
A Data Generator for Multi-Stream Data

Zaigham Faraz Siddiqui†, Myra Spiliopoulou†,
Panagiotis Symeonidis∗, and Eleftherios Tiakas∗

University of Magdeburg†; University of Thessaloniki∗.
[siddiqui,myra]@iti.cs.uni-magdeburg.de; [symeon,tiakas]@csd.auth.gr

Abstract. We present a stream data generator. The generator is mainly
intended for multiple interrelated streams, in particular for objects with
temporal properties, which are fed by dependent streams. Such data
are e.g. customers their transactions: learning a model of the customers
requires considering the stream of their transactions. However, the gen-
erator can also be used for conventional stream data, e.g. for learning
the concepts of the transaction stream only.
The generator is appropriate for testing classification and clustering algo-
rithms on concept discovery and adaptation to concept drift. The number
of concepts in the data can be specified as parameter to the generator;
the same holds for the membership of an instance to a class. Hence,it is
also appropriate for synthetic datasets on overlapping classes or clusters.

1 Introduction

Most of the data stored in databases, archives and resource repositories are not
static collections: they accumulate over time, and sometimes they cannot (or
should not) even be stored permanently - they are observed and then forgotten.
Many incremental learners and stream mining algorithms have been proposed
in the last years, accompanied by methods for evaluating them [3, 1]. However,
modern applications ask for more sophisticated stream learners than can cur-
rently be evaluated on synthetically generated data. In this work, we propose a
generator for complex stream data that adhere to multiple concepts and exhibit
drift. The generator can be used for the evaluation of (multi-class) stream clas-
sifiers, stream clustering algorithms over high-dimensional data and relational
learners on streams.

Our generator is inspired by recommendation engines, where data are essen-
tially a combination of static objects and adjoint streams: people rank items
- the rankings constitute a fast (or conventional) stream; new items show up,
while old items are removed from the provider’s portfolio - the items constitute a
slow stream; new users show up, while old users re-appear and rank items again,
possibly exhibiting different preferences as before - users also constitute a slow
stream. In [4] we devised the term perennial objects for a stream of objects that
appear more than once and may change properties. In conventional relational
learning, these objects would be static and have one fixed label, while in rela-
tional stream learning they may have different labels at different times. In [4] we
proposed a decision tree stream classifier for a stream of perennial objects.

Our generator extends the generator of static item recommendations pre-
sented in [6] in two ways. First, our generator builds a stream of ratings, hence
it can be used to test recommenders designed for dynamic data. Second, and
most importantly, our generator builds the ratings’ stream upon a synthetic set
of evolving profiles, thus allowing the evaluation of learners designed for complex
dynamic environments. In particular, consider an application that categorizes
customers into classes A, B, C (A is best), given their response to recommenda-
tions and considering some demographic attributes (e.g. having children, having
a car etc). What synthetic data are needed to evaluate a learner for this appli-
cation? A synthetic set (or stream) of ratings is not sufficient, because it does
not contain customers (and their labels). Next to the stream of ratings, we need
a set that describes the customers and associates them to their ratings in a
non-random way. Further, since customer preferences may change, concept drift
must be incorporated into the relationship between customers and their ratings.
Our generator is designed for this kind of multi-relational (stream) learning.

The core idea of our generator is as follows. The preference of a user towards
some item(s) defines its behaviour. Multiple users’ exhibiting similar behaviour
can be grouped/categorised together as a single user profile. Conversely to learn-
ing task where these profiles are learned from among a group of users, the gen-
erator first creates these user profiles which serve as a prototypes. These profiles
are then used to generate individual user data according the item preferences
stored in them. Noise can be imputed to the data by forcing a user to rank in
discordance to her profile with some probability. Drift is imputed to the data by
allowing a profile to exist only for some timepoints and then forcing it to mutate
to one or more profiles with some probability.

The paper is organized as follows. In Section 2 we give a formal description
of the problem along with the related work. We explain the multi-relational
generator in Section 3 with some results in Section 4. We summarise and discuss
future improvements in Section 5.

2 Problem Specification and Background Literature

In this section we explain the learning task over the multiple interrelated streams
(i.e., slow and fast streams) in more detail, which our generator is going to si-
multe. In subsection 2.2 we also discuss the studies that address similar problems.

2.1 Problem Specification

In our introductory example, we considered a slow stream of users T and fast
ranking/transaction stream S1 that feeds the user stream (i.e., the users’) with
rantings/purchases from a slow stream of items S2. Stream of user is referred as
target streams as the learning task concerns solely T , e.g. finding groups of users
that show similar behaviour when rating/purchasing different items, predicting
whether a user will like a certain item (Y) or not (N), or labelling users on their
”lifetime value” for the company (typically in four classes A, B, C, D where A

is best and D is worst). The contents of the inter-connected streams (i.e., the
ranking stream and the item stream via ranking stream) should be taken into
account when building the classifier.

Learning on a Stream of Perennial Objects. The stream of perennial ob-
jects (i.e., slow stream) T exhibits three properties that are atypical for streams.
Differently from conventional stream objects that are seen, processed and forgot-
ten, objects of T may not be deleted: an examinations office may file away the
results of a successful exam, but does not file away the students who passed the
exam; a product purchase may be shifted to a backup medium after completion,
but the customer who did the purchase remains in the database. One can even
argue that T is not a stream at all. However, it is obvious that new objects arrive
(new customers, new students), while old objects are filed away after some time
(e.g. students who completed their degree and customers who have quitted the
relationship with the company). We use the term perennial objects or stream of
perennial objects for the slow stream T .

Second, the objects in T may appear several times, e.g. whenever the prop-
erties of a user (e.g. her address) change and whenever this user is referenced
by a fast stream (i.e. when the user assigns a new rating or purchases a new
item). Third, the label of a T object may change over time: a user who earlier
responded positively towards and item (Y) may stop doing so (label becomes
N); a B-user may become an A-user or a C-user. Hence, the label of a perennial
objects x is not a constant; at every timepoint t, at which x is observed, its label
is label(x, t). The learning task is to predict this label at t, given the labelled
data seen thus far and given the streams that feed T .

2.2 Related Work

Our generator is inspired from the properties of the perennial stream and builds
on a generator for recommender systems by Symeonidis et al.[6]. This generator
is intended for learning in a static context. We outline it here briefly.

The generator of [6] produces a unipartite user-user (friendship) network and
a bipartite user-item rating network. In contrast to purely random (i.e., Erdos-
Renyi) graphs, where the connections among nodes are completely independent
random events, the synthetic model ensures dependency among the connections
of nodes, by characterizing each node with a m-dimensional vector with each
element a randomly selected real number in the interval [-1,1]. This vector rep-
resents the initial user profile used for the construction of the friendships and
ratings profiles, which are generated as follows:

– For the construction of the friendship network, two nodes are considered to
be similar and thus of high probability to connect to each other if they share
many close attributes in their initial user profile. Given a network size N and
a mean degree k of all nodes, the generator starts with an empty network
with N nodes. At each time step, a node with the smallest degree is randomly

selected (there is more than one node having the smallest degree). Among all
other nodes whose degrees are smaller than k, this selected node will connect
to the most similar node with probability 1 − p, while a randomly chosen
one with probability p. The parameter p ∈ [0, 1] represents the strength
of randomness in generating links, which can be understood as noise or
irrationality that exists in almost every real system.

– For the construction of the user-item rating network, the generator follows
a similar procedure. It uses the following additional parameters as well: (i)
the ratings range, (ii) the mean number of rated items by all users. Notice
that each user can rate different items from others and has in his profile a
different number of rated items, following the power law distribution.

xSocial is a multi-modal graph generator that mimics real social networking
sites to produce simultaneously a network of friends and a network of their
co-participation [2]. In particular, xSocial consists of a network with N nodes,
each of which has a preference value calfi. At each time, every node performs
three independent actions (write a message, add a friend and comment on a
message). A node chooses his friends either by their popularity of by the number
of messages on which they have commented together, which is determined by
his preference calfi. A node can also follow the updated status of his friends by
putting comments on the corresponding newly written messages.

The generator of Symeonidis et al., [6] uses both structural (friendship net-
work) and content-based information (item-rating network) for making recom-
mendations to the users. However, it is only suitable for static learning. xSocial,
on the other hand, simulates the temporal/stream-based problem but it only
uses the structural information (i.e., networks of friends and their interactions)
for making recommendations to the users. Different from [6], our generator aims
to alleviate the problem of static recommendations by making use of the dy-
namic ratings profile (i.e., a user’s rating preferences may change overtime), and
unlike xSocial [2] its primary focus is on content-based recommendations.

3 Generating Profiles & Transactions with Concept Drift

Our generator is inspired by the idea of predicting user ratings in a recommenda-
tion engine, and builds upon the generator of [6] (c.f. Section 2.2). In particular,
our generator creates data according to the following scenario:

Each user adheres to a user profile, while each item adheres to an item
profile1; the user profiles correspond to classes. The rating of a user u
for an item i depends upon affinity/preference the of the user profile of
u towards the item profile of i; ratings are generated at each timepoint
t. At certain timepoints, user profiles mutate, implying that the ratings
of the users for the items change. An example of learner object for some

1 just as user profiles serve as prototypes for the generation of concrete user data (c.f.
Section 1), item profiles serve the same purpose

Table 1. Parameters of the generator.

Param Description

P i set of item profiles with N i = |P i| number of profiles
Pu set of user profiles with Nu = |Pu| number of profiles

ni number of items per item profile
nu number of users per user profile

vi number of synthetic variables that describe an item profile
vu number of synthetic variables that describe a user profile

τd number of drift levels across the time axis
Au

d number of active user profiles at drift level d
L max lifetime of a drift level as number of timepoints

R max number of items rated by a user at any timepoint

φU→I the probability of a user profile U selecting an item from item
profile I for rating.

Item Profiles Var 1 Var 2 Var 3 Var 4

IP1 23 +4 52 +9 97 +2 8 +9

IP2 2 +9 1 +7 46 +3 91 +6

IP3 72 +7 71 +3 26 +2 52 +1

IP4 3 +4 2 +4 27 +5 25 +3

Fig. 1. Sample item profiles with vi = 4 synthetic variables. The mean and variance
associated with each variable are used to generate items according to the normal dis-
tribution.

learner is to predict the profile of a user at a given timepoint, when
provided with the users’ ratings data.

In more detail, our generator takes as input the parameters depicted in Table
1, and described in sequel. It generates: item profiles and from them items; user
profiles and from them users; and ratings of users for items at each timepoint.
A user profile may live at most L timepoints before it mutates.

Generation of item profiles and items.

Item profiles are described by vi synthetic variables. The generator creates a set
P i with N i item profiles and stores for each one the mean and variance of each
of the vi variables. Next, each of these item profiles is used as prototype for
the generation of ni items, producing ni ×N i items in total. Items also adhere
to the vi variables; the value of each variable in an item adhering to profile I
is determined by the mean and variance of this variable in the profile I. The
description of item profiles and is depicted in Figure 1.

The number of items considered (rated) at some timepoint may vary from
one timepoint to the next, but there is no bias towards items of some specific
profile(s). Hence, item profiles are not exhibiting concept drift.

User Profiles Var 1 Var 2 Var 3 Item Profile Probabilities

UP1 13 +0 22 +5 51 +1
IP1 IP2 IP3 IP4

0.1 0.6 0.25 0.05

20 + 5 50 + 8 80 + 9 29 + 1

UP2 34 +4 55 +0 68 +9
IP1 IP2 IP3 IP4

0.7 0.1 0.1 0.1

90 + 2 25 + 5 93 + 4 9 + 1

UP3 21 +5 98 +4 1 +5
IP1 IP2 IP3 IP4

0.2 0.5 0.1 0.2

42 + 2 95 + 2 10 + 0 12 + 5

Fig. 2. Sample user profiles with mean and variance for synthetic variables with prob-
abilities of selecting an item from a certain item profile (row 1) and mean and variance
of the rating that item (row 2), where vu = 3.

Generation and transition of user profiles.

User profiles are described by a set of parameters vu. These are synthetic vari-
ables. The generator creates a set Pu with Nu user profiles and stores for each
one the mean and variance of each variable in vu. User profiles serve as tem-
plates for the generation of users, in much the same way as item profiles are
used to generate items. However, there are two main differences. First, user pro-
files are subject to transition, and not all of them are active at each drift level
d = 1, . . . , τd. Second, a user profile exhibits affinity towards some item profiles,
expressed through the probabilities between the item profile and the user profile.
The description of user profiles is depicted in Figure 2.

The affinity of user profiles towards item profiles manifests itself in the user
ratings: a generated user adheres to some user profile and rates items belonging
to the item profile(s) preferred by her user profile. The affinity φU→I is defined
as the probability of a user profile U selecting an item from item profile I for
rating. The probability φU→I is controlled by a user-defined global parameter
UP2IP ∈ [0, 1]. If UP2IP is close to zero, user profiles show strong affinity
towards a certain item profile while if the value is closer to 1, the probabilities
are initialised randomly.

At each drift level d = 1, . . . , τd, only a subset of user profiles Au
d ⊆ Pu are

active2. The active profiles at each drift level is determined at the beginning. For
drift level d > 1, the generator maps the profiles Au

d−1 of level d− 1, to the new
profiles Au

d of level d on similarity, i.e. the transition probability from an old to
a new profile is a function of the similarity between the two profiles. The result
is a profile transition graph, an example of which is depicted in Figure 3. This
graph is generated and then the thread of each profile is recorded for inspection.

The coupling of profile transition to the profile similarity function ensures
that profile mutation corresponds to a gradual drift rather than an abrupt shift.
The extent of profile mutation is further controlled by a user-defined global
variable ∈ [0, 1] that determines the true preference of an old user profile for a

2 the number of active profiles at each drift level d is an integer and calculated using
Nu

d
and is similar for each drift level

Fig. 3. A profile transition graph; each column corresponds to a timepoint, indicat-
ing that the number of profiles/classes may change from one timepoint to the next
(transition probabilities between level 2 and level 3 have been omitted)

new user profile. A value close to zero means that the most similar new profile will
always be preferred. Larger values allow for a weaker preferential attachment,
while a value close to 1 means that the new profile is chosen randomly, and the
transition is essentially a concept shift rather than a drift (a ”drift” is a change
of gradual nature, e.g. when a profile mutates into a similar one; while a ”shift”
is a more drastic and abrupt change, e.g. a profile being replaced by another
one). The similarity between two user profiles U and U ′ is defined in Equation 1.

sim(U ,U ′) =

√ ∑
I∈P i

(φU→I − φU ′→I) (1)

where φU→I is the prob. of rating an item from profile I for U , U ∈ Au
d and

U ′ ∈ Au
d+1.

The affinity of user profiles towards item profiles manifests itself in the user
ratings: a generated user adheres to some user profile and rates items belonging
to the item profile(s) preferred by her user profile. Affinity is also affected by
profile transitions. Once a user profile U mutates to U ′, all its users adhere to
the U ′ profile: they prefer the item profiles to which U ′ shows affinity, and rate
items adhering to these item profiles.

Generation of users and ratings.

For each user profile U ∈ Pu, the generator creates nu users. As for items, users
adhere to the set of parameters vu as user profiles; the value of each parameter
in a user adhering to profile U is determined by the mean and variance of this
variable in the profile U .

The profiles of each drift level d exists for at most L timepoints, before profile
transition occurs; the lifetime of a profile is chosen randomly. At each of these
timepoints, the generator creates ratings for all users in each active profile. For
each user profile U and user u adhering to U , and for each item profile I is
selected based on the probability φU→I . An item i is randomly chosen from the

I and a rating value is generated based on mean and variance in U for rating
(c.f. Figure 2). A user can rank at most R items per timepoint.

4 Working with the Data Generator

We have used our generator to evaluate the performance of the classification
rule miner (CRMPES) [5] which is incorporated into a tree induction algorithm
(TrIP) [4]. CRMPES is used to generate new richer attributes that exploit de-
pendency between attributes by using classification rules which otherwise are
ignored by the TrIP. To test CRMPES, we developed the generator with user
and item profiles. The purpose was to study how CRMPES adapts to complex
patterns (spanning multiple attributes) in the presence of concept drift. The
details on the experiments can be found in the paper [5].

5 Conclusions

We presented a multi-stream generator that has been inspired from the domain
of recommendation system. It generates ratings data for users according to user
profiles. With time the profiles mutates into newer ones. The mutation can be
adjusted to simulate drastic shifts as well more gradual drifts. The generator can
be used for evaluating supervised and unsupervised learning task for discovering
and adaptation to concept drift.

Acknowledgements: Work of the first author was partially funded by the Ger-
man Research Foundation project SP 572/11-1: IMPRINT: Incremental Mining
for Perennial Objects. The cooperation between the two research groups is sup-
ported by the DAAD project travel grant 50983480.

References

1. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble
methods for evolving data streams. KDD ’09, pages 139–148. ACM, 2009.

2. N. Du, H. Wang, and C. Faloutsos. Analysis of large multi-modal social networks:
Patterns and a generator. ECML/PKDD ’10, pages 393–408. Springer, 2010.

3. J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning
algorithms. KDD ’09, pages 329–338. ACM, 2009.

4. Z. F. Siddiqui and M. Spiliopoulou. Tree induction over perennial objects. SS-
DBM’10, pages 640–657. Springer-Verlag, 2010.

5. Z. F. Siddiqui and M. Spiliopoulou. Classification rule mining for a stream of
perennial objects. RuleML@IJCAI ’11. Springer-Verlag, 2011.

6. P. Symeonidis, E. Tiakas, and Y. Manolopoulos. Transitive node similarity for link
prediction in social networks with positive and negative links. RecSys ’10, pages
183–190. ACM, 2010.

