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Abstract. We focus on horizontally scaling NoSQL databases in a cloud envi-
ronment, in order to meet performance requirements while respecting security
constraints. The performance requirements refer to strict latency limits on the
query response time. The security requirements are derived from the need to
address two specific kinds of threats that exist in cloud databases, namely data
leakage, mainly due to malicious activities of actors hosted on the same physical
machine, and data loss after one or more node failures. We explain that usually
there is a trade-off between performance and security requirements and we derive
a model checking approach to drive runtime decisions that strike a user-defined
balance between them. We evaluate our proposal using real traces to prove the
effectiveness in configuring the trade-offs.

1 Introduction

Cloud computing is an evolving paradigm that has transformed the way organisations
and individuals store, share and access their information. It introduces a number of ad-
vantages and benefits by supporting a computational infrastructure where availability
of resources is dynamic, meaning that hardware and software are provided on demand
when users need them at a reasonable monetary cost. On the other hand, the paradigm
also creates challenges and introduces concerns related to security. In fact, many or-
ganisations and individuals are still avoiding cloud services mostly because they are
not sure if the services provided, typically by different providers, are suitable for their
security requirements.

Security concerns related to data leakage and data loss are of particular importance.
Simply speaking, data leakage is the unauthorised transfer of data from one user to
another. Each user should have access to their own data and not be able to access the data
of others unless are authorised to do so. In the cloud, the risk of data leakage is increased
due to the storage of data in a multi-tenant environment. A recent study [6] has shown
that the risk of data leakage is increased for a company when employees use cloud-
based services. On the other hand, data loss refers to a condition where data is destroyed
and becomes unavailable. This could be the result of a malicious act (e.g. an attack to an
organisation’s data), due to human error or due to hardware/software/network failures.
In a cloud environment - and in particular in a multi-tenant environment - the risk of
data loss can be increased due to the multi-tenancy situation.



We deal with a particular feature of cloud databases, namely elasticity, in light of
security concerns. Elasticity allows cloud users to modify the amount of resources used
on-the-fly, so that they can always handle the external request load, even when load
changes are unanticipated. It is manifested in three main forms, horizontal scaling,
where virtual machines (VMs) are added or removed, vertical scaling, where the hard-
ware configuration of the existing VMs is modified, and migration, where existing VMs
are moved between physical hosting machines. More specifically, in this work, we ex-
tend our previous work on performance-oriented horizontal scaling so that we can reach
elasticity decisions that take into account both performance and security requirements.
Performance requirements are expressed as a threshold regarding the maximum allowed
response time to user requests, while security requirements are expressed through the
probability of data leakage due to multi- tenancy and of data loss through hardware
failure and/or due to multi-tenancy. Ideally, one would aim to attain zero violations of
the performance threshold, no security incidents, while minimizing the monetary cost
associated with the provision of cloud VMs.

Problem Challenges. The main challenge in the setting described above stems from
the fact that the three requirements, that is bounded response times, minimal mone-
tary cost and protection from failures and data leakage, are essentially intertwined and
contradicting to a large extent, as explained below:

— NoSQL databases partition the data across several nodes and can benefit from
the inherent feature of cloud infrastructures to dynamically provision resources.
The combination of these two characteristics allow cloud databases to horizontally
scale when the external load increases, so that more servers become available to
respond to user requests. If horizontal scaling is performed carefully, for exam-
ple, in a load balancing way that avoids over-reacting, the average response time
can be maintained to a certain desired level regardless of any changes in the ex-
ternal load. More specifically, more VMs can be added (scale-out) when the load
increases, but this comes at an increased monetary cost. Analogously, when the
external load decreases, some servers can be released by the user on the grounds
that over-provisioned servers incur unnecessary monetary cost. In private clouds,
monetary costs are implicit (e.g., through increased energy consumption), whereas,
in public clouds, a fee is actually paid.

— Online services may become unavailable due to failures of both the physical ma-
chines and the network, which can lead to data loss. The main mechanism to ad-
dress this type of threat is through replication (or mirroring) that allows for data
to be copied to several servers. The more the copies, the more resistant to failures
the system becomes. However, this comes at the expense of higher response times
when updating data, since eventually changes need to be propagated to all copies.
Moreover, the more VMs are employed, e.g., for performance reasons, the higher
the probability a number of VMs equal to or greater than the replication factor to
fail thus leading to data loss[]

— Despite any efforts from cloud providers, there is always the danger that malicious
cloud users hosted on the same physical machines as the databases get unautho-

3 The volume of lost data decreases with the number of VMs for the same replication factor.



rized access to data. Intuitively the more physical machines are used to host the
database, the higher the danger, whereas, at the same time, public machines are
more vulnerable.

To summarize, scaling out a database may improve the performance, but this may
incur unnecessary monetary costs due to over-provisioning. Mirroring can be combined
with scaling out and may cause performance problems but increases the robustness to
failures. Scaling out may also exacerbate the data leakage and data loss threats. As such,
keeping latency low through scaling-out is in contrast to monetary cost and avoiding the
threat of data leakage and data loss.

Real-world Motivating Example. We take motivation for our work from a real-case
scenario, the Greek National Gazette Infrastructure, involving the sharing and storage of
large number of documents. The Greek National Gazette is responsible for publishing
laws and legal decisions on the Government’s newspaper in order for these laws and
decisions to be active and applicable. Besides legal decisions there are also a number
of decision categories originated from the private and public sector that by law must be
send for publications to the Governments’s newspaper. In such scenario, the dynamic
provision of services with acceptable performance is very important as is the need to
make sure that documents are not leaked before the official publication, and they are
not lost after they are published.

Contributions and Structure. The contributions of this work are twofold. First, we
present a Markov Decision Process (MDP) modeling approach to cloud elasticity, cou-
pled with probabilistic model checking and accompanied by a security threat-aware
decision mechanism; to this end, we build upon our performance-oriented proposal in
[[14]. The elasticity decision mechanism can account for user-defined trade-offs between
performance and security requirements, while aiming to avoid over-provisioning in any
case. Second, we present an evaluation that sheds light upon the impact of security
requirements on the elasticity behavior. Our results show that our decision making pro-
posal can effectively strike a configurable balance between the conflicting requirements
mentioned above. The remainder of this paper is structured as follows. In Sec. [2] we
present the MDP models and the decision mechanisms developed. In Sec.[3] we evalu-
ate our proposal for a wide range of security attack and failure probabilities using real
cloud database traces. We discuss the related work in Sec. 4] and conclude in Sec.

2 Model-based security-aware elasticity

This section presents the probabilistic Markov Decision Process (MDP) model, which
serves as the basis of our proposed security-aware elasticity decision making mecha-
nism. We first introduce the basic modeling representation at a conceptual level and
how it is used to drive performance-oriented elasticity (initially proposed in [[14]]); this
approach is then extended and refined to cover both performance and security issues.
MDPs are specified by their states, actions, transition probabilities and rewards [[16].
In our model, each state corresponds to a different cluster size, where the size equals
to the number of active cloud virtual machines (VMs), vms_num, running a NoSQL



database, such as HBase and Cassandra. The NoSQL database is typically both sharded
and replicated; i.e., its tables are horizontally fragmented and each fragment is allo-
cated to multiple VMs. For readability reasons, we denote a state as S[ys_num]- There
are three types of possible actions on every state: 1) add for VM additions, 2) rem
for removals, and 3) no_op for no operation. For every distinct number of VM addi-
tions or removals (ex. add;, rems) there is a separate action, and the corresponding
transitions between two states through the same action have aggregate probability 1.

Fig. [1] illustrates a simpli-
fied instance of the MDP model, n0_0p
where the states represent the
number of active VMs. The —  add
edges represent the possible ac- remove
tions: 1) add, (blue arrow), 2)
rem, (red arrow), and 3) no_op
(black arrow); x is the number

hQ/‘ v C
of new or removed VMs. In this
example, the maximum number curlrentH
of VMs allowed to be added

or removed in every step is 2,
while the current number of ac-
tive VMs is 3 (s3 state). The ac-
tion type is labelled on top of ev-
ery transition ([add, /rem,/no_op]). The MDP associates a reward value to each state
and action taking into account the current external conditions. State and action rewards
are calculated based on user-specified utility functions, as discussed later. The external
conditions considered in this work are captured by the user external load A, which is
measured as the amount of submitted queries per time unit. When the model is verified
at runtime, the reward at state (5 num) €ssentially reflects the expected utility of the
system when there are vms_num active VMs for the current value of external load.
The probabilistic nature of our model can easily capture the uncertainty of the en-
vironment that follows every elasticity decision; for example, for the same cluster size
and external load, p% times in the past where no performance violations and (1-p)%
there were ones. To mitigate uncertainty, Fig. [2|illustrates an extension to the states of
the model of Fig.|l| Each model state for a specific cluster size is extended to n states, to

no.op

Fig. 1: Initial MDP model overview.
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Fig. 2: Extending every state (left) to more than one states (right).



better map the behavior of interest (i.e. performance, security). Each new smaller state
corresponds to a different expected system behavior and is derived through clustering
the log entries for the same external load and cluster size, resulting in deviations from
expected behavior. The probability of transition to each possible state is commensurate
to the probability of occurrence of the corresponding’s state behavior.

2.1 Model-based elasticity for performance

A common performance requirement is the latency lat of processing user requests, i.e.
the time elapsed from query submission to answer, not to exceed a certain threshold z,
regardless of the number of concurrent users. However, for the same number of VMs
and the same amount of incoming load A, the latency may vary significantly, due to
factors that are both external to our model and hard to model; e.g., a time-consuming
operating system process is initialized. To ameliorate this, as presented in Fig. 2| there
are more than one model states (s, , Sy, S5, ) for a single size x.

In [14], several elasticity policies are examined, and the most effective one was
termed as ADV+VC+PRE, standing for advanced+violation-cluster+prediction. This
policy computes the cumulative reward after a pre-specified number of transitions in
the model, called steps; this configurable parameter is set to 3. Rewards are associ-
ated only to model states and are derived according to the following utility function:
u(vms) = 0, if tat > z, where vms is the current number of VMs.

1+ (1/vms), iflat <z

As such, this utility function includes a user-specified constraint and manages to take
into account both performance issues (through the /at threshold) and the monetary costs.
The latter are implicitly considered by decreasing the utility in a way inversely propor-
tional to the number of machines when there is no performance violation. Overall, this
utility function penalizes both under-provisioning and over-provisioning. In this policy,
one initial state in Fig.[2{left) is mapped to two states to cover (i) the occasion of latency
threshold violations and (ii) normal execution. The transition probability for each state
is estimated according to log measurements of similar past conditions; the similarity is
defined in terms of the external load. Finally, the model is equipped with a prediction
module, which allows for predicting the evolution of the external load and thus com-
puting the expected reward of each model state at each time step in the future more
accurately. The probabilities and state rewards are instantiated every time elasticity ac-
tions are considered based on the current external load.

Then, a two-phase model verification procedure takes place to decide the optimal
path considering the performance. To this end, the PRISM tool is used [10]. PRISM
property specification language is PCTL probabilistic temporal logics. In the first phase,
we ask for the maximum cumulative reward of the model, generating multiple optimal
paths (sequences of states) that lead to the same optimal reward. Secondly, every first
action of every optimal path is checked with another PCTL property to define its max-
imum probability of performance specific Service-Level Agreement (SLA) violation.
The first action with the minimum maximum performance violation probability is the



one selected from our decision mechanism:
Pmax =?[F(stop)&(lat > x)&(first_action = [action]),

where [action] is every first action of every possible path which leads to the optimal
cumulative reward and stop is a flag that indicates that the verification of a path should
stop if the maximum number of steps is reached.

2.2 Model-based elasticity for data leakage

The performance-oriented model aims to avoid performance violations, while avoid-
ing costly over-provisioning. In this section, we describe how our model is enhanced
with capabilities to capture data leakages and consider them during elasticity decision
making. The modifications refer to both the main model and the decision policy.

More specifically, we further extend the state transformation presented in Fig. [2right)
introducing two-layer extensions. Hence, every s, state is further transformed to s,
and s, ~states, where i € [1,n], a stands for artack and na stands for no attack. The
probability of these two new states is computed through the multiplication of the prob;
probability and the probability of attack prob;, or no attack prob;__, respectively, i.e.,
prob; = (prob; - prob;,) + (prob; - prob; ), since the data leakage attacks and latency
violations are considered to be independent events. We consider that there is an explicit
mechanism to count and report the number of attacks leading to data leakages in a peri-
odic manner, e.g., through log entries. The data leakage probability information is used
in our models to initialize the transition probabilities to states that represent safe or
not safe states. A reasonable assumption is that the probability of attacks per VM is the
same and equal to prob,, and the attacks on different VMs are statistically independent;
in that case, prob;, becomes equal to ¢ - prob,

In addition, we apply modifications to the above model verification procedure:

1. The utility function is extended to account for data leakages and performance trade-
offs through a 3-parameter function. The exact formula employed is as follows:

0, if attack = true
u(vms) =< g, if lat >
b+ (c/vms), iflat <z A attack = false.

where a, b and c are user defined values and attack is a flag that indicates a data
leakage. In Sec. [3] we show how setting the 3 parameters, can yield configurable
trade-offs between the different objectives.

2. The second PCTL property (Sec. [2.I)) is transformed to seek the first action with
the minimum maximum probability of both performance specific SLA violation
and data leakage:

Pmax =?[F(stop)&(lat > x || attack)&( first_action = [action])



2.3 Model-based elasticity for data loss

As discussed in the introduction, data loss can be caused by malicious co-tenants and
system failures. The attacks due to insecure multi-tenancy can be handled in exactly the
same way as those leading to data leakage. For the data loss threat, the same 3-parameter
utility function can be employed as well. However, the model transition probabilities to
states corresponding to failures require a bit more attention and need to be aware of the
degree of replication r. To suffer from data loss, at least » machines need to become
unavailable at the same time. If the probability of failure of one machine is p, then the
probability of » machines failing simultaneously is (?) P

3 Evaluation

Experimental Setup We have used logs from a real Cassandra infrastructure to con-
duct systematic experiments. The collected measurements are used firstly, to populate
the initial logs, and secondly, to emulate a real situation. Through emulation, we have
managed to fairly test each policy or configuration on an equal basis. The workload
consists of asynchronous read requests (req), the volume of which evolves in a sinu-
soidal manner varying from 4000 to 16000 req/sec coupled with with 2 plateau periods
at 13000 req/sec for 1000 time units each. We collected measurements every 30 secs
and, in our emulation, a time unit is equal to this measurement collection period. In each
sine period, there are 360 measurements. We allow an elasticity action to take place ev-
ery 10 time units, to emulate a system that may modify the VMs every 5 mins (or 10
mins is cases of add action, to allow the system to stabilize). As the emulated load is
generated based on the logs, which also act as training set, we consider that the system
is well trained, and as such, the MDP models are instantiated in an accurate manner. In
every up-scale action, up to 3 VMs can be added, while during down-scaling, up to 2
VMs are allowed to be removed in a single step. The cluster sizes varies from 8 up to
18 VMs. Every experiment runs for 5 iterations. Further details are provided in [14].

Dataset Latency Distribution (8 VMs) Dataset Latency Distribution (18 VMs)
— 50ms — 50ms
== 45ms == 45ms

Latency

.
4000 6000 8000 10000 12000 14000 16000 4000 6000 8000 10000 12000 14000
Load Load

Fig. 3: Latencies for 8 (left) and 18 (right) VMs

Fig. 3] presents the latency distribution in two characteristic states of the collected
dataset, where the dotted line shows the latency threshold of 45 msecs and the solid



’ ‘ ‘ADV+ VC+PRE ‘DLeak-O‘DLeak-I ‘DLeak-Z ‘DLeak-j"

45 msecs 12.5 8 12.3 11.7 12.4

50 msecs 12 8 11.8 11 11.9
Table 1: Average number of active VMs (0.1% attack probability)

line of 50 msecs in both figures. For the minimum cluster size and lowest amounts of
load, there are few latency values that violate the thresholds (mostly caused by the cold
cache of the system at the beginning of the measurement collection) and the system can
handle load up to about 8000 req/sec. However, additional machines need to be added if
the load further increases to avoid performance threshold violations. For the maximum
number of active VMs (18), except from a few outlier measurements, the system can
handle the full amount of the incoming load.

3.1 Experimental Results

Our experiments show the trade-offs between security attacks and latency violations for
a series of utility function configurations and probabilities of attack incidents.

Data Leakage Results The utility function presented in Sec. tries to maintain
the lowest number of active VMs, when there is no latency violation applies. In these
cases, as the number of active VMs is placed in the denominator (1 + (1/vms)), over-
provisioning is avoided, which additionally, alleviates the data leakage threat. The util-
ity function presented in Sec.[2.2] aims to control the data leakage probability both more
directly and in cases, where the performance threshold is exceeded, through deriving an
acceptable tradeoff between the increase in the number of latency violations and the
decrease in the number of data leakage attacks.

In the first set of experiments, the latency threshold in the utility function is set to
either 45 msecs or 50 msecs. Initially, we set the probability of data leakage attack per
VM per step to 0.1%; later, we examine data leakage probabilities that differ by an
order of magnitude. We examine four different parameter setups for the utility function
presented in Section [2.2}

— DLeak-0: a = 100, b =100,c =1

— DLeak-1:a=05,b=1,c=1
DLeak-2: a = 100, b = 100, ¢ = 160

— DLeak-3: a = 100, b = 1000, ¢ = 1600

Intuitively, DLeak-0 tries to avoid attacks at any performance cost. The other 3 policies
place more importance on latency violations than DLeak-0. In Fig. |4} we present the
adaptation of the number of VMs to the incoming load for each policy. The red dotted
line represents the incoming load while the solid blue line represents the number of
active VMs. Except few instabilities, due to imminent environment uncertainty infused
in our emulations, all the policies/configurations can broadly follow the load variation.

Fig. B[left) on the left presents the percentage of time steps where latency viola-
tions (left blue bar) and data leakages (right green bar) occur for the ADV+VC+PRE



ADV+VC+PRE DLeak-1
&

14000

12000)

o
€ 8 10000

4000
2000 4000 6000 8000 10000 12000 14 %O 2000 4000 6000 8000 10000 12000 14000 150%0
steps steps
change state actions (%): 16.64 change state actions (%): 13.73
violations (%): 0.52 violations (%): 0.90
1600 DLeak-2 18 16000, DLeak-3 18

14000
12000
© ©
8 10000 E 8 10000)
8000]

6000}

b
v
'
.
I
'
'
' 8000
.
v
'
' 6000
'
.
[y

8
10000 12000 14000

== load — vms

change state actions (%): 16.24 change state actions (%): 14.98
violations (%): 4.48 violations (%): 0.72

Fig. 4: Variation of the external load and the number of active VMs
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Fig.5: Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds and 0.1% data leakage probability per VM.

policy. In this experiment, the latency threshold is 45 msecs, and, for cluster size from
8 to 18 VMs, the attack probability ranges from 0.8% (lower bound) to 1.8% (upper
boundﬂ ADV+VC+PRE manages to yield a very low number of performance viola-
tions, at the expense of non-negligible secutiry attacks. The second pair of columns in

* This implies that the database owner fully accepts the 0.8% probability of attacks. However,
all the numbers can be transferred to a setting, where the cloud is hybrid with 8 private VMs
and up to 10 public VMs. If the attack probability is 0% for the private ones, then all attack
percentages become 0.8% less.
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Fig. 6: Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds and 1% data leakage probability per VM

ADV+VC+PRE|DLeak-0|DLeak-1|DLeak-2|DLeak-3
45 msecs 12.4 8 12.2 10.9 12.2

50 msecs 12 8 114 10.8 11.6
Table 2: Average number of active VMs (1%)

the same figure presents the results for DLeak-0, where the system is actually penal-
ized (zero reward) only for the attack situations, as the latency violation reward is very
close to the no-attack no-violation case. As expected, the number of VMs is kept at the
minimum possible number, i.e. § VMs; see Table |Il Overall, the attacks are reduced
to their minimum, however the latency violations are reaching their highest percentage
(65.63%).

As we also observe in Fig.[5] the DLeak-2 parameterisation achieves a reduction in
the deviation from the lower bound of probability attacks of 20% (from 0.4% to 0.32%)
compared to the ADV+VC+PRE policy, at the expense of an increase in the latency
violations, since the system is prohibited to scale in several cases to avoid data leakage
attacks. DLeak-1,DLeak-3 parameter setups increase the number of violations without
being able to decrease the number of data leakages. As we observe in Table [T} DLeak-2
keeps the number of active VMs lower than the DLeak-1 and DLeak-3 i.e. 11.7, which
explains the decrease in the number of data leakages. This also is an indication that
different parameter configurations can achieve different trade-offs but this needs to be
performed carefully.

Fig. [3] (right) presents an experiment where latency violation threshold becomes
50 msecs. The data leakages percentage is decreased in all the security enhanced poli-
cies, with DLeak-3 achieving the optimal tradeoff. In DLeak-3, the deviation of data
leakages from their lower bound is reduced by 21% while the latency violations are
slightly increased. In the second line of Table [I] the average number of active VMs
in the DLeak-3, is bigger than the one from DLeak-2 achieving almost the same data
leakages reduction albeit with a more significant increase in latency violations.

In Fig. [6] the data leakage probability because of multi-tenancy is changed to 1%,
hence the percentage of data leakage throughout the cluster ranges from 8% to 18% in
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Fig.7: Aggregated Latency Violations and Data Losses Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds and rep = 2, py = 1%

a single step. As we observe, the data leakage percentage is reduced from 12.89% to
11.70% for the DLeak-2 with an increase in the latency violations (i.e. 14.56% from
0.44% achieved by ADV+VC+PRE policy), reaching a significantly better trade-off
than DLeak-0. The mean number of the active VMs in DLeak-2 is reduced from 12.4 to
10.9, presented in Table [2] The parameter setups DLeak-1 and DLeak-3 achieve almost
the same reduced percentage of data leakage attacks i.e. 12.2%, while DLeak-3 achieves
lower latency violations number. When the latency violation threshold is changed to 50
msecs (see Figure [6] (right)) the same trend applies, with the exception of an increase
in the data leakage attacks of the DLeak-3 compared to DLeak-2 parameter setup. As it
is expected the average number of active VMs is reduced in all the cases between the
45 msecs and the 50 msecs latency thresholds (presented in Table[2). Finally, DLeak-2
achieves the most fair tradeoff between the data leakage attacks and the latency viola-
tions.

Data Loss Results In this set of experiments, we also try to achieve an acceptable
tradeoff between the latency violations and the occurrences of data losses due to ma-
chine failures. The failure probability of one machine is set to py = 1%, while we run
experiments for two values of replication factor i.e. 7 = 2 and r = 3 and two values
of latency threshold, 45 and 50 msecs. The utility function presented in Section [2.2]is
utilized, and similar parameter setups are examined:

— DLoss-0:a = 100, b =100, ¢ =1

— DLoss-1: a =05,b=1,c=1

— DLoss-2: a = 100, b = 100, ¢ = 160

— DLoss-3: a = 100, b = 1000, ¢ = 1600

Fig. [7| presents the results for py = 1% and r = 2 for both 45 (left) and 50 (right)
msecs latency thresholds. The data loss probability ranges from 0.28% for 8 VMs, up
to 1.5% for 18 VMs. As we observe in the left figure, DLoss-0 achieves the minimum
possible percentage of data losses i.e. 0.28%, with the cost of the highest observed



ADV+VC+PRE|DLoss-0|DLoss-1|DLoss-2|DLoss-3
45 msecs 124 8 12.3 11.7 12.4

50 msecs 12 8 11.8 11 119
Table 3: Average number of active VMs (r = 2, py = 1%)

ADV+VC+PRE|DLoss-0|DLoss-1|DLoss-2|DLoss-3
45 msecs 12.5 10.5 12.3 11.9 12.4

50 msecs 12 10.8 11.9 11 11.9
Table 4: Average number of active VMs (r = 3, py = 1%)
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Fig. 8: Aggregated Latency Violations and Data Losses Percentage for 45 msecs (left)
and 50 msecs (right) latency thresholds and rep = 3, py = 1%

latency violation percentage, i.e. 65.32% as it maintains the minimum number of VMs
(see Table [3). DLoss-1 and DLoss-2 obtain a good tradeoff reducing the data losses
percentage up to 8.8% in absolute numbers. DLoss-3 is the less effective approach in
this experiment. As we observe in Table[3] the amount of data loss incidents is correlated
to the mean number of active VMs, as expected. Exactly the same trend is observed in
the 50 msecs latency threshold experiments, shown in Fig. [/| (right). DLoss-2 reduces
the data losses by 13%, while the latency violations are far less (i.e. 5.59%) than the
maximum possible. (i.e. 61.29% see DLoss-0 in the same figure). As previously noted
the same trend applies for the mean active VMs number, presented in the second line of
Table

Next, we change the replication factor from » = 2 to » = 3 and repeat all the
experiments. As the replication factor is increased, the data loss probability is reduced
and ranges from 0.0056% for 8 VMs, up to 0.0816% for 18 VMs. Fig. [§] presents the
results. As we observe in this figure, the DLoss-0 parameter setup behaves differently
from all the previous experiments, as it achieves a tradeoff between the data losses
and the latency violations, without keeping the amount of VMs to the lowest possible
vale. As it is depicted in Table ] the mean number of active VMs for the DLoss-0 is
10.5, which explains the results of Fig. [§] The change in the behavior is explained by
the reduction in the probability of the data loss incident. As the probability is too low,
even the small difference (i.e. 1/V M s) between the reward for the latency violation



state (i.e. 100) and the reward for the no-attack no-violation state (i.e. 100 + 1/V M s)
makes the difference and guides the system to avoid latency violations. Taking into
account the highest latency violation percentage, which is 65%, DLoss-0 is able to
reduce both the data losses and the latency violations for both 45 and 50 msecs latency
violation thresholds. DLoss-3 in Fig. [§] (left) is not able to reduce the data losses as it
utilizes almost the same mean number of VMs with the ADV+VC+PRE policy. In Fig.
(right), where the latency threshold is set to 50 msecs, all the policies reduce the data
losses, while the Dloss-2 achieves the best tradeoff with mean number of VMs equal to
11 as depicted in Table[d]

Generic Lessons A more thorough parameter analysis using also additional settings is
left as future work. However, the lesson learnt from the above experiments is that the
elasticity decision making approach along with the 3-parameter utility function in Sec.
[2.2) provides a powerful tool for striking a balance between security and performance
requirements. For medium size NoSQL clusters like those examined here, setting the
parameters a and b at the order of hundreds (2 orders of magnitude higher than the
reward for the security incident) and the parameter c an order of magnitude higher than
the maximum cluster size, seems to be the most effective approach is reaching a mid-
way balance.

4 Related Work

The literature is rich with research efforts that consider security issues within the con-
text of cloud computing. Recent initiatives mainly from the industry and government
organisations such as ENISA and Cloud Security Alliance, have sought to produce a
number of guidelines and methods to help in the selection of cloud providers as well
as addressing some specific security concerns of the cloud. Yet such guidelines appear
often too cumbersome with no clear indications as to when a CSP may be considered
as not being trustworthy. This makes the valuable information detailed within these
documents hard to exploit.

Gong et al. [4] showed that using a side-channel attack, an attacker can instantiate
new VMs of a target virtual machine so that the new VM can potentially monitor the
cache hosted on the same physical machine . [7]] identified four possible places where
faults can occur in cloud computing: provider-inner, provider-across, provider user and
user-across. Mulazzani et al. [13] showed that attackers can exploit data duplication
techniques to access customer data by obtaining hash code of the stored file. Wenzel et
al. [20] consider security and compliance analysis of outsourcing services in the cloud
computing context.

There are also works that focus on the development of model-based approaches to
security analysis in cloud environments. A goal-drivel approach is introduced to analyse
security risks of cloud based system [8]]. Goals, threats and risks are consider from three
main components: data, service/application, and technical and organisational measure.
We have also contributed to this line of research with the development of a model-
based framework that enables elicitation, analysis of security and privacy requirements



and selection of deployment models [9] and service providers [12] based on such re-
quirements. These works provide important developments in analysing and modelling
security in cloud computing but they do not take into account performance issues.

Our work is also related to proposals that deal with cloud elasticity to maintain spe-
cific performance characteristics. Tan et al. [18]] combine cloud elasticity with anomaly
prevention, which refers to the resource contention, software bugs or hardware failures.
This proposal utilizes a prediction technique based on system metrics to vertically scale
the resources of the VMs or to decide for VM migration, i.e. they consider different
forms of elasticity, as is also the case in Shen et al. [17] and Gong et al. [5]. A work
that indirectly solves MDP models utilizing reinforcement learning-based policies to
guide elasticity appears in Tsoumakos et al. [19], which is extended in our previous
performance-oriented work in [[14]. Differently to our work which considers the same
VM types, Hector et al. [3] and Qi et al. [21]] deal with VM type heterogeneity issues. A
significant number of proposals use rule-based techniques to guide the elasticity, e.g.,
Moore et al. [11] and Copil et al. [2]]. In Copil et al. [2], a technique is proposed that
addresses the implications of an elastic action across multiple dimensions, providing for
example the cost implication of a horizontal scaling action. None of those techniques is
accompanied by online probabilistic verification of elasticity properties. Finally, model
checking and runtime quantitative verification for cloud solutions other than horizontal
scaling has been proposed in Calinescu et al. [1] and Perez et al. [15]. The former, uti-
lizes PRISM to guide service adaptation, while the latter presents a technique to predict
the minimum cost of cloud deployments using PCTL over MDP models. In summary,
to the best of our knowledge, our proposal is the first one that addresses the elasticity
problem taking into account both performance and security issues.

5 Conclusions

This work presents a novel approach, to support elasticity decisions for cloud databases,
which considers both performance and security requirements. Since, these requirements
are contradicting, we have developed a probabilistic model checking solution that ac-
counts for user-defined trade-offs between them. As demonstrated by the experiments,
our proposal is capable of striking a configurable balance between security-related in-
cidents and performance degradation.

We are working towards improving our approach towards the following directions.
Additional utility functions can be investigated, along with further experimentation un-
der different settings. Also, tackling data leakage and data loss concerns during elas-
ticity solves only a part of the security problems in cloud databases. With a view to
providing more holistic solutions, we aim to investigate model checking based tech-
niques to help database owners decide the initial deployment of their systems on the
cloud.
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