateralization to the right hemisphere while in ˇ-band motifs

ere distributed in the fronto-central and in the fronto-central-
arietal with a lateralization to the right hemisphere. Finally, in
-band, characteristic motifs were located in the fronto-central
rain areas with a lateralization to the right hemisphere (see Fig. 6).
s) corresponding to the nodes that participated in a motif. (a) � band (left motif in

3.3. Contrastive motif extraction for the multiplication task using
time-varying FCGs

The extracted motifs from tv FCGs were different from the ones
mined using static FCG from the same subjects. A motif example
is shown in Fig. 7a. It is associated to the �-band and emerged
during multiplication (in more than 50% of the tv FCGs) but not
during resting state. Its structure indicates connections from the
left-temporal brain areas (areas responsible for language functions)
to the right-frontal ones (see Fig. 7a). The particular motif was
appearing or disappearing in time (see Fig. 7b). This dynamic behav-
ior is subject dependent and could be interpreted as signaling the
access to language brain areas. The frequency of appearance differs

across subjects (see Fig. 7c), and this may  relates to the difficulty of
the task for each subject (the higher the frequency, the more fre-
quently language areas are accessed, hence the subject conceives
the task as more demanding).
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Fig. 6. Multiplication specific motifs extracted via contras
In the case of tv FCGs, it is important to scrutinize the time
ourse of each motif and test whether its appearance corresponds
o a random process or can be assigned to systematic mecha-
isms. To this end, we  generated 1000 random time courses by

ig. 7. (a) Multiplication specific motif extracted from �-band, via contrastive-learning w
otif  appearance for all 18 subjects (white indicates that the motif is ‘on’). (c) Total numb
earning with respect to resting state, according to Fig. 2b.
shuffling the entries of each row in Fig. 7b (where 1/0 denotes
appearance/disappearance of a motif in time). Then we compute
the correlation of the original time course with each one of the ran-
domized ones and counted the number of times the correlation

ith respect to resting state, based on tv FCGs. (b) Visualization of the time course of
er of appearances per subject for the motif of (a).
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alue was greater than 0.9. This count was transformed to a P-
alue, in accordance to permutation tests (Good 2000). Again in all
ases, the results indicated significant deviations (P < 0.001) from a
andom process.

. Discussion

We have introduced a new approach to detect brain sub-
etwork patterns using ensembles of either static or time-varying
raphs of functional connectivity. The discovery of group-
onsistent motifs proceeds so as to either characterize a particular
rain state (or recording-condition) or a brain state with respect
o a reference state (or baseline condition). “Our motifs” refer to a
ommon connected set of labeled nodes and their functional role
an be directly deduced due to the topographic configuration of the
ncluded nodes.

The key idea is the employment of an algorithm that detects
ntelligently, size-free network motifs instead of exhaustively enu-

erating the number of occurrences of each subnetwork of a given
ize k (Milo et al., 2002). In previous attempts (Sporns and Kötter,
004; De Vico Fallani et al., 2007a,b), the investigators had to limit
he search space by setting the parameter k to values up to 4 in
rder to avoid unreasonable execution times. On the contrary, our
pproach does not force any restriction. Two recently proposed
tudies introduced motif discovery algorithms that incorporated
he notion of vertex labels and also the detection of significantly
resented motifs in a group of graphs (Kashani et al., 2009; Schmidt
t al., 2012). However, the proposed algorithms suffer from need
f enumerating all the possible subnetworks of a certain size and
ence its use is feasible only in the case of moderate-sized sets of
raphs and for detecting motifs of small size.

An important methodological contribution in this paper is the
ontrastive learning scheme for motif extraction, which includes a
rocedure that scores and finally ranks the detected motifs accord-

ng to their importance. Another advantage is that within the same
ethodological framework not only static FCGs, but also dynamic

CGs can be analyzed. This is considered an important option
specially in the case of fast-recording modalities (EEG/MEG) and,
ccasionally, fMRI (Chang and Glover, 2010). Additionally, the pro-
osed methodology can handle the analysis of brain networks
f considerable size, while enabling the detection of consistent
within a population or a condition) motifs of variable size.

While resting state EEG has been studied extensively based on
ower spectral features (Barry et al., 2007; Chen et al., 2008), stud-

es of connectivity have just started to appear (Dimitriadis et al.,
012; Schmidt et al., 2012). The application of our motif extraction
rocedure to an eyes-open recording condition revealed consistent
otifs for the entire set of frequency bands under investigation (see

ig. 3). The motifs extracted in � and � bands were more spatially
xtended compared to the rest ones (see Fig. 3). This experimental
bservation is consistent with the correlation of � and � bands with
he internal processing of personalized information. Specifically, it
s considered that �-band during resting state reflects switching,
reamlike thoughts, while �-band reflects thinking and integrated
houghts (Von Stein and Sarnthein, 2001).

In the case of task-related data, multiplication-specific motifs
ere revealed in �,  ̌ and � bands (Fig. 6). The �-motifs were

ocated over fronto-central and fronto-central-temporal-parietal
egions with a right hemisphere lateralization, which can be inter-
reted as an integration of cognitive functions involved in working
emory (Sauseng et al., 2010) and in fact retrieval from long-term

emory (Dehaene et al., 1999; Sauseng et al., 2002; Delazer et al.,

003). The ˇ-band motifs had a distribution that could be char-
cterized as fronto-central and fronto-central-parietal with right
emisphere lateralization. This band has been suggested to play
nce Methods 213 (2013) 204– 213

an important role during attention (Bekisz and Wrobel, 2003) or
higher cognitive functions (Razumnikova, 2004). The characteristic
motifs of �-band were located over fronto-central brain areas with
a right hemisphere lateralization as well. These motifs most likely
reflect retrieval of information independent of sensory modality
but related to the cognitive mental task and memory processes
(Tallon-Baudry and Bertrand, 1999; Hermann et al., 2004; Kaiser
and Lutzenberger, 2005; Sauseng and Klimesch, 2008). Finally, the
absence of ˛1,2-band related motifs (due to low score), probably
means that there is no difference in attentional (Von Stein and
Sarnthein, 2001) and memory processes developed via ˛-band
activity (Klimesch et al., 2005). A recent study (Micheloyannis
et al., 2005), analyzing a two-digits multiplication task revealed a
widespread pattern in four lobes of the brain reflecting demanding
cognitive functions (working memory, retrieval)

The analysis of tv FCGs in �-band during the multiplication task
revealed an interesting motif that associates left-temporal brain
areas with right frontal areas (Fig. 7a). The left temporal lobe is
known to be critical for language comprehension and produc-
tion. Additionally, this fronto-temporal motif possibly reflects the
engagement of a network of areas responsible for language func-
tions, including long-term and verbal working memory (Dehaene
et al., 1999; Delazer et al., 2003). By tracking the appearance of
this motif along time, we  revealed an important dynamic pattern
that was  masked in the study of static FCGs. The chessboard pat-
tern seen in Fig. 7b can be interpreted as a time-course reflecting
the access of language brain areas. It is evident that the particular
motif (reflecting mostly the performance of mental calculations)
disappears for short time periods.

Our approach is applicable to data from other neuroimaging
techniques as well (e.g., MEG, MRI/fMRI, diffusion tensor imag-
ing (DTI)). The network size varies for different modalities ranging
from tens (EEG, fMRI, DTI) to hundreds (∼300) nodes (MEG) (Frye
et al., 2010), a parameter that increases the computational load
for motif detection. However, such network sizes are computa-
tionally affordable for the gSpan algorithm (Yan and Han, 2002).
With an appropriate estimator of the functional connectivity that
can be pair-wise or n-way, undirected or directed, important graph
patterns can be revealed that will help us understand the speed
and nature of self-organization during cognitive states (Bassett and
Bullmore, 2009).

Finally, the study of binary graphs is the first step in this research
direction. Our primary goal was to ascertain that the introduced
technique can provide promising and interesting results. The full
exploitation of connectivity weights (based on recent methods for
weighted motif detection (Jiang et al., 2010; Yang et al., 2012))
will be considered in the future in order to avoid any arbitrariness
induced by the binarization step and also to enhance the quality of
the obtained results.

References

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency,
small-world human brain functional network with highly connected association
cortical hubs. J Neurosci 2006;26:63–72.

Ansmann G, Lehnertz K. Surrogate-assisted analysis of weighted functional brain
networks. J Neurosci Methods 2012;208(2):165–72.

Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences
between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 2007
December;118(12):2765–73.

Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist
2006;12:512–23.

Bassett DS, Bullmore ET. Human brain networks in health and disease. Curr Opin
Neurol 2009;22:340–7.
Bekisz M, Wrobel A. Attention-dependent coupling between beta activities recorded
in  the cat’s thalamic and cortical representations of the central visual field. Eur
J  Neurosci 2003;17:421–6.

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of struc-
tural and functional systems. Nat Rev Neurosci 2009;10:186–98.



roscie

C

C

D

D

D

D

D

D

D

D

D

F

F

H

J

J

K

K

K

K

L

M

M

N.D. Iakovidou et al. / Journal of Neu

hang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity
measured with fMRI. Neuroimage 2010;50:81–98.

hen AC, Feng W,  Zhao H, Yin Y, Wang P. EEG default mode network in the human
brain: spectral regional field powers. Neuroimage 2008;41:561–74.

ehaene H, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking:
behavioral and brain-imaging evidence. Science 1999;284:970–4.

elazer M,  Domahs F, Bartha L, Breneis C, Lochy A, Trieb T, et al. Learning complex
arithmetican fMRI study. Cogn Brain Res 2003;18:76–88.

imitriadis SI, Laskaris NA, Del Rio-Portilla Y, Koudounis GC. Characterizing
dynamic functional connectivity across sleep stages from EEG. Brain Topogr
2009;22(September (2)):119–33.

imitriadis SI, Laskaris NA, Tsirka V, Vourkas M,  Micheloyannis S, Fotopoulos S.
Tracking brain dynamics via time-dependent network analysis. J Neurosci Meth-
ods 2010a;193(October (1)):145–55.

imitriadis SI, Laskaris NA, Tsirka V, Vourkas M,  Micheloyannis S. What does delta
band tell us about cognitive processes: a mental calculation study. Neurosci Lett
2010b;483(October (1)):11–5.

imitriadis SI, Laskaris NA, Tsirka V, Vourkas M,  Micheloyannis S. An EEG study of
brain connectivity dynamics at the resting state. Nonlinear Dynamics Psychol
Life  Sci 2012;16(January (1)):5–22.

e Vico Fallani V, Latora V, Astolfi L, Cincotti F, Mattia D, Marciani MG, et al. Persistent
patterns of interconnection in time-varying cortical networks estimated from,
high-resolution EEG recordings in humans during a simple motor act. J Phys A
Math Theor 2007a;41:224014.

e Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG,  Salinari S, et al. Cortical
functional connectivity networks in normal and spinal cord injured patients:
evaluation by graph analysis. Hum Brain Mapp 2007b;28:1334–46.

e Silva E, Stumpf M.  Complex networks and simple models in biology. J R Soc
Interface 2005;22:419–30.

aloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet
topology. Comput Commun Rev 1999;29:251–62.

rye R, Wu M,  Liederman J, Fisher J. Greater pre-stimulus effective connectivity from
the left inferior frontal area to other areas is associated with better phonological
decoding in dyslexic readers. Front Syst Neurosci 2010;4.

ermann CS, Munk MHJ, Engel AK. Cognitive functions of gamma  activity: memory
match and utilization. Trends Cogn Sci 2004;8:347–55.

iang C, Coenen F, Zito M.  Frequent sub-graph mining on edge weighted graphs.
In: Proceedings of the 12th international conference on data warehousing and
knowledge discovery (DaWaK’10). Berlin, Heidelberg: Springer-Verlag; 2010. p.
77–88.

oyce KE, Laurienti PJ, Burdette JH, Hayasaka S. A new measure
of  centrality for brain networks. PLoS ONE 2010;5(8):e12200,
http://dx.doi.org/10.1371/journal.pone.0012200.

aiser J, Lutzenberger W.  Human gamma-band activity: a window to cognitive
processing. Neuroreport 2005;16:207–11.

ashani RM,  Ahrabian Z, Elahi H, Nowzari-Dalini E, Saberi A, Asadi E, et al.,
Schreiber S. Kavosh: a new algorithm for finding network motifs. BMC  Bioinform
2009;10:318.

limesch W,  Schack B, Sauseng P. The functional significance of theta and upper
alpha oscillations for working memory: a review. Exp Psychol 2005;52:99–108.

olaczyk ED. Statistical analysis of network data: methods and models (Springer
series in statistics) [Hardcover]. 1st ed. New York: Springer; 2009 March.

achaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain
signals. Hum Brain Mapp 1999;8:194–208.

icheloyannis S, Sakkalis V, Vourkas M,  Stam CJ, Simos PG. Neural networks

involved in mathematical thinking: evidence from linear and non-linear analysis
of  electroencephalographic activity. Neurosci Lett 2005;373:212–7.

icheloyannis S, Pachou E, Stam CJ, Vourkas M,  Erimaki S, Tsirka V. Using graph theo-
retical analysis of multi channel EEG to evaluate the neural efficiency hypothesis.
Neurosci Lett 2006;402(July (3)):273–7.
nce Methods 213 (2013) 204– 213 213

Micheloyannis S, Sakkalis V, Vourkas M,  Tsirka V, Karakonstantali E, Kanatsouli K,
et  al. The influence of ageing on complex brain networks: a graph theoretical
analysis. Hum Brain Mapp 2009;30(1):200–8.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs:
simple building blocks of complex networks. Science 2002;298:824–7.

Milo R, Itzkovit S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, et al. Superfamilies
of evolved and designed networks. Science 2004;303:1538–42.

Razumnikova OM.  Gender differences in hemispheric organization during diver-
gent thinking: an EEG investigation in human subjects. Neurosci Lett
2004;362:193–5.

Rubinov M,  Knock SA, Stam CJ, Micheloyannis S, Harris AW,  Williams LM,  et al. Small
world properties of nonlinear brain activity in schizophrenia. Hum  Brain Mapp
2009;30:403–16.

Rubinov M,  Sporns O. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 2010;52:1059–69.

Sauseng P, Klimesch W,  Gruber W,  Doppelmayr M,  Stadler W,  Schabus M. The inter-
play  between theta and alpha oscillations in the human electroencephalogram
reflects the transfer of information between memory systems. Neurosci Lett
2002;324:121–4.

Sauseng P, Klimesch W.  What does phase information of oscillatory brain activity
tell  us about cognitive processes? Neurosci Biobehav Rev 2008;32:1001–13.

Sauseng P, Griesmayr B, Freunberger R, Klimesch W.  Control mechanisms in working
memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev
2010;34:1015–22.

Schmidt C, Weiss T, Komusiewicz C, Witte H, Leistritz L. An analytical
approach to network motif detection in samples of networks with pair-
wise different vertex labels. Comput Math Methods Med  2012;2012:12,
http://dx.doi.org/10.1155/2012/910380, Article ID 910380.

Simpson SL, Moussa MN,  Laurienti PJ. An exponential random graph modeling
approach to creating group-based representative whole-brain connectivity
networks. Neuroimage 2012;60(April (2)):1117–26 [Epub 2012 January 17].

Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical
and functional connectivity in graphs and cortical connection matrices. Cereb
Cortex 2000;10:127–41.

Sporns O, Kötter R. Motifs in brain networks. PLoS Biol 2004;2(11):e369,
http://dx.doi.org/10.1371/journal.pbio.0020369.

Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain.
Nonlinear Biomed Phys 2007;1:3.

Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in
object representation. Trends Cogn Sci 1999;3:151–62.

Valencia M,  Martinerie J, Dupont S, Chavez M.  Dynamic small-world behavior in
functional brain networks unveiled by an event-related networks approach.
Phys Rev E 2008;77, 050905(R).

van Wijk BCM, Stam CJ, Daffertshofer A. Comparing brain networks of different
size  and connectivity density using graph theory. PLoS ONE 2010;5(10):e13701,
http://dx.doi.org/10.1371/journal.pone.0013701.

Vanetik N, Shimony SE, Gudes E. Support measures for graph data. Data Min  Knowl
Disc 2006;13(2):243–60.

Vértes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET. Sim-
ple models of human brain functional networks. Proc Natl Acad Sci 2012.,
http://dx.doi.org/10.1073/pnas.1111738109.

Von Stein A, Sarnthein J. Different frequencies for different scales of cortical inte-
gration: from local gamma to long-range alpha/theta synchronization. Int J
Psychophysiol 2001;38:301–13.
Yan X, Han J. gSpan: graph-based substructure pattern mining. In: ICDM 2002; 2002.
p. 721–4.
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