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Abstract. Bulk insertion refers to the process of updating an existing
index by inserting a large batch of new data, treating the items of this
batch as a whole and not by inserting these items one-by-one. Bulk inser- AQ1

tion is related to bulk loading, which refers to the process of creating a
non-existing index from scratch, when the dataset to be indexed is avail-
able beforehand. The xBR+-tree is a balanced, disk-resident, Quadtree-
based index for point data, which is very efficient for processing spatial
queries. In this paper, we present the first algorithm for bulk insertion
into xBR+-trees. This algorithm incorporates extensions of techniques
that we have recently developed for bulk loading xBR+-trees. Moreover,
using real and artificial datasets of various cardinalities, we present an
experimental comparison of this algorithm vs. inserting items one-by-
one for updating xBR+-trees, regarding performance (I/O and execu-
tion time) and the characteristics of the resulting trees. We also present
experimental results regarding the query-processing efficiency of xBR+-
trees built by bulk insertions vs. xBR+-trees built by inserting items
one-by-one. AQ2
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1 Introduction

Nowadays, the volume of available spatial data (e.g. location, routing, naviga-
tion, etc.) is continuously increasing world-wide. In many data-intensive spatial
applications, dealing with the problem of bulk-insertions of new large datasets
into an existing dataset is of particular interest. It is important to add newly
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collected data into an existing dataset quickly, because new data are continu-
ously being generated and added to existing datasets. The use of efficient spatial
indexes is very important for performing spatial queries and retrieving efficiently
spatial objects from datasets according to specific spatial constraints. An impor-
tant aspect in the implementation of such spatial indexes is the time needed to
build and update them from a given dataset [16].

If the dataset is dynamic (i.e. when insertions and deletions are interleaved),
then we can devote efforts on creating and updating the spatial index in a way
that permits the efficient execution of spatial queries. Furthermore, slow updates
of spatial indexes can seriously degrade query response time, which is especially
critical in modern interactive and data-intensive spatial database applications.
There are three ways in which spatial indexes can be created or updated by
a dynamic dataset. First, if the dataset has not been indexed yet, the spatial
index can be built from scratch for the entire dataset (this process is known
as bulk-loading). Second, if the dataset already has a spatial index and a large
batch of data is to be added to the index, then the spatial index can be updated
with all the new data at once (this process is known as bulk-insertion). Third, if
the dataset already has an index and a small amount of data is to be added to
the index, it can be more efficient to insert the new data items one by one into
the existing spatial index (this process is known as one-by-one-insertion [7]). In
this work, we present a method for speeding up the updating of a spatial index
for the second situation (bulk-insertion).

In contrast to a bulk-loading algorithm, where a spatial index is built from
scratch, a bulk-insertion algorithm aims at updating an existing index struc-
ture with a large set of new data. Thus, bulk-insertion refers to the process of
updating an existing spatial index with a large new dataset, that is, of com-
bining data that is already indexed by a disk-resident spatial index and data
that has not yet been indexed. Bulk-insertion is necessary when a spatial index
already exists and a large amount of new data needs to be added. An example
of this process could be the following. If we are indexing data received from an
earth-sensing satellite and new data from a specific region that spatially over-
laps with the existing index have arrived, we need to insert these new data into
the existing index. Loading indexes by inserting elements one-by-one is less effi-
cient than executing specially designed bulk-insertion algorithms, with smart
merging techniques. Bulk-insertion is therefore an interesting option for updat-
ing spatial indexes when chunks of new data are inserted as a whole. However,
bulk-insertion methods in spatial indexes have not been studied in depth by the
database research community.

In this paper, we study the efficiency of updating a Quadtree-based index
structure when it already exists and a large amount of data is pending to be
inserted. In particular, we focus on the xBR+-tree [10], a balanced disk-based
index structure for point data that belongs to the Quadtree family and hier-
archically decomposes space in a regular manner. The xBR+-tree improves the
xBR-tree [14] in the node structure and the splitting process. Moreover, it outper-
forms xBR-trees and R*-trees with respect to several well-known spatial queries,
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Bulk Insertions into xBR+-trees 3

such as Point Location, Window Query, K-Nearest Neighbor, etc. [10]. With this
research work, we complete the design and implementation of methods to create
and update an xBR+-tree from a dynamic dataset, since a new bulk-insertion
method is proposed. That is, (1) in [11] a bulk-loading method is presented for
xBR+-trees, (2) in [10] an efficient one-by-one-insertion procedure is defined
and implemented for this new spatial index, and finally (3) in [13] a deletion
algorithm is added to this index for removing object in a one-by-one fashion.

There are two important aspects of the bulk-insertion methods. First, the
bulk-insertion itself should be fast enough and the storage utilization should not
be degraded with respect to the existing spatial index (i.e. the quality of the
structure should be preserved). Second, the spatial query performance should
not be compromised by the bulk-insertion process. Keeping this in mind, in this
paper, we present the first algorithm for bulk-insertion into xBR+-trees, for big
datasets residing on disk and taking into account the previous important aspects.
Moreover, using real and artificial datasets of various cardinalities, we present
an experimental comparison of this bulk-insertion algorithm vs. the algorithm of
loading items one-by-one in a existing xBR+-tree, regarding creation time and
the characteristics of the tree created.

This paper is organized as follows. In Sect. 2 we review related work on bulk-
insertion techniques and provide the motivation of this paper. In Sect. 3, we
describe the most important characteristics of the xBR+-tree and the bulk-
loading method for this recent spatial index. Section 4 presents our bulk-insertion
method for the xBR+-tree. In Sect. 5, we discuss the results of our experiments.
And finally, Sect. 6 provides the conclusions arising from our work and discusses
related future work directions.

2 Related Work and Motivation

This section reviews previous bulk-insertion techniques, that consist of inserting
a set of new data into an already existing spatial index at once rather than
inserting one new data element at a time. The main target of the bulk-insertion
process is to create a good enough spatial index in order to reduce the loading
time, the query cost of the resulting index structure, or both. In [1] the bulk-
insertion techniques are roughly classified into two categories: merge-based and
buffer-based techniques.

– The merge-based bulk-insertion techniques are characterized by the following
two steps: first, a new small spatial index is created from the new dataset (if
has not been created yet) and second, the new small index is merged into the
existing one to complete the bulk-insertion process.

– The buffer-based bulk-insertion techniques use the buffer-tree [2] as buffering
technique for the bulk-insertion process.

Most of the bulk-insertion methods belong to the first category and concern
the R-tree [1,3–5,8,15].
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In [8], a bulk-insertion method in which new leaf nodes are built following
the Hilbert-packed R-tree technique is proposed. The new leaf nodes are then
inserted one-by-one into the existing R-tree using a dynamic R-tree insertion
algorithm.

In [15], the cubetree is proposed, which is an R-tree-like structure for OLAP
applications that uses a specialized packing algorithm. The bulk-insertion algo-
rithm proposed in [15] works as follows. First, the new dataset to be inserted
is sorted in the packing order. The sorted list is merged with the sorted list of
objects in the existing dataset, which is obtained directly from the leaf nodes of
the existing cubetree. A new cubetree is then packed using the sorted list resulting
from merging.

In [3,4], a bulk-insertion technique for R-trees, called STLT (Small-Tree-
Large-Tree), is proposed. The STLT technique constructs an R-tree (small tree)
from the new dataset and inserts it into the existing R-tree (large tree). To insert
a small tree into a large tree, it chooses an appropriate location to maintain the
balance of the resulting large tree. That is, the root node of the small tree is
then inserted into the appropriate place in the large R-tree, using a specialized
algorithm that performs some local reorganization of the existing tree based on
a set of proposed heuristics.

In [5], a variant of STLT, called GBI (Generalized Bulk Insertion), is pre-
sented. For this technique, the new input dataset is partitioned into a number
of clusters by grouping spatially close data items into the same cluster. After
clustering, from each of these clusters, R-trees are built. Finally, these R-trees
are inserted into the existing R-tree one at a time. The data items not included
in any cluster are classified as outliers and inserted one by one using normal
R-tree insertion.

In [1], a new Oracle’s approach for performing bulk-insertion in R-trees is
presented. The characteristics of this approach are: (1) batched insertion into
subtrees resulting in fast insertion times, and (2) fast reorganization of subtrees
whenever there is an overlap, to ensure good quality of the final R-tree. This
approach extends buffering-based techniques by not materializing the auxiliary
structures and pushing the data right to the leaves; besides, it merges subtrees
whenever they overlap. In general, this bulk-insertion strategy combines multiple
inserts and reduces the number of tree traversals.

The basic idea presented in [2] is to attach buffers to the internal nodes of
an R-tree (except for the root node) in pre-calculated levels and keep the total
size of the buffers to fit in memory. Then, when a new data item is inserted, it
is stored in the buffer until it gets full. When the buffer is full, data items in the
buffer are pushed down to the buffer at the lower level. Since data items are only
inserted into the leaf level, it is only when the data objects arrive at the leaf
level that disk accesses occur. By using buffers, a data item is inserted as soon
as it arrives without having to gather items to perform bulk operations and it is
likely that disk accesses are reduced by delaying insertions using such buffers.

In [6], two new extensible buffer-based bulk-loading and bulk-insertion algo-
rithms for the class of Space Partitioning Trees (SPTs, a class of hierarchical
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Bulk Insertions into xBR+-trees 5

data structures that recursively decompose space into disjoint partitions) are
presented. The authors adopt the idea of buffer-trees [2] during bulk insertions
into SPTs. The main difference over [2] is that SPTs may not be balanced and
hence need non trivial clustering and whenever a sufficient number of data items
accumulate at the buffers at the leaf level, the algorithm clusters them to form
a new part of the tree. The main idea of this algorithm is to build an in-memory
tree of the target SPT. Then, data items are recursively partitioned into disk-
based buffers using the in-memory tree.

In [9], the idea of the seeded clustering for an R-tree is used for a bulk-
insertion algorithm which is performed in two steps: seeded clustering and inser-
tion. In the seeded clustering step, the algorithm first builds a seed tree by taking
a few top levels of nodes from a target R-tree (existing tree). The seed tree guides
the way the new input data items are clustered. In the insertion step, two dif-
ferent methods are proposed. In the one of them, the algorithm takes each data
item from a cluster and inserts it into a target R-tree, one at a time, using the
standard R-tree insertion method. Although it inserts data items one by one,
it reduces the construction cost dramatically because of localized insertions. In
the other method, the algorithm builds an R-tree from each of the clusters and
inserts them into the target R-tree one at a time in bulk.

The most representative contribution related to bulk-insertion technique for
Quadtree index structures has been published in [7]. The main idea is to adapt
the bulk-loading algorithm [7] to the problem of bulk-inserting into an existing
PMR Quadtree index. The process of the bulk-insertion algorithm is to build a
Quadtree in main-memory for the new dataset with the bulk-loading algorithm
[7] and then to merge it with the existing disk-resident PMR-Quadtree. It is a
merged-based algorithm, since it essentially merges a new Quadtree being built
in memory with an existing disk-resident Quadtree, and writes out a new com-
bined disk-resident Quadtree. Moreover, a transformation of this merge-based
algorithm to an update-based algorithm is also proposed.

The main motivation of this work is the proposal of a new merge-based
algorithm for bulk-insertion of a space-driven Quadtree variant, the xBR+-tree.
Note that the xBR+-tree [10] (for more details, see Sect. 3.1) is unlike any other
Quadtree variant, since it is a totally disk-based, height-balanced, pointer-based,
multiway tree for multidimensional points and no other quadtree variant has all
these characteristics.

3 The xBR+-tree and the Bulk-Loading Method

In this section, we present the basics of the xBR+-tree structure and an abstract
description of the xBR+-tree bulk-loading algorithm.

3.1 xBR+-tree

The xBR+-tree [10] (an extension of the xBR-tree [14]) is a hierarchical, disk-
resident Quadtree-based index structure for multidimensional points (i.e. it is
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6 G. Roumelis et al.

a totally disk-resident, height-balanced, pointer-based tree for multidimensional
points). For 2d space, the space indexed is a square and is recursively subdivided
in 4 equal subquadrants. The nodes of the tree are disk pages of two kinds:
leaves, which store the actual multidimensional data themselves and internal
nodes, which provide a multiway indexing mechanism.

Internal node entries in xBR+-trees contain entries of the form (Shape, qside,
DBR, Pointer). Each entry corresponds to a child-node pointed by Pointer. The
region of this child-node is related to a subquadrant of the original space. Shape
is a flag that determines if the region of the child-node is a complete or non-
complete square (the area remaining, after one or more splits; explained later
in this subsection). This field is heavily used in queries. DBR (Data Bounding
Rectangle) stores the coordinates of the rectangular subregion of the child-node
region that contains point data (at least two points must reside on the sides of
the DBR), while qside is the side length of the subquadrant of the original space
that corresponds to the child-node.

The subquadrant of the original space related to the child-node is expressed
by an Address. This Address (which has a variable size) is not explicitly stored in
the xBR+-tree, although it is uniquely determined and can be easily calculated
using qside and DBR. We depict the address only for demonstration purposes.
Each Address represents a subquadrant that has been produced by Quadtree-like
hierarchical subdivision of the current space (of the subquadrant of the original
space related to the current node). It consists of a number of directional digits
that make up this subdivision. The NW, NE, SW and SE subquadrants of a
quadrant are distinguished by the directional digits 0, 1, 2 and 3, respectively.
For 2d space, we use two directional bits each of every dimension. The lower bit
represents the subdivision on horizontal (X-axis) dimension, while the higher bit
represents the subdivision on vertical (Y -axis) dimension [14]. For example, the
Address 1 represents the NE quadrant of the current space, while the Address
12 the SW subquadrant of the NE quadrant of the current space.

The actual region of the child-node is, in general, the subquadrant of its
Address minus a number of smaller subquadrants, the subquadrants correspond-
ing to the next entries of the internal node (the entries in an internal node are
saved sequentially, in preorder traversal of the Quadtree that corresponds to the
internal node). For example, in Fig. 1 an internal node (a root) that points to 4
internal nodes that point to 12 leaves is depicted. The region of the root is the
original space, which is assumed to have a quadrangular shape with origin (0,0)
on the upper left corner and side length 200. The region of the rightmost entry
is the SW quadrant (2*) of the original space (the * symbol is used to denote the
end of a variable size address). The region of the next (on the left) subquadrant
is the NW subquadrant of the SE quadrant of the whole space. For this subquad-
rant, the Address is 30*. The flag shape is set at the value ‘SQ’ which expresses
that this subquadrant is a complete square and thus, no part of its region will
be found anywhere in the index, except for the child nodes of the subtree rooted
at this entry. The next (on the left) entry covers the whole space of the SW
quadrant of the whole space (0*). Finally, the first entry in the root node of this
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Bulk Insertions into xBR+-trees 7

example, expresses the whole space minus the three descendant regions (0*, 30*
and 2*), and of course it is a non-complete square area. During a search, or an
insertion of a data element with specified coordinates, the appropriate leaf and
its region is determined by descending the tree from the root.
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Fig. 1. A collection of 48 points, its grouping to xBR+-tree nodes and its xBR+-tree.

External nodes (leaves) of the xBR+-tree simply contain the data elements
and have a predetermined capacity C. When C is exceeded, due to an insertion
in a leaf, the region of this leaf is partitioned in two subregions. The one (new)
of these subregions is a subquadrant of the region of the leaf which is created
by partitioning the region of the leaf according to hierarchical (Quadtree like)
decomposition, as many times as needed so that the most populated subquadrant
(that corresponds to this new subregion) has a cardinality that is smaller than
or equal to C. The other one (old) of these subregions is the region of the leaf
minus the new subregion.

3.2 Bulk-Loading Method for xBR+-tree

In [11], an algorithm, called Process of Bulk Loading (PBL), for bulk-loading
xBR+-trees for large datasets residing on disk was presented, using a limited
amount of main memory.

PBL consists of four phases. These phases are pipelined and each phase
produces an output that is used as input for the next one.

1. During the first phase (Transformation of input file format), the initial
dataset file is transformed to binary format and is split in two items files.

2. During the second phase (Partitioning input data), each of the two input
items files is partitioned into items blocks of size ≤ MemoryLimit in a regular
fashion. The resulting blocks are transferred in main memory, as input for
the next phase.

3. During the third phase (Creating the m−xBR+-tree), for each block of items,
a Quadtree (a four way tree) is built top-down in main memory by splitting
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8 G. Roumelis et al.

this block regularly as long as the resulting regions contain more items than
the capacity of xBR+-tree leaves. This Quadtree is gradually transformed to
an m-xBR+-tree (main memory xBR+-tree) in a bottom-up fashion.

4. During the last phase (Merging of trees), the m-xBR+-tree is merged with the
xBR+-tree already built in secondary memory (created during the previous
iteration of the bulk-loading process), discriminating between three different
cases among the heights of the trees to be merged.

Improvements of all the above phases are presented in [12]. However, the main
algorithmic flow and splitting into phases of [11] remain unchanged in [12].

4 Bulk-Insertion Algorithm for xBR+-tree

In this section, we present the method we developed for bulk insertions into
xBR+-trees, called Process of Loading xBR+-trees by Bulk Insertions (PLBI ).
The basic idea is as follows. For each set of points to be inserted in the xBR+-
tree, insert these points in the leaves of the tree (the points that fall within the
area of the same leaf are handled all together), accessing the leaves from the
root in depth-first mode. If a leaf overflows, then create a separate in-memory
tree for the subtree rooted at the parent of this leaf and merge the in-memory
tree with the rest of the tree.

The algorithm is described in more details as follows. Let’s consider a set of
points S to be inserted in the xBR+-tree. We utilize a main memory area M

of size MemoryLimit. If the space needed for S is larger than M , we transfer S

to M in subsets that fit within M and process each such subset independently.
Otherwise, we transfer to M and process the whole of S. Processing of a set of
points SM within M (in general, a subset of S) is recursive (following depth-first
traversal).

– We call the recursive procedure for the xBR+-tree root and SM and make
recursive calls down to the level of the parents of the leaves. The input of a
recursive call is a node and a set of points which is the subset of points of
SM that fall within the region of this node.

– For each (internal) node I visited and the corresponding set of points BI ,
we examine the region entries of I, from the rightmost to the leftmost, and,
for each such region entry E, we determine the subset BE of BI that falls
within E.

– If I is not a parent of leaves, for each region entry E, we apply recursively
the same procedure for the child node corresponding to E and BE .

– If I is a parent of leaves, for each region entry E, we insert BE in the child
node (leaf) corresponding to E.

– After insertions to all children of I have been completed, we examine if any
of these children (leaves) has overflown.

– If none of these children has overflown, for each one of them, we update its
DBR value and, if needed, we update DBR values of its ancestors (possibly,
up to the root level) and the procedure returns to the previous stage of
recursion.
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Bulk Insertions into xBR+-trees 9

– If any child has overflown, we create an m-xBR+-tree (a main memory xBR+-
tree) m for I (Phase 3 of [11]) and gradually merge m with the xBR+-tree,
as follows.
• We locate the leftmost non-leaf node Im of m and replace I with Im (this

is feasible, since I and Im both correspond to the region of the root of m).
• We merge, one-by-one, the sub-trees that correspond to the siblings of Im,

from left to right, with the xBR+-tree (Phase 4 of [11]). At this stage,
processing of I has been completed.

• Up to the root level of m, we move to the parent of the node for which
processing has been completed and we merge, one-by-one, the sub-trees
that correspond to the siblings of this node with the xBR+-tree (Phase 4
of [11]).

When merging of m with the xBR+-tree has been completed, the procedure
returns to the previous stage of recursion, and if no changes in the structure of
the index of the xBR+-tree have been done, the procedure will be continued
with the next entry E and its corresponding subset BE . Otherwise, the pro-
cedure will be restarted from the root of the xBR+-tree with the unprocessed
data subset.

In Fig. 1, a collection of 48 points in a squared space with origin (0,0) and side
length of 200 is depicted. In the right part of this figure, the xBR+-tree index
for this dataset created by PLBI is depicted. The first 16 points were inserted
in one segment using PBL and the rest 32 points were inserted in two equal
segments (of 16 points each) using PLBI.

Contrary to [11] and adopting improvements of [11] that have been incorpo-
rated in [12]:

– In order to build the m-xBR+-tree m, instead of building top-down a
Quadtree in main memory that is transformed to m, we build m bottom-
up, using an auxiliary tree T . T is a degree up-to-four tree (an incomplete
Quadtree) without leaves, that holds only the information that is necessary
for creating m internal nodes, making better use of the available main memory
and increasing tree creation speed.

– In order to merge sub-trees of m with the xBR+-tree, if the sub-tree of m

under processing and the xBR+-tree have equal heights, instead of creating
a new root pointing to the two existing roots, without making any changes
in the regions covered by these roots, we merge the roots of the two trees in
a possibly overflown node. If this node is overflown, it is subsequently parti-
tioned, in the best way possible, in two, or more nodes that are pointed by
a new root that is created. If the xBR+-tree is higher, we first locate in the
xBR+-tree the direct ancestor of the root of the m sub-tree under process-
ing (that resides at the same level as this root) and then perform a merge
between equal height subtrees. If, however, the sub-tree of m under processing
is higher, we save it in secondary memory, we adjust the region of this tree
to correspond to the whole space and then we apply the previous procedure
of merging the roots of the two trees. Following the merge and re-partition
approach, instead of leaving the regions of the original roots unchanged [11],
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10 G. Roumelis et al.

we achieve better partitioning of space and increased query performance in
the resulting tree.

Note that applying the same procedure for building the m-xBR+-tree and for
merging of trees as in [11] is possible. However, the alternatives [12] followed
here improve performance.

5 Experimental Results

We designed and run a large set of experiments to compare PLBI to the Process
of Loading xBR+-trees by inserting items One-by-One (PLObO). We used real
spatial datasets of North America, representing roads (NArdN with 569082 line-
segments) and rail-roads (NArrN with 191558 line-segments). To create sets of 2d
points, we have transformed the MBRs of line-segments from NArdN and NArrN
into points by taking the center of each MBR (i.e. |NArdN|= 569082 points,
|NArrN|= 191558 points). Moreover, in order to get the double amount of points
from NArdN, we chose the two points with min and max coordinates of the MBR
of each line-segment (i.e. we created a new dataset, |NArdND|= 1138164 points.
The data of these three files were normalized in the range [0, 1]2. We have also
created synthetic clustered datasets of 250000, 500000 and 1000000 points, with
125 clusters in each dataset (uniformly distributed in the range [0, 1]2), where
for a set having N points, N/125 points were gathered around the center of
each cluster, according to Gaussian distribution. We also used three big real
datasets1. They represent water resources of North America (Water) consisting
of 5836360 line-segments and world parks or green areas (Park) consisting of
11503925 polygons and world buildings (Build) consisting of 114736539 polygons.
To create sets of points, we used the centers of the line-segment MBRs from
Water and the centroids of polygons from Park and Build. The experiments
were run on a Linux machine, with Intel core duo 2x2.8 GHz processor and 4 GB
of RAM.

We run experiments for tree building, counting tree characteristics and cre-
ation time. We also run experiments for several single dataset queries, Point
Location Query (PLQ), Window Query (WQ), Distance Range Query (DRQ),
K Nearest Neighbor Query (KNNQ), Constrained K Nearest Neighbor Query
(CKNNQ), and for two dual dataset queries, K Closest Pairs Query (KCPQ)
and Disatance Join Query (DJQ), counting disk read accesses (I/O) and total
execution time.

5.1 Experiments for Tree Building

To study tree building by PLBI, we split the whole (unsorted) dataset to a
sequence of subsets (segments), we use the PBL algorithm [11] to create an
xBR+-tree from scratch by loading the first one of these segments as one block
and, subsequently, we insert each of the rest of these segments using PLBI.

1 Retrieved from http://spatialhadoop.cs.umn.edu/datasets.html.
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Bulk Insertions into xBR+-trees 11

The size of each Segment (S) is a percentage of MemoryLimit (ML), which is
a percentage of the cardinality of the corresponding dataset. For each of the 9
above datasets, we constructed 45 xBR+-trees, using ML equal to 1%, 2% and
4%, S equal to 20%, 40%, 60%, 80% and 100% and node size equal to 1 KB,
4 KB and 8 KB.

In Table 1, for four indicative cases of datasets (two big and one smaller real
datasets and one synthetic dataset) and ML values, we present the effect of
creating an xBR+-tree with node size equal to 4 KB by PLBI algorithm on the
tree characteristics: tree height (H), internal nodes occupancy percentage (Iocc),
leaf nodes occupancy percentage (Locc), size of the tree in disk (Size) and the
total creation time of the tree (Time). For each dataset, we added a line that
presents the same tree characteristics by PLObO.

Table 1. Tree creation characteristics, using PLBI and PLObO .

ML S H Iocc Locc Size Time
(%) (%) (%) (%) (MB) (s)

Dataset : Park

2 20 4 64.93 65.58 685 35.29
2 40 4 66.15 65.58 684 33.50
2 60 4 66.56 65.58 684 33.84
2 80 4 66.89 65.58 684 35.85
2 100 4 67.2 65.58 684 35.03
– – 4 61.93 65.31 688 107.24

Dataset : Build

1 20 5 67.72 65.66 6815 462.4
1 40 5 68.58 65.65 6814 463.2
1 60 5 69.09 65.65 6813 546.7
1 80 5 69.36 65.65 6813 548.6
1 100 5 69.69 65.65 6812 534.6
– – 5 61.9 65.6 6833 1378

ML S H Iocc Locc Size Time
(%) (%) (%) (%) (MB) (s)

Dataset : NArdND

2 20 4 63.1 66.04 67.3 2.38
2 40 4 63.85 66.04 67.3 2.02
2 60 4 64.04 66.04 67.3 1.96
2 80 4 64.43 66.04 67.3 1.94
2 100 4 64.82 66.04 67.3 1.99
– – 4 58.11 64.3 69.2 7.74

Dataset : 1000KCN

4 20 4 66.1 64.43 60.6 3.47
4 40 4 66.1 64.43 60.6 3.36
4 60 4 66.1 64.43 60.6 3.35
4 80 4 66.33 64.43 60.6 3.26
4 100 4 66.1 64.43 60.6 3.29
– – 4 63.44 64.48 60.6 7.33

Regarding the characteristics of the trees created by the two methods, we
observe the following.

– Both trees have the same height.
– Internal nodes occupancy percentage of PLBI trees is, on the average, 5%

higher than the one of PLObO trees.
– Leaf nodes occupancy percentage of PLBI trees is, on the average, 2% higher

than the one of PLObO trees.
– Size in disk of PLBI trees is up to 3% less than the one of PLObO trees

(resulting mainly from the higher leaf nodes occupancy of PLBI trees).

The conclusions are analogous for the rest of the trees built. Regarding the total
creation time of the trees created by the two methods, PLBI is the big winner (on
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the average, PLBI is 50% faster). The speed improvement is maximized for large
datasets. In general, the PLBI speed is slightly increased as the Segment size
increases. In some cases, the opposite trend is observed, since the distribution
of data may cancel the benefit of using a larger Segment size.

5.2 Experiments for Single Dataset Spatial Queries

For all query experiments, we used node size equal to 4K, for trees created by
both algorithms (the PLBI trees were created using ML equal to 2% and S equal
to 60%). For PLQs, we executed two sets of experiments for the 9 datasets. In
the first set, we used as query input the original datasets (existing points). When
searching for existing points the number of disk accesses in xBR+-trees is equal
to their height. This set of experiments is summarized in the 1st data line of
Table 2. In this table, for each query, regarding disk read accesses and execution
time, we present percentages of experimental cases where trees created by the
two processes perform equivalently (Columns 2 and 5, respectively) and where
trees created by PLBI /PLObO have a performance that is more than 5% better
than their rivals (Columns 3 and 6/4 and 7, respectively). It is evident that, for
this set of experiments, both types of trees perform almost equivalently. In the
second set, we used as query input the centroids of the query windows (non-
existing points). While searching for non existing points in the dataset, the disk
accesses may be less than the tree-height of xBR+-trees (due to DBRs). This
set of experiments is summarized in the 2nd data line of Table 2. It is clear that
trees created by PLBI, on the average, perform better in both metrics.

Table 2. Percentages of cases of disk accesses and execution time winners.

Query Number of disk read accesses Execution time

tie diff ≤ 5% PLBI

wins

diff > 5%

PLObO

wins

diff > 5%

tie

diff ≤ 5%

PLBI

wins

diff > 5%

PLObO

wins

diff > 5%

PLQ-existing points 100.0 0.0 0.0 33.3 66.7 0.0

PLQ-non-existing points 77.8 22.2 0.0 0.0 77.8 22.2

WQ 88.9 11.1 0.0 11.1 75.6 13.3

DRQ 86.7 13.3 0.0 13.3 75.6 11.1

KNNQ 72.2 25.0 2.8 13.9 75.0 11.1

CKNNQ 77.8 22.2 0.0 5.6 80.6 13.9

KCPQ 33.3 66.7 0.0 0.0 100.0 0.0

DJQ 50.0 50.0 0.0 6.7 93.3 0.0

For WQs, we executed 54 experiments (9 datasets × 6 query window sizes).
Each experiments was executed for 4096 query windows (having size 1/4096 of
the total space) for each dataset. All experiments are summarized in the 3rd
data line of Table 2. It is clear that the trees created by PLBI, on the average,
perform better in both metrics.
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For DRQs, the depth-first (DF) was used (since this is the best one [11])
in 54 experiments (9 datasets × 6 sets of query circles). All experiments are
summarized in the 4th data line of Table 2. It is clear that the trees created by
PLBI, on the average, perform better in both metrics.

For KNNQs, the HDF algorithm was used (since this is the best one [11]) in
36 experiments (9 datasets × 4 K-values, using 4096 query points, in all cases).
All experiments are summarized in the 5th data line of Table 2. It is clear that
the trees created by PBL, on the average, perform better in both metrics.

Finally, for CKNNQs, the BF algorithm was used (since this is the best one
[11]) 36 experiments (9 datasets × 4 K-values, using 4096 query circles, in all
cases). All experiments are summarized in the 6th data line of Table 2. It is clear
for this query, too, that trees created by PLBI, on the average, perform better
in both metrics.

Overall, trees created by PLBI, perform better regarding both metrics, for all
the single dataset queries, except for the PLQ for existing points, where the two
trees appear almost equivalent. The explanation for the improved performance
of trees created by PBLI is related to the structural difference between the two
trees. The PBLI algorithm can achieve better grouping of subregions, since all
data/entries are known before each node is created and this improved grouping
affects positively the time spent for CPU computations during query processing.

5.3 Experiments for Dual Dataset Spatial Queries

For KCPQs/DJQs, the HDF algorithm was used (since this is the best one
[11]) in 30 experiments (6 combinations of datasets × 5 K-values, in all cases).
All experiments are summarized in the 7th/8th data line of Table 2. It is clear
that trees created by PLBI perform, on the average, significantly better in both
metrics. The explanation for the significantly improved performance of trees
created by PLBI is related to the better grouping of subregions and the fact
that the execution of KCPQs/DJQs corresponds to multiple KNNQs/DRQs,
maximizing the benefits resulting from PLBI.

6 Conclusions and Future Work

In this paper, for the first time in the literature, we present an algorithm for bulk
insertions into xBR+-trees, using a limited amount of RAM. This algorithm was
implemented and extensive experimentation was performed for comparing the
characteristics, the creation time and the query performance of trees loaded by
the new algorithm and trees loaded by the traditional way of inserting items
one-by-one. These experiments show that, trees loaded by bulk insertions have
comparable structural characteristics to traditionally loaded trees, are created
in significantly less time (the bulk insertion method is the big winner of cre-
ation time performance) and perform better/significantly better in processing
single/dual dataset queries.
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Future work plans include:

– The development of a cost model to analytically study the performance of var-
ious operations on xBR+-trees (insertion of items one-by-one, bulk insertion,
bulk loading, processing of different single and dual dataset queries).

– The development of parallel bulk-insertion methods for xBR+-trees, utilizing
multiple CPUs/GPU cores.

– An extension of the experimental study to more real datasets (to strengthen
the validity of the results in real applications) and to data of higher dimen-
sions.

– Embedding of xBR+-trees created by bulk insertion in SpatialHadoop2 and
study their performance in relation of other space partitioning strategies,
already existing in this system.

– Creating variations of bulk-insertion methods for xBR+-trees that will take
advantage of the characteristics of SSD disks.

– Relax the constraint that an overflown node region in an xBR+-tree has
to be split to equal parts (examine splitting to possibly unequal rectangles,
instead of equal subquadrants) and test the performance of bulk insertion,
bulk loading and insertion one-by-one.
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