
An Efficient Load Balancing LQR controller in Parallel Database Queries

under Random Perturbations

Anastasios Gounaris, Christos A. Yfoulis and Norman W. Paton

Abstract— This work investigates the problem of dynamic,
intra-query load balancing in parallel database queries across
heterogeneous nodes in a way that takes into account the inher-
ent cost of adaptations and thus avoids both over-reacting and
deciding when to adapt in a completely heuristic manner. The
latter may lead to serious performance degradation in several
cases, such as periodic and random imbalances. We follow a
control theoretical approach to this problem; more specifically,
we propose a multiple-input multiple-output feedback linear
quadratic regulation (LQR) controller, which captures the
tradeoff between reaching a balanced state and the cost inherent
in such adaptations. Our approach, apart from benefitting
from and being characterized by a solid theoretical foundation,
exhibits better performance than state-of-the-art heuristics in
realistic situations, as verified by thorough evaluation.

I. INTRODUCTION

Parallel processing of a single query, either over static

databases or data streams, involves splitting a query graph

into several subgraphs so that these graphs can run on

different machines, e.g., in a pipelined fashion when one

subgraph feeds data to another subgraph. Moreover, each of

these subgraphs may be able to be instantiated several times,

with each of the resulting instances operating on a different

subset of data (or data partition).

However, to fully exploit the potential of parallelism, work

needs to be assigned to machines in a way that reflects their

capabilities, which is challenging in an environment with

heterogeneous and potentially autonomous, non-dedicated

resources. Key characteristics of a typical such environment

include the following:

• There exist unpredictable fluctuations in the load of

available machines. A consequence of this fact is that

it is not efficient to divide a task into several partitions

and to stick with this division until completion.

• The information about the machine characteristics that

describe performance capacity and loads is typically

incomplete and/or inaccurate at compile time; thus a

load balancer with responsibility for efficient work

assignment should rely mostly on runtime feedback.

• The instances of subgraphs are stateful. A consequence

of this fact is that the cost of workload re-assignments,

Anastasios Gounaris is with the Computer Science Department,
Aristotle University of Thessaloniki, Thessaloniki, Greece. E-mail:
gounaria@csd.auth.gr

Christos A. Yfoulis is with the Automation department, ATEI of Thes-
saloniki, Thessaloniki, Greece. E-mail: cyfoulis@teithe.gr

Norman W. Paton is with the School of Computer
Science, University of Manchester, Manchester, UK. E-mail:
npaton@manchester.ac.uk

which typically depends on the size of the state, is not

negligible in general.

Several authors have tried to address the challenges that

result from the aforementioned characteristics. One of the

most notable examples is the Flux approach [1], which

introduces a new operator that monitors the execution speed

and the idle time of each participating machine at runtime,

and adjusts the workload allocation accordingly, with a view

to equalizing machine utilization. Additional heuristics are

applied to smooth the workload allocation changes. In the

Flux operator, state typically consists of several state parti-

tions defined by a hash function, and each node is allowed

to either transmit or receive a single state partition during

the same balancing step so that over-reacting is avoided. In

addition, Flux tries to guarantee that the time spent enforcing

adaptivity decisions (i.e., moving state from one machine

to another as a result of a workload reallocation) does not

exceed the time of query processing; this is done by keeping

the same workload allocation for a period that is at least equal

to the time spent carrying out the adaptation that brought

it about. Note that this does not guarantee that the overall

time will be reduced by adaptive balancing; in other words,

execution is not improved in all cases. Indeed, Flux, apart

from being rather sensitive to its parameters, such as the size

of the window used for collecting execution statistics, may

adapt in a non-beneficial manner in response to transient

and periodic imbalances, as it may keep shifting the state

partitions.

Several attempts have been made to improve the behavior

in these situations. In [2], some extensions to the Flux

approach are described. An enhancement of the Flux deci-

sion making criterion, which is investigated in [2], enacts

adaptations only when the accumulated delay due to the

use of the current workload allocation strategy is greater

than the cost of changing to the strategy that would have

been best over some period. This improves slightly on the

snapshot-based original Flux in unstable environments, and,

in essence, behaves like an integral controller, in that it adapts

in a way that takes account of the average error over a period.

However, the efficiency relies heavily on the window size

chosen.

Typically, the load balancing problem in a single query

environment is transformed to the problem of making the

execution times of parallel subtasks equal, as their maximum

defines the overall execution time. The spirit of Flux is the

same, although the adaptivity steps are not based on a corre-

sponding balancing function, but on a heuristic, as mentioned

previously. Such approaches essentially adopt a definition of

18th IEEE International Conference on Control Applications
Part of 2009 IEEE Multi-conference on Systems and Control
Saint Petersburg, Russia, July 8-10, 2009

978-1-4244-4602-5/09/$25.00 ©2009 IEEE 794

balanced execution, which does not take into account the

inherent overhead for enforcing the balancing decisions. This

limitation, which is particularly felt in unpredictably volatile

imbalances, is addressed in this work.

The approach we follow is founded on applied control

theory; the problem under investigation falls into the broader

vision of developing autonomic, self-managing solutions for

data management [3]. In principle, autonomic computing

can benefit a lot from control theory techniques, which

are well-established in engineering fields and are typically

accompanied by theoretical investigations of properties such

as stability, accuracy, and settling time [4]. Nevertheless,

their application to computing systems is rendered prob-

lematic because of issues such as effective modeling of the

system and its dynamics, and overhead times in enforcing

adaptations [5]. Control theoretical solutions with a view

to achieving self-managing behavior have been incorporated

into commercial systems [6], although it is acknowledged

that factors such as volatile loads and the difficulty in

constructing realistic models that also capture the cost of

adaptations, are prohibitive for the application of control

theory to database systems.

To address the problem of balancing the load of a par-

titioned query across multiple heterogeneous machines, we

design an adaptive multiple-input, multiple-output (MIMO),

discrete-time, feedback linear quadratic regulation (LQR)

controller. In general, LQR controllers can encapsulate the

cost to enforce a response (i.e., the cost to move state from

one machine to another) along with the cost of deviations

from the ideal state in a unified cost function. As such, they

seem promising. To the best of the authors’ knowledge, there

is a single example of a design for an LQR controller for

database systems, namely to adjust the memory pool sizes [9]

in a way that is more tolerant to noise than other optimization

techniques [10]. There is no prior control theoretical work

that deals with balancing the execution of partitioned query

tasks in volatile settings. In a different setting, cost-aware

load balancing has been investigated in [7]. In this work, the

existence of a detailed mathematical model of the system

is assumed, and the main contribution is, when deciding

on the workload distribution, to take into consideration

the number of in-transit tasks due to previous adaptivity

actions. In our environment, all data transfers are completed

before resuming query execution. Finally, control theory has

recently been employed to optimize data transmission from

service-based databases [8].

The contributions of this work are summarized as follows:

(i) it introduces an LQR control theoretical approach to load

balancing in (stateful) parallel database queries, which is

inherently suitable for adaptations that incur some cost; (ii) it

presents a detailed methodology as to how such a controller

mechanism can be configured; (iii) it shows that the resulting

mechanism is stable, effective and capable of reaching a

balanced state in short times; and (iv) it compares its

performance against state-of-the art load balancing proposals.

The remainder of this article is structured as follows. Sec-

tion II describes the load balancing problem formally. The

Fig. 1. An example of balancing stateful operators.

presentation of our LQR controller is in Section III, whereas

in Section IV we investigate the efficiency and effectiveness

of the approach. Section V concludes the article.

II. DESCRIPTION OF THE LOAD BALANCING PROBLEM

Consider two relations, A and B, which are joined remotely

using a hash join; the hash table is built on A. Let us assume

that the hash join operator is parallelised over two physical

nodes, and that these two nodes are capable of processing

tuples at the same speed. Then, in a balanced execution, the

two nodes should receive and process the same amount of

workload. However, if, during execution, the first machine

becomes three times as fast as the second machine, then

the workload distribution should change to reflect that. The

problem is that a workload distribution that is proportional

to the nodes’ execution speed can yield the lowest response

times only if the operators are stateless. In stateful operators,

like hash joins, which create internal state in the form of hash

tables, any workload re-allocation triggers state movements,

which incur some cost (see Fig. 1). Consequently, a more

efficient load balancer should take into account this cost

when deciding on workload re-allocations with a view to

reducing the query execution time.

The load balancing problem can be formalized as follows.

Let P be the degree of intra-operator parallelism of an oper-

ator o, and m1, m2, · · · , mP the P nodes participating in its

execution. The workload proportion that each of these nodes

receives at the kth adaptivity step is p1(k), p2(k), · · · , pP (k),
with the constraints

∑P

i=1
pi(k) = 1, ∀k and pi(k) ≥ 0, ∀k.

pi(k), i = 1 . . . P is defined through a hash function hk().
Each node possesses a certain amount of state si(k), i =
1 . . . P , which is needed to evaluate pi(k). si(k) depends

on pi(k). ci(k) denotes the cost (overhead) to reach state

si(k) from state si(k − 1), as a result of a change in

pi(k). The measured output is y1(k), y2(k), . . . , yP (k) and

defines the expected value for the completion time of each

of the participating nodes given the workload allocation of

the kth adaptivity step. If the query is continuous (e.g.,

over data streams) the expected completion time refers to

the time to complete the evaluation of a fixed aggregate

workload. Without loss of generality, we can assume that

y(i) strictly monotonically increases with p(i), i.e., assigning

more workload to a node leads to an increase in its expected

completion time. The role of the load balancer is to minimize

the following

max(yi(k + 1) + ci(k + 1)), i = 1 . . . P (1)

795

and estimate hk+1 accordingly.

It can be proved that the workload allocation is always

optimal if no further workload re-allocation is needed, i.e.,

y1(k) = y2(k) = . . . = yP (k). This condition can be

also written as yi(k) = 1

P

∑P

i=1
yi(k). To the best of our

knowledge, there is no practical methodology to solve Eq.

(1) analytically.

III. DESIGN OF THE LQR CONTROLLER

Essentially, the load balancing objective defined in Eq.

(1) includes a trade-off between (a) reaching the optimal

workload allocation, in which the expected completion times

are equalized across all participating nodes, and (b) the cost

for reaching such an allocation, which is mainly due to state

movements. To meet such an objective, we employ a state

space model, on top of which we implement a state feedback

controller, which is designed with the help of a linear

quadratic regulator (LQR). Our LQR controller is capable

of accurately finding the controller settings that minimize a

cost function, which can capture both the deviations from the

optimal state and the cost to reach such a state. In essence,

we do not try to postpone adaptations due to the cost they

are expected to incur but to modify the response actions so

that any adaptations applied are beneficial.

a) The state-space model of the system: In our setting,

the output vector y is a P ×1 vector of the measured output

values (i.e. expected completion times for each node) and

the input vector u(k) is a P × 1 vector of inputs, i.e. our

manipulated variables which are the workload allocations

at the kth step. P is the number of participating nodes

mentioned in the previous section.

According to the load balancing requirement, all outputs

yj , j = 1, . . . , P are equalized to their optimal value, which

is their average y(k) = 1

P

∑P

i=1
yi(k). Hence we have to

design a tracking controller so that the outputs follow a

time-varying reference trajectory y(k). Therefore, instead of

having a static value or an external signal as the reference

input, the reference is specified as a linear combination of

measured outputs, i.e. their average. In order to use the LQR

regulation controller, this tracking requirement is typically

transformed to a regulation problem by considering as state-

variables the control errors ej = yj − y. The control error

vector is then given by

e(k) =









y1

y2

· · ·

yP









− 1

P









∑P

i=1
yi

∑P

i=1
yi

· · ·
∑P

i=1
yi









= (IP,P −

1

P
1P,P)y(k) where IP,P and 1P,P are the P × P identity

and unary matrices, respectively.

In our state-space model, inspired by the work in [9], we

adopt a dynamic state feedback strategy, which is the state-

space analog of a PI (proportional integral) controller, that

allows tracking of a time-varying reference input and has

disturbance rejection properties, due to the presence of an

integrator. These properties are absolutely essential in our

problem, due to the unpredictability of machine load and

the time-varying reference input imposed by the balancing

requirement.

The corresponding augmented state vector is x(k) =
[e(k) eI(k)]

T
, where the error and the accumulated error

are given by

e(k) = (IP,P −
1

P
1P,P) (y(k) + dm(k)) (2)

eI(k + 1) = eI(k) + e(k) (3)

The general form of the output equation for the state-space

model is as follows.

y(k + 1) = A(k)y(k) + B(k) (u(k) + dc(k)) (4)

The vectors dm,dc in (2),(4), correspond to the measure-

ment disturbance and the control disturbance. They can ac-

commodate load and reference input changes, measurement

noise as well as modeling inaccuracies.

The matrices A and B can be found at runtime through

system identification or monitoring. The elements of matrix

B correspond to the time units required for each of the

participating machines to process a unit of workload, which

is the inverse of the processing speed of the machines,

and, as such, can capture both changes in the computational

capacity, e.g., due to load change, and data skews. Since the

expected completion time of one machine does not depend

on the processing speed of another, we may assume that B

is diagonal.

Furthermore, the load balancing problem imposes two

types of constraints on the control inputs, i.e. ui ≥ 0
and

∑P

i=1
ui = 1, which we have to incorporate into the

proposed state-space model. The equality constraint can be

satisfied by allowing the controller to specify the allocation

only for P − 1 nodes. For the last machine the allocation

will be uP (k) = 1 −
∑P−1

j=1
uj(k). The bound constraints

0 ≤ ui ≤ 1 may be satisfied by careful selection of the

LQR parameters, and then it can be also shown that the

system is fully controllable. Moreover, the dynamic state

feedback strategy adopted assures zero steady state errors

and disturbance rejection properties due to the addition of

integral action. This holds not only for the first P − 1 states

which are directly controlled, but also for the last P -th state.

More details are given in [11].

b) LQR specification: The control input vector x(k) is

u(k) = −Kx(k) , x(k) = [e(k) eI(k)]
T

(5)

The LQR framework is responsible for the specification

of K, and more importantly, for ensuring that K effi-

ciently implements the tradeoff between quick convergence

to the optimal workload allocation and the penalty for

this convergence. The cost function to be minimized is

J = 1

2

∑

∞

k=1

[

xT(k)Qx(k) + uT(k)Ru(k)
]

. The di-

mensions of the Q and R matrices are 2N×2N and N×N ,

respectively, where N = P − 1.

Based on such a cost function, the requirement for quick

convergence is quantified by the square of state variables

796

multiplied by the weights in the Q matrix. The convergence

penalty is quantified by the square of the control input

multiplied by the weights in the R matrix.

The problem of developing a load balancer that considers

the overhead of its decisions, is transformed to the problem

of defining the (potentially time-varying) Q and R matrices.

The former captures the requirement for quick convergence

to the optimal state, whereas the latter captures the overhead

of such a convergence, in line with the objective of (1).

In order to design an LQR controller we derive the closed

loop difference equation

x(k + 1) = Ã x(k) + B̃ u(k) (6)

where Ã is a 2N × 2N matrix, and B̃ is a 2N × N one.

From the combination of (2) and (4) , we can derive that

e(k + 1) ∼= (IN,N −
1

P
1N,N) B̃(k)u(k)

Note also that (3) can be rewritten as

eI(k + 1) =
[

IN,N IN,N

]

[

e(k)
eI(k)

]

(7)

Inserting the two formulas above in (6), we get

Ã =

[

0N,N 0N,N

IN,N IN,N

]

, and (8)

B̃ =

[

ĨN,N BN,N

0N,N

]

, ĨN,N = (IN,N −
1

P
1N,N) (9)

We next define the weights for the price to pay when

some nodes are expected to complete execution later than

others, i.e., when they exhibit non-zero error. Also, we

specify the weights for the price to pay on the grounds of

the accumulated error for some nodes, which can capture

periodic phenomena. These weights are stored in the Q

matrix. For simplicity, we make the assumption that the

errors are independent of each other, and in this case Q =
[

a IN,N 0N,N

0N,N b IN,N

]

, a, b ≥ 0. The ratio of a and b defines

the relative significance of the error and the accumulated

error. When a/b = 1, then they are equally taken into

account.

Finally, we specify the (normalized) weights for the price

to pay to enforce a response. This price depends on the size

of the state to be transferred. The weights of this step are

stored in the R matrix, and, as previously, we can assume

that they are independent of each other, which entails that

this matrix is diagonal, too.

Let us assume that the size of state S stored in all

machines is known from before and does not change during

execution. In addition, we make the assumption that the

average bandwidth bw of the network connections from each

machine to the others is known, and the state to be transferred

is proportional to the workload allocation.

Based on these assumptions, and provided that the first

part of the LQR cost function is the square of time units,

the diagonal elements of R, ri, i = 1 . . .N, are of a scalar

value c that is proportional to the square of the division of

S by bw. The value of c is a tuning parameter; the higher

its value, the more a change in the workload allocation is

penalized.

It should be noted that our controller has adaptive features,

in that a time-varying matrix B(k) is used in (9), which is

updated in every step, and a new LQR optimization problem

is solved to specify new gains K(k) in (5).

An interesting extension of the adaptive properties of our

scheme would be the transition to a fully dynamically con-

figured controller, where the weighting matrices of the cost

function become time-varying R(k),Q(k), and modified

at each adaptivity step. E.g. a dynamically updated matrix

R(k) could capture the accurate cost of transferring the

state which reflects the current conditions. This could be

done through runtime analysis and the design of a switching

controller. However, this is a highly non-trivial task which

requires stability guarantees, rigorous analysis, and careful

consideration of the associated increased overhead, and is

left for future work.

IV. EVALUATION

This section compares the performance of the LQR con-

troller described in Section III with heuristic control, based

on Flux [1] and on techniques described in [2], using simu-

lations of query performance under time-varying imbalance

conditions. In this paper, due to space limitations, we present

only two representative experiments. Full details may be

found in [11]. Before discussing the experiments, useful tips

as to how to configure the LQR controller are presented.

Simulation Model: The simulation uses a cost model

consisting of a collection of parameterized cost functions

for query operators. The simulator builds upon that used in

[2]. Its top level loop, asks the root operator of a plan for the

number of tuples it can return in the available time, taking

into account the load on the machine to which the operator is

allocated. The number returned is determined by how rapidly

the operator itself can process data and the rate at which its

children can supply data.

The load of each machine, both due to external jobs and

query processing tasks, is used to estimate the machine

capacity, so that B̃ is produced at each step (or iteration).

More specifically, the computational capacity of each ma-

chine is inversely proportional to machine contention, in line

with the approach described in [2]. The example operator

to be balanced throughout the experiments is a parallel

hash join between tables of the TPC-H (http://www.tpc.org)

benchmark database with scale factor 1. However, the load

balancer presented in this work is independent of any par-

ticular operator implementation. The performance metric is

the overall query response time, which captures the impact

of imbalanced execution that is experienced by the user.

We consider two types of random external job arrival,

namely poisson, where the rate of job arrival to (some of)

the machines evaluating the join in each iteration follows a

poisson distribution with a fixed mean value, and poisson

cyclic, where the average arrival rate follows a poisson

797

distribution multiplied by a sinusoidal function. As such, the

latter type can capture more realistically situations where

the machine workload fluctuates between time periods. The

machine contention for poisson cyclic workload types is

depicted in Fig. 2. In that figure, the average number of jobs

starting per second is 1, the average job duration is 1 sec., and

the period of the poisson cyclic load is 5 secs; also, the join

is parallelized over 3 machines, one of which is perturbed

with the external load described. The randomness of the

external load, and the inner complexities of query processing

result in more realistic, albeit more complex non-smooth load

profiles, thus posing a significant challenge to load balancing

controllers. In each experiment, the techniques were checked

under at least 10 different random imbalances, and the mean

performance values were obtained.

LQR tuning policy: An approach to configuring the LQR-

based load balancer, which proved to be effective as will be

discussed subsequently, is as follows: when the imbalance

decreases (e.g., fewer external jobs arrive at the perturbed

machines, or the overall number of machines increases while

the number of perturbed machines remains the same), it is

safe to make the controller more aggressive without risking

performance degradation. Similarly, when the imbalance

increases, the controller should become less aggressive. A

less (resp. more) aggressive behavior is achieved by increas-

ing (resp. decreasing) the weights in the R matrix, or by

decreasing (resp. increasing) the weights that correspond to

the accumulated errors in the Q matrix, or by both these

mechanisms. However, in most of our examples, and in order

to keep the LQR configuration part as simple as possible,

the Q matrix was set to the identity one. Note that a less

(resp. more) aggressive controller requires more (resp. less)

steps to converge. In the following experiments, we have

experimented with a small number of rather intuitive LQR

configurations with a view to illustrating the potential of the

LQR approach to this type of load balancing; it is out of the

scope of this work to fine tune the LQR controller so that

its best performance possible is achieved.

To smooth the differences between successive instances

of B̃, the machine loads are normalized, so that their sum is

1. For both techniques, adaptations of workload distribution

are enforced only if the allocation is modified by 5% or

more at least on one machine with a view to avoiding

overreacting. Each time step, i.e. each controller cycle, is

equal to 0.1 secs. Due to the rapidly changing imbalances,

it might be the case that the load change on a machine

between two consecutive steps is higher than a threshold

(set to 5%), which implies that the load has not temporarily

converged; in that case, no effort to adapt is made by any

balancing mechanism examined, since any such efforts are

prone to cause performance degradation. Also, LQR starts

enforcing adaptations only after an initial settling period, to

avoid oscillations in the starting phase. Finally, as in [2], the

original Flux proposal with respect to the mechanism that is

responsible for enforcing rebalancing decisions, is modified

so that, at each step, as many state chunks are transferred as

required to reach a balanced state; limiting this number to

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

machine load

time steps

perturbed machine

non−perturbed machines

Fig. 2. Typical machine loads when evaluating the example join query
and, on one of the machines, a poisson-cyclic load is imposed.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Average number of jobs of duration 1s starting per second

T
im

s
 (

s
)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Average number of jobs of duration 1s starting per second

T
im

e
 (

s
)

No Adapt

Flux−based

LQR

Fig. 3. The average response times of Q1 for a random poisson (top) and
poisson cyclic (bottom) imbalance.

0 1 2 3 4 5 6
−20

−10

0

10

20

30

40

50

60

Average number of jobs of duration 1s starting per second

Im
p

ro
v
e

m
e

n
t

flux − poisson

LQR − poisson

flux − poisson cyclic

LQR − poisson cyclic

Fig. 4. Percentile improvements over the non-adaptive case for Q2.

one renders the technique too sensitive to the overall number

of chunks and the nature of imbalance. LQR re-uses the same

mechanism to realize adaptations.

Experiment: Performance evaluation in a non network-

constrained environment: The first query to be examined

is a key/foreign-key join over the Order (1.5M tuples) and

LineItem (6M tuples) tables of TPC-H database; this query

will be referred to as Q1. In Q1, scans project out 25% of the

columns so that communication cost does not dominate. In

this experiment, the degree of intra-operator join parallelism

is 3, and we compare the improvements of LQR and a

Flux-based approach over the non-adaptive case for varying

average numbers of external jobs arriving at one of the

machines per second. The period of the sinusoidal function

798

in poisson cyclic imbalances is always set to 5 secs.

The average response time of ten random imbalances for

the non-adaptive, Flux and LQR cases are shown in Fig. 3.

Two main observations are: (i) both for poisson and poisson

cyclic imbalances, LQR performs consistently better than

Flux; and (ii) LQR avoids situations where adaptivity yields

higher response times, whereas Flux fails to balance the

execution in a beneficial manner in a wide range of cases

thus causing further performance degradation. For poisson-

cyclic imbalance, the average improvement when LQR is

employed is 27.8% compared to the non-adaptive case; to

the contrary, Flux yields 21% higher response times. For the

poisson imbalance, both techniques improve performance;

however, the average performance improvements of LQR are

more significant (41.9% to 6.3%).

The values of R that yielded this performance are 0.3·I2,2,

whereas Q is always set to I2,2. As mentioned earlier, finer

tuning of this matrix may lead to even higher performance.

To check how sensitive LQR is to different values of R, we

also experimented with R = I2,2. The differences in the

LQR performance with this configuration are not significant

(2-5%). The settling period used was 15 steps for poisson

imbalances and 10 steps for the poisson cyclic ones. Small

changes in these values did not seem to have a significant

impact on performance either.

Fig. 3 also depicts the standard deviation of mean time,

which, in general, can be relatively high for LQR. This is

due to the fact that occasionally, LQR performs significantly

worse than its average performance. As a result, in all

experiments conducted, the median response time for LQR

is consistently 1-5% lower than the average response time.

Intuitively, LQR performs better for longer-running and

continuous queries. But it can also yield performance im-

provements for smaller queries. Let Q2 be a query joining

Part (200K tuples) and PartSupplier (800K tuples) on a

key/foreign-key bases. The performance improvements are

shown in Fig. 4 (corresponding to averages of ten random

runs). Again, for poisson cyclic imbalances, LQR performs

consistently better than Flux; also applying LQR does not

lead to negative improvements as Flux may do. On average,

with LQR, the response time is reduced by 22.6% and 15.2%

when the imbalance type is poisson and poisson cyclic,

respectively. Note that in this experiment, we experimented

with only three values for the R matrix: 0.1, 0.3 and 0.5,

with the graph showing the best performing case.

Further experiments are designed in [11] so that concrete

insights into the intrinsic characteristics and the behavior

of the balancing approaches are provided when attributes

such as the size of the relations participating in the join,

the number of joins, the load level, the number of the

perturbed machines, and the communication bandwidth vary.

In addition, the overhead of deploying an LQR controller on

a real computer is examined, and the associated cost has

been found at the orders of milliseconds measured on a Intel

Core2 Duo at 2.2 GHz machine with 3GB of RAM. As such,

the overall overhead incurred is low enough not to annul the

performance benefits.

V. CONCLUSIONS

This work presents a novel approach to balancing parallel

query execution over machines with unpredictably time-

varying load where not taking into account the cost of bal-

ancing decisions leads to suboptimal behavior. The proposal

is founded on applied control theory and more specifically

on linear quadratic regulation (LQR) optimal control. The

evaluation results demonstrate the superiority of LQR and

its ability to find a beneficial trade-off between balanced

execution and balancing cost. Nevertheless, this work can be

extended in various ways. One the most promising direction

is the dynamic configuration of the controller (both at an

inter- and intra-query level), which implies the development

of a switching controller. Designing stable and efficient

switching controllers to operate in a rapidly changing envi-

ronment is a highly non-trivial control theoretical problem.

VI. ACKNOWLEDGEMENTS

Dr. Yfoulis has been supported by the ATEI grant titled

“Adaptive QoS control and optimization of computing sys-

tems”. This work was partially conducted while A. Gounaris

was holding a part-time research position with the University

of Manchester.

REFERENCES

[1] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin.
Flux: An adaptive partitioning operator for continuous query systems.
In Proc. of ICDE, pages 25–36, 2003.

[2] N. W. Paton, J. Buenabad-Chavez, M. Chen, V. Raman, G. Swart,
I. Narang, D. M. Yellin, and A. A. A. Fernandes. Autonomic
query parallelization using non-dedicated computers: an evaluation of
adaptivity options. VLDB J., Online First, 2008.

[3] S. Lightstone, B. Schiefer, D. Zilio, and J. Kleewein. Autonomic
computing for relational databases: the ten-year vision. In Proc.of the

IEEE Workshop Autonomic Computing Principles and Architectures

(AUCOPA), pages 419–424, 2003.
[4] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback

Control of Computing Systems. John Wiley & Sons, 2004.
[5] Y. Diao, J. L. Hellerstein, S. S. Parekh, R. Griffith, G. E. Kaiser, and

D. B. Phung. Self-managing systems: A control theory foundation. In
Proc. of IEEE ECBS 2005, pages 441–448, 2005.

[6] S. Lightstone, M. Surendra, Y. Diao, S. S. Parekh, J. L. Hellerstein,
K. Rose, A. J. Storm, and C. Garcia-Arellano. Control theory:
a foundational technique for self managing databases. In ICDE

Workshops, pages 395–403, 2007.
[7] J. Birdwell, T. Zhong, J. Chiasson, C. Abdallah, and M. Hayat.

Resource-constrained load balancing controller for a parallel database.
In Proceedings of the American Control Conference, 2006.

[8] A. Gounaris, C.A. Yfoulis, R. Sakellariou and M. D. Dikaiakos.
A control theoretical approach to self-optimizing block transfer in
Web service grids. ACM Transactions on Autonomous and Adaptive
Systems, 3(2), 2008.

[9] Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone,
S. S. Parekh, and C. Garcia-Arellano. Incorporating cost of control
into the design of a load balancing controller. In IEEE Real-Time and

Embedded Technology and Applications Symposium, pages 376–387,
2004.

[10] Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra,
S. Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, L. Chu,
and J. Colaco. Comparative studies of load balancing with control
and optimization techniques. In Proceedings of the American Control

Conference, pages 1484–1490, 2005.
[11] A. Gounaris, C.A. Yfoulis, and N.W. Paton. Efficient Load Balancing

in Partitioned Queries Under Random Perturbations. Submitted for
publication, 2008.

799

