
Scalable Trajectory Similarity Search Based
on Locations in Spatial Networks

Eleftherios Tiakas and Dimitrios Rafailidis

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
{tiakas,draf}csd.auth.gr

Abstract. In this paper, we propose an efficient query processing algo-
rithm that returns the trajectory results in low search time. We limit the
calculation of pairwise shortest path distances between the set of query
locations and the spatial nodes, by highly reducing the preprocessing
requirements. Also, we introduce a spatiotemporal similarity measure,
based on which the temporal-to-spatial significance of the trajectory re-
sults can be easily modified and the query locations can be spatially
prioritized according to users’ preferences. In our experiments with a
real-world road network, we show that the proposed method has approx-
imately ten times less preprocessing requirements than the competitive
methods and reduces the search time by two orders of magnitude at least.

Keywords: Spatial/Temporal databases, Indexing methods, Spatial Net-
works

1 Introduction

In trajectory similarity search by locations methods [2–6], the query is considered
as a small set of locations with or without an order specified, so as to find the k
best connected trajectories and consequently to connect the designated locations
geographically. In contrast to the conventional trajectory search, the methods
of searching trajectories by locations focus on the connection provided by a
trajectory to the specified query locations. The query is no longer a full trajectory
or any subsequence, as it is considered in conventional trajectory similar search,
but a few locations, making thus the query more flexible. This new query type has
many novel applications, e.g. trip planning which demands to find trajectories
that connect a few selected locations, those that are close to all the locations. For
example, given a set of coordinates of locations, trajectory query by locations can
help travelers in planning a trip to multiple places of interest in an unfamiliar city
by providing similar routes traveled by other people for reference. In addition to
location-based queries, personalized trajectory similarity search methods [3, 4, 6]
have been introduced. Such methods combine the query trajectory with users’
textual attributes [3, 6] or consider a user-defined significance, by weighting each
location in the query [4]. Given user’s textual attributes or predefined weights

2 Eleftherios Tiakas and Dimitrios Rafailidis

for each sample point in the query trajectory, such methods retrieve the most
similar trajectory, by also considering users’ preferences.

Nevertheless, given the spatial network, searching trajectories by locations
and personalized methods face several issues. (I1): The preprocessing cost is high
either by building a complex spatial index [2, 5] or by including a preliminary
step to precompute the all-to-all pairwise node distances in the spatial network
based on the Dijkstra’s algorithm [3, 4]. (I2): The aforementioned methods have
high space requirements for preserving the spatial index or the all-to-all pairwise
node distances over the trajectory similarity search, crucial for large-scale spatial
networks. (I3): They assume that trajectories do not necessarily comply with
the spatial networks constraints, by either ignoring the temporal information [5]
or allowing trajectories to move in free Euclidean spaces [6].

In this paper we propose a scalable query processing algorithm for searching
trajectories by locations in spatial networks. Our contribution is summarized
as follows: (C1): The preprocessing step of our method has linear complexity,
since the computation of all-to-all pairwise shortest path distances is avoided, by
limiting the calculation of pairwise node distances from the small set of query
locations to the nodes of the spatial graph. (C2): Our spatial index, an ex-
tended adjacent list representation, requires linear space, since it establishes
connections directly to the original stored trajectory data on disk. The proposed
extended adjacent list representation connects adjacent nodes with trajectories
clusters, without the requirement of building any complex spatial index. (C3):
Personalized searching trajectories by locations is supported by designing a spa-
tiotemporal similarity measure which can be easily adapted to users’ preferences,
making the query more spatial or temporal-oriented. Additionally, weights can
be set to spatially prioritize the locations.

The rest of the paper is organized as follows. Section 2 presents the fun-
damental concepts in trajectory similarity search in spatial networks. Section 3
details the proposed method. In Section 4 the experimental results are presented.
Finally, in Section 5 the basic conclusions of our study are drawn.

2 Preliminaries

2.1 Spatial Networks & Trajectories

In this Section the fundamental concepts in trajectory similarity search in spatial
networks are presented.

Spatial Networks: The spatial networks are represented as connected graphs.
A spatial network G(V,E) contains a set of vertices V and a set of weighted edges
E. In their graph representation, the vertices and the edges indicate the road in-
tersections and their connections, respectively. An edge (vi, vj) ∈ E represents a
road segment and the weight w(vi, vj) is the travel distance from node vi to node
vj . However, depending on the application, additional factors may be embedded
into the edge weights; for example, travel time, availability, and other possible
restrictions. For each pair of nodes va, vb ∈ V , not necessary neighbors, their

Scalable Trajectory Similarity Search Based on Locations 3

distance is the shortest path (network distance), calculated by the accumulated
edge weight of the shortest path between va and vb.

Trajectories: In a large number of applications the objects are allowed
to move only on predefined paths of a spatial network rather than moving
freely to the Euclidean space (2D or 3D). Therefore, trajectories are constrained
into the paths of the network providing motion restrictions. Let T be the set
of the trajectories. Each trajectory Ti ∈ T is represented as a directed se-
quence/set Ti = {(vi1, tvi1), (vi2, tvi2), ..., (viri , tviri)} of ri time-labeled spatial
points, which are nodes vi1, vi2, ..., viri ∈ V with their corresponding timestamps
tvi1 , tvi2 , ..., tviri

. We assume that the spatial points of the trajectories lay on the
nodes of spatial network G. Otherwise, if the spatial points of the trajectories lie
on the edges, then they can be aligned to the closest nodes using map-matching
methods. Each trajectory Ti may have its own length ri of spatial points, which is
called description length. Therefore, we assume that trajectories are of arbitrary
description lengths in T , which means that for two different trajectories Ti, Tj ,
with i ̸= j, it may hold that ri ̸= rj . Finally, the multiset1 of the spatial points
from all trajectories is denoted as R, and the multiset of all trajectory edges as

RE. Both multisets R,RE represent the trajectory data, where: |R| =
∑|T |

i=1 ri

and |RE| =
∑|T |

i=1(ri − 1) = |R| − |T |.

2.2 Problem Formulation

Let G be a spatial network and T a dataset of trajectories. Let Q be a set of
query locations q1, q2, ..., qm which are the spatial points (nodes of the graph
G), that the resulted trajectories have to pass close. Let qt2, qt3, ..., qtm be the
corresponding inter-arrival times which are m − 1 tolerance time intervals, ac-
ceptable by users for travelling between the query locations, where qti = ∞
denotes the lack of time restriction for location qi. Let w1 . . . wm be the users’
predefined weights, expressing the personal preferences to the m query locations,
where 0 < wj < 1, j = 1, ...,m and

∑m
j=1 wj = 1. Given a similarity function

sim(Q,Ti) between the set Q of query locations and a trajectory Ti ∈ T , the
goal is: to find the k most similar trajectories in T with the highest similarity
score to Q.

3 Proposed Method

3.1 Spatial Index - Preprocessing

In the preprocessing step, the spatial network G(V,E) is stored using an adja-
cency list representation. The main idea is to extend the adjacency list by using
trajectory clusters. Given a node vi and the adjacency list representation of p
adjacent nodes, then for each edge (vi, vj) ∈ E, with j = 1, . . . , p, the respective
cluster Cij is generated. Each cluster Cij consists of the trajectory Id’s of the

1 Multiset is a generalization of the notion of set in which members are allowed to
appear more than once.

4 Eleftherios Tiakas and Dimitrios Rafailidis

respective trajectories Th ∈ T that pass through edge (vi, vj). In case that an
edge (vi, vj) ∈ E is not included in any trajectory of the T set, the respective
cluster Cij remains empty. Each cluster Cij , which is generated by the edge
(vi, vj), is connected with the adjacent node vj of node vi. Figure 1 depicts the
extended adjacency list index of node vi, with p trajectory clusters, connected
with the respective p adjacent nodes. Therefore, given |V | nodes in the G graph
the main index consists of |V | extended adjacent lists with the adjacent nodes
being connected with the respective trajectories clusters.

vi v1 v2 …

IDs of Th ∈∈∈∈ T:

(vi,v1)∈∈∈∈ Th

Ci1

IDs of Th ∈∈∈∈ T:

(vi,v2)∈∈∈∈ Th

Ci2

vp

IDs of Th ∈∈∈∈ T:

(vi,vp)∈∈∈∈ Th

Cip

Fig. 1. The extended adjacency list index of node vi, with p adjacent nodes and the
respective p trajectory clusters.

The set of the |V | extended adjacent lists is generated in the preprocess-
ing step and consists the main index of our method. The implementation has
low complexity, since the set is built during the load of the network and the
trajectory data. Algorithm 1 depicts the preprocessing procedure. Since the tra-
jectory clusters are implemented as dynamic lists, an one-pass linear scan of the
trajectories data is required. During the scan, the trajectory data are retrieved
through a hash function hash(·) which takes as argument the trajectory Id and
returns the address (pointer) of the stored trajectory on disk. Then, each edge
of the trajectories is traversed and the corresponding trajectory Ids that contain
the specific edge are dynamically inserted into the respective cluster Cij of the
index. In our implementation, we used the hash function hash(·) of modulo:
Id mod |T |. Alternatively, many other hash functions could be used, without
affecting the performance of our method.

Algorithm 1: Preprocessing
Input: spatial network G, set of trajectories T , hash function hash(·)
Output: main indexer

01. for each trajectory Ti ∈ T
02. allocate data of Ti through hash(Ti.Id)
03. for each edge (vi, vj) ∈ Ti

04. insert Ti.Id in cluster Cij

05. end-for
06. end-for

Scalable Trajectory Similarity Search Based on Locations 5

The time complexity of the preprocessing algorithm is O(|V |+ |E|+ |RE|),
by performing a linear scan of the trajectory data. The space complexity of the
index is O(|V |+ |E|+ |RE|) for storing both the network data and the trajectory
clusters. The proposed indexing scheme has many advantages. Linear space is
required to store both network data and trajectory Ids. The proposed index-
ing scheme requires linear building time. Additionally, the trajectory clustering
approach generates smaller clusters than the recent work of [4] does. The main
difference is that we propose an edge-based clustering which distributes the tra-
jectories to many small clusters, whereas Shang et al. in [4] propose a node-based
clustering which produces significantly larger clusters. For each trajectory Id a
hashing key can instantly be retrieved, by directly connecting to the trajectory
data which are stored on disk.

3.2 Proposed Similarity/Distance Measures

In this Section, we present the proposed distance functionsDs(·) andDt(·) in the
spatial and temporal domains respectively, along with the final spatiotemporal
similarity measure sim(·). The proposed measures express the similarity between
a trajectory Ti ∈ T and the user-defined query locations in set Q. Therefore, the
proposed measures are functions in the |Q| × |T | space, instead of the |T | × |T |
space, by significantly speeding up computations.

Spatial Distance Function Ds(·) The spatial similarity expresses how close
is a trajectory to the query locations according to the restrictions of the spatial
network. Due to these restrictions we consider the main spatial distance function
d(·) between a trajectory node and a query location, where d(·) is calculated
based on the network/shortest-path distance, with the rest of possible network
restrictions being already embedded into the edge weights of the network.

Given a single query location qj ∈ Q and a trajectory Ti ∈ T which contains
the nodes v1, v2, ..., vr, the spatial distance of the trajectory Ti from a query
location qj is defined as

ds(qj , Ti) = min
h=1,...,r

d(qj , vh) (1)

Therefore, the spatial distance from a query location qj is the minimum spatial
distance from the nodes of the trajectory Ti to the query location. Let vminj

be the corresponding node of the trajectory Ti with the minimum distance from
the query point qj . Then, the spatial proximity between a query location and a
trajectory is equal to ds(qj , Ti) = d(qj , vminj). In trajectory similarity search by
locations, a specific node of the trajectory lies close to a query location. There-
fore, for each query location qj , j = 1, ...,m, the corresponding nodes vminj are
detected independently2.

2 Similar selection strategy of measure ds is followed by [2, 5], however, the measure
is termed as matched pairs based on Euclidean distances, ignoring the spatial con-
straints.

6 Eleftherios Tiakas and Dimitrios Rafailidis

A desired characteristic of the spatial similarity of a trajectory to the query
locations is to have at least j nodes as close to qj as possible (pairwise similari-
ties/distances). In order to consider that, we must aggregate the spatial distances
of the trajectory from each query location qj . Therefore, we define the spatial
distance of the trajectory Ti from the whole query set Q as follows:

Ds(Q,Ti) =
1

m

m∑
j=1

ds(qj , Ti) (2)

The spatial distance of a trajectory Ti to the set Q of query locations is
computed as the average distance function ds(·) from each query location. Ad-
ditionally, in case that a user-specific spatial-priority in the spatial locations qj
must be included, the following weighted average distance is used:

Ds(Q,Ti) = w1 · ds(q1, Ti) + ...+ wm · ds(qm, Ti) (3)

where wj , j = 1, ...,m, are users’ predefined weights, with 0 < wj < 1, j =
1, ...,m and

∑m
j=1 wj = 1. A value of wj close to 1 (or 0) means that the dis-

tance from the query location qj contributes more (or less) to the total distance,
affecting the spatial closeness or farness of qj to Ti.

Temporal Distance Function Dt(·) An important characteristic of our pro-
posed methodology is that the time information of all the resulted k trajectories
are not necessarily required, which means that the time-stamps of all the trajec-
tory nodes are not essential to the calculations of the temporal distance function.
This happens because the corresponding inter-arrival times qt2, qt3, ..., qtm, tol-
erance time intervals, which are acceptable by users for traveling between the
locations, exclusively define the time restrictions in the temporal domain. In this
Section, we present the temporal distance function Dt(Q,Ti) between the set Q
of query locations and a trajectory Ti.

In the calculations of the Ds(·) spatial distance function, the corresponding
nodes vminj , j = 1, ...,m, that express the spatial proximity of Ti from Q are re-
trieved, for each query location qj . Let tvminj , j = 1, ...,m, be the corresponding
times instances of the nodes vminj of the trajectory Ti. We calculate the corre-
sponding inter-arrival times dt2, dt3, ..., dtm between the resulted nodes vminj ,
which can be computed instantly by summing the inter-arrival times of the in-
termediate nodes, through the trajectory path. For each location j ∈ 2, 3, ...,m,
there are the following cases for the inter-arrival times qtj and dtj , Case 1:
(dtj = qtj): The query tolerance time interval qtj is equal to the actual time
interval dtj from the trajectory. Since the time intervals are identical the tem-
poral distance must be zero. Case 2: (dtj > qtj): The query tolerance time
interval qtj is less than the actual time interval dtj from the trajectory. In this
case a temporal distance between the trajectory and the query locations must be
considered, since the trajectory requires more time for the travel. The temporal
distance is: |qtj − dtj |. Case 3: (dtj < qtj): The query tolerance time interval
qtj is greater than the actual time interval dtj from the trajectory. Therefore,

Scalable Trajectory Similarity Search Based on Locations 7

the trajectory requires less time than the query restrictions and we must not
consider any temporal distance between the trajectory and the query locations,
i.e the temporal distance must be zero. In order to have a unified formula we
set dtj = qtj and the temporal distance is preserved zero, as in the case of
(dtj = qtj). Considering the aforementioned three cases, the temporal distance
function Dt(Q,Ti) between the trajectory Ti and the query set Q is calculated
as follows:

Dt(Q,Ti) =
1

m− 1

m∑
j=2

|qtj − dtj |
max{qtj , dtj}

(4)

Spatiotemporal Similarity Measure sim(·) The proposed spatiotemporal
similarity measure sim(·) is a linear weighted aggregation of the spatial Ds(·)
and temporal Dt(·) distance functions,

sim(Q,T) = 1− dist(Q,T)

dist(Q,T) = a ·Ds(Q,T) + (1− a) ·Dt(Q,T) (5)

where a ∈ [0, 1] is a weighting parameter, which expresses the temporal to spatial
preference. Values of a close to 0 and 1 denote user’s preference to temporal and
spatial domains, respectively. The final distance and similarity measures (dist(·)
and sim(·)) are real numbers in the interval [0, 1]. Also, parameter a of Eq. (5)
can be used to define the importance of temporal to spatial similarity. In case
of a = 1 the spatial similarity solely contributes to the final similarity score of
sim(·) or distance of dist(·). On the contrary, in case of a = 0 the temporal
similarity exclusively contributes to the final score. Therefore, a user can select
the desired value of the a parameter, depending on the application.

3.3 Query Processing By Locations

A preliminary step to the query processing algorithm is required, where the
computation of the pairwise shortest path distances between the query loca-
tions and the nodes of the graph is performed. In the preliminary step, the
calculations of the shortest-path distances are limited to the m × |V | pairwise
distances between the user-selected query locations q1, q2, ..., qm and the nodes of
the spatial network G. This comes in contrast to previous works [3, 4] where the
computation of all-to-all pairwise node distances (|V | × |V |) is performed. The
distances are calculated based on the Dijkstra algorithm in O(m∗(log |V |+ |E|))
time, equipped with a Fibonacci Heap structure. The shortest-path distances are
stored in memory, requiring O(m ∗ |V |) space.

The main strategy of the proposed algorithm consists of the following steps:
(a) from each query location, perform a Dijkstra expansion step incrementally,
following a round-robin strategy; (b) collect the trajectory Ids that are included
in the trajectory clusters of the visited edges; (c) compute the spatiotemporal
similarities based on Eq. (5) and generate the top-k results. The algorithm of
the query processing by locations is presented in Algorithm 2.

8 Eleftherios Tiakas and Dimitrios Rafailidis

The five main steps of the proposed algorithm are the following, (S1): From
each query location, in a round-robin fashion (initially vj = qj), each neighbor
node vi of vj is retrieved in the Dijkstra expansion step (lines 5-16). Then, the
candidate trajectories Th are collected from the corresponding edge cluster Cij of
the extended adjacency list index (line 17). (S2): The spatiotemporal distances
dist between the collected candidate trajectories Th and the query location set
Q are calculated (Eq.(5)). In order to avoid recalculations in any step of the
algorithm, a bit-set B with |T | bits in memory is used where the corresponding
bit of each calculated trajectory distance is enabled on-the-fly (lines 18-23).
Therefore, during the query processing, the distances are calculated only once
for each trajectory. The currently top-k calculated trajectory distances and their
corresponding trajectory Ids are preserved and updated in a priority heap H
(ordered by dist) on-the-fly (line 22). Heap H has a limited size of k items, since
only the most similar k results are required. (S3): Then, a threshold L is updated
(initially set to 0), according to the average sum of the network distances between
the query locations and the set of vminj nodes: L = a

m

∑m
j=1 d(qj , vminj), where

vminj is the closest node to query location qj in the current Dijkstra expansion
level, i.e. vminj has the shortest path distance to qj among all the detected
nodes in the current round from qj . The threshold L is a lower bound of the final
distance function dist, and it is used for generating the results. In each round,
L is increased, (when the expansion level is changed), by comparing the current
Lcurr value with the previously calculated one. In particular, if the currently
computed Lcurr value is greater than the previous L value of the last round,
then the Lcurr value of the current round is updated accordingly (lines 27, 28).
Since the temporal distances Dt are aggregated with the spatial distances Ds
in the final distance function dist(·), L is a lower bound for both spatial and
spatiotemporal distances. Moreover, in case that wj weights are used (Eq. (3)),
then threshold L is calculated as: L = a ·

∑m
j=1 wj · d(qj , vminj). (S4): After

the end of each round, the trajectories in the current top-k list in heap H are
examined based on condition that they have a distance dist lower than L. If the
condition is satisfied for a subset of trajectories in H, then these trajectories
are instantly added to the top results list (lines 29-31). The trajectory insertion
proceeds progressively until L reaches a value greater than the distance of the
k-th element in H or in the extreme case that the spatiotemporal distances of
all trajectories in T have been calculated (stopping condition, line 32). (S5): In
case that not all top-k results have been retrieved, the algorithm proceeds to the
next expansion round, where the algorithm repeats the loop in lines 5-33.

The total time complexity of the proposed query processing algorithm is
O(m ∗ (|V | log |V |+ |E|) + |RE|). An m ∗ (|V | log |V |+ |E|) cost is required for
the Dijkstra expansion from the m query locations. The candidate trajectories
are collected from the clusters Cij of the extended adjacency list index; never-
theless, the total amount of trajectory Ids that exist into the clusters is |RE|,
since RE contains all the trajectory edges of the dataset, i.e.

∑
i,j |Cij | = |RE|.

The existence of the bit-set B avoids recalculations when trajectories are dis-

Scalable Trajectory Similarity Search Based on Locations 9

Algorithm 2: Progressive Query Processing Algorithm
Input: the spatial network G,
the set of trajectories T ,
the set of the query locations Q, the number of results k
Output: top-k trajectories (progressively)

01. L = 0, Lcurr = 0, top = 1
02. initialize vQj = qj , ∀j = 1, ...,m
03. initialize distQj [vQj] = 0, ∀j = 1, ...,m
04. HQj .insert(vQj , 0), ∀j = 1, ...,m
05. while HQj .size > 0, ∀j = 1, ...,m
06. for j = 1 to m
07. vQj = HQj .extractMin(), vminj = vQj

08. for each neighbor uQj of vQj in the adjacency list
09. if distQj [uQj] > distQj [vQj] + w(vQj , uQj) then
10. distQj [uQj] = distQj [vQj] + w(vQj , uQj)
11a. if (inqueQj [uQj] <> 0) then
11b. HQj .decreaseKey(uQj , distQj [uQj]
12. end-if
13. if (inqueQj [uQj] = 0) then
14. HQj .insert(uQj , distQj [uQj])
15. inqueQj [uQj] = 1
16. end-if
17a. for each Traj.-Id h (trajectory Th) in cluster
17b. C(vQj,uQj)

from edge (vQj , uQj)

18. if B[h] = false then
19. retrieve data of trajectory Th through hash(Th.Id)
20. compute dst = dist(Q, Th)
21. B[h] = true
22. H.insert(Th.ID, dst)
23. end-if
24. end-for
25. end-for
26. end-for
27. Lcurr = a

m

∑m
j=1 d(qj , vminj)

28. if Lcurr > L then L = Lcurr
29. for i = top to k
30. if H[i].dst < L then top++, return trajectory H[i].ID
31. end-for
32. if L > H[k].dst or B.count = |T |then stop
33. end-while

covered from different locations explaining the additional |RE| cost in the total
complexity.

4 Experimental Evaluation

4.1 Settings

In our experiments we used the North America Road Network3 (NA), which
contains 175,813 nodes and 179,179 edges. We compared the proposed method
against the following personalized methods for searching trajectories by loca-
tions: (a) “Two-phase PTM”, (b) “PTM without heuristic” and (c) “Balanced”,
on the common evaluation data set of the North America Road Network, re-
cently presented in [4]. “Two-phase PTM” is the personalized matching method

3 The Digital Chart of the World Server at http://www.maproom.psu.edu/dcw/

10 Eleftherios Tiakas and Dimitrios Rafailidis

of Shang et al. [4]. “PTM without heuristic” and “Balanced” methods are two
naive approaches, also used in [4] for comparison. The following evaluation met-
rics were used: (a) the required CPU-time for the main query processing algo-
rithm and (b) the number of visited trajectories during the trajectory similarity
search. Following the evaluation protocol of [4], the number of visited trajecto-
ries represents the required accesses to trajectory data that are stored on disk.
The number of visited trajectories reflects to the real disk I/O cost at a certain
degree, since the systems may have hidden buffers and cash-memories, making
thus difficult to measure the real I/O cost more accurately.

To generate the trajectories in the North America Road Network we used
the Brinkhoff’s generator [1], which defines the velocity in the trajectory parts
of each moving object/vehicle and categorizes the vehicles in classes according to
these velocities. For each generated trajectory data set, the average vehicle veloc-
ity is computed and then, for each query the tolerance time intervals qti are set
equal to the fraction of the network distances between the query locations qi and
the average velocity. Moreover, since the query locations are randomly selected,
we set equal wi weights to 1/m. Following the personalized trajectory matching
method of “Two-Phase PTM”, the weight w of each sample point in a query tra-
jectory was randomly generated (integers in [1, 5]), to evaluate the performance
of the proposed method. Nevertheless, in our experiments we observed that the
performance of the proposed method is preserved either considering equal or
randomly generated and different weights in the query locations. Therefore, in
the experimental results equal weights are considered.

In order to perform fair comparison against the personalized trajectory match-
ing methods of [4], ‘Two-phase PTM”, “PTM without heuristic” and “Bal-
anced”, on the common evaluation data set of North America Road Network, we
regenerated the trajectories in the data set by setting the same parameters to
the Brinkhoff’s generator with the work of [4]. We varied the description lengths
r between 20-100 spatial points, which were mapped to the nodes of the spa-
tial graph. For the number of selected trajectories |T | we performed the same
variation of: 10K, 15K, 20K, 25K, 30K. We set k = 1, similar to the examined
algorithms in [4], where the case of the most similar trajectory (top-1) is con-
sidered. Additionally, we set the default value of m = 60. Finally we set a = 0.5,
equal to the default λ value for the spatiotemporal similarity measure of [4],
which also expresses the temporal-to-spatial significance. The resulted values of
the common evaluation metrics of CPU-Time and number of visited trajectories,
are averaged by 50 queries with random selected query locations.

All experiments have been conducted on a machine with Quad Core 3GHz
CPU, 2TB SATA3 Hard Disk, running Windows 7 64bit.

4.2 Results

In Table 1, the preprocessing requirements of the examined methods are de-
picted. The proposed method has lower preprocessing requirements than the
competitive methods. This happens because the preprocessing time of the pro-
posed method is to build the spatial index (18.687 sec) and to compute the

Scalable Trajectory Similarity Search Based on Locations 11

m × |V | shortest path distances from the m =60 query locations (5.327 sec),
whereas the competitive methods require to compute the |V | × |V | all-to-all
shortest path distances (380.8 sec), also mentioned in [4]. Additionally, the pro-
posed method requires 80.5 MB to preserve the precalculated distances in the
memory, added by 20.3 MB for the spatial index space. The competitive meth-
ods require a memory space of 630.6 MB to maintain the all-to-all pairwise
distances, added by the required space during the query processing for (a) pre-
serving the extra labels in the trajectories to determine if they are touched in the
spatial or the temporal domain (partial or full match) from each query location;
and (b) using the priorities to select the candidates and perform the appropri-
ate scheduling, resulting in an additional space of 886.3, 365.7 and 365.7 MB
for the “Balanced”, “PTM without heuristic” and ‘Two-phase PTM” methods,
respectively. Therefore, the proposed method has approximately 10 times less
preprocessing requirements than the competitive methods.

Table 1. Preprocessing cost.

Preproc. Time (sec) Mem. Space (MB)

Proposed method 24.014 100.8

Balanced 380.8 1516.9

PTM without heuristic 380.8 996.3

Two-phase PTM 380.8 996.3

In the experimental results of Figure 2, the proposed method outperforms
all the competitive methods in terms of CPU-Time and number of visiting tra-
jectories. In the query processing algorithm of the most competitive method
of “Two-phase PTM”, for each query location the respective most similar tra-
jectory is visited by searching in the spatial and temporal domains separately.
Therefore, by incrementally retrieving the candidate most similar trajectories for
all query locations the algorithm terminates when the Lower Bound (LB) ex-
ceeds the Upper Bound (UB) [4]. In doing so, “Two-phase PTM” may perform
multiple visits for the same trajectories, by significantly increasing the CPU-time
and the number of accesses to the trajectories. Moreover, our proposed method
performs an edge-based clustering which distributes the trajectories to many
small clusters, whereas the “Two-phase PTM” method performs a node-based
clustering which produces larger clusters. The different searching strategies can
explain the high performance of the proposed method, which achieves a speed
up factor of 100 against the most completive method of “Two-phase PTM”.

5 Conclusions

In this paper, we presented a scalable query processing by locations algorithm, by
also taking into account the spatial importance of the query locations based on
the users’ preferences. In our experiments, we showed that the proposed method

12 Eleftherios Tiakas and Dimitrios Rafailidis

10000 15000 20000 25000 30000
10

−2

10
−1

10
0

10
1

10
2

NORTH AMERICA

Trajectory Number (|T|)

C
P
U
−
ti
m
e
 (
s
e
c
)

Proposed Method

Balanced

PTM without heuristic

Two−phase PTM

10000 15000 20000 25000 30000
10

3

10
4

10
5

10
6

10
7

NORTH AMERICA

V
is

it
in

g
 T

ra
je

c
to

ri
e

s

Trajectory Number (|T|)

Proposed Method

Balanced

PTM without heuristic

Two−phase PTM

Fig. 2. Methods comparison in terms of CPU-time (sec) and number of visiting tra-
jectories.

significantly outperformed competitive personalized trajectory similarity search
methods, where the proposed method has approximately ten times less prepro-
cessing requirements and reduces the query runtime by two orders of magnitude
at least. An interesting research direction is to extend the proposed method to
an approximate algorithm based on probabilistic bounds, in order to perform
similarity search in spatial networks for uncertain trajectories [7].

References

1. T. Brinkhoff, “A framework for generating network-based moving objects.”, Geoin-
formatica, Vol.6, No.2, pp.153-180, 2002.

2. Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching Trajectories by
Locations: An Efficiency Study.”, In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp.255-266, 2010.

3. S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis, “User Oriented
Trajectory Search for Trip Recommendation”, In Proc. of the 15th Int. Conf. on
Extending Database Technology, pp.156-167, 2012.

4. S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou, “Personal-
ized Trajectory Matching in Spatial Networks”, The VLDB Journal, Vol.23, No.3,
pp.449-468, 2014.

5. L. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han, “Retrieving k-Nearest
Neighboring Trajectories by a Set of Point Locations”, In Proc. of the 12th Int.
Conf. on Advances in Spatial and Temporal Databases, pp.223-241, 2011.

6. H. Wang, and K. Liu, “User Oriented Trajectory Similarity Search”, In Proc. of the
ACM SIGKDD Int. Workshop on Urban Computing, pp.103-110, 2012.

7. K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann, “Probabilistic range queries
for uncertain trajectories on road networks”. In Proc. of the 14th Int. Conf. on
Extending Database Technology,, pp. 283-294, 2011.

