
Recommending friends and locations over a
Heterogeneous Spatio-Temporal graph

Pavlos Kefalas and Panagiotis Symeonidis

Department of Informatics, Aristotle University
of Thessaloniki, 54124, Greece

{kefalasp,symeon}@csd.auth.gr
http://delab.csd.auth.gr

Abstract. Recommender systems in location-based social networks (LB-
SNs), such as Facebook Places and Foursquare, have focused on recom-
mending friends or locations to registered users by combining informa-
tion derived from explicit (i.e. friendship network) and implicit (i.e. user-
item rating network, user-location network, etc.) sub-networks. However,
previous’s work models were static, failing to capture adequately user
preferences as they change over time. In this paper, we provide a novel
recommendation method by incorporating the time dimension into our
model through an auxiliary artificial node (i.e. session). In particular, we
construct a hybrid tripartite (i.e., user, location, session) graph, which
incorporates 7 different unipartite and bipartite graphs. Then, we run on
it the well known Random Walk with Restart (RWR) algorithm, which
randomly propagate through the network structure which has 7 dif-
ferently weighted edge types (i.e., user-location, user-session, user-user,
etc.) among its entities. We evaluate experimentally how RWR improve
the procession of the recommendations during different time-windows
against one state-of-the-art algorithm over the GeoSocialRec and the
Foursquare datasets.

Keywords: Algorithms, link prediction, location recommendation, so-
cial networks

1 Introduction

Users utilize location-based social networks (LBSNs) to share their location with
their friends, by incorporating in their posts the longitude and latitude infor-
mation of their location. In LBSNs, users explicitly build a friendship network
by adding each other as friends. In addition, users form implicit sub-networks
through their daily interactions, like commenting on same posts or rating simi-
larly same products/services in places they have co-visited.

Previous works have focused on recommending friends or locations [5,11] to
users by combining information derived from multi-modal and heterogeneous
explicit and implicit networks. In particular, there has been extensive research
in this area, which mainly focuses on information derived from users’ interaction

2 Authors Suppressed Due to Excessive Length

with locations over user-location bipartite network ties. However, such models
are static, failing to capture adequately users’ preferences as they change over
time. That is, time is an important factor in LBNSs, which affects the accuracy
of recommendations. For example, users periodically perform daily activities in
specific locations (e.g. home, work, etc.).

To incorporate the time dimension into their model, Xiang et al. [12] pro-
posed the construction of tripartite graphs (i.e., users, locations, sessions) known
as Session-based Temporal Graph (STG). But, STG graph do not incorporate
edges among nodes of the same set, i.e. failing to exploit information from all
three unipartite networks (user-user, location-location and session-session). For
instance, STG do not have links among user nodes. But, intuitively friends tend
to visit similar locations at close time points, which means that friendship links
could leverage the accuracy of location recommendations. A second problem
of STG stems from their own structure. That is, STG do not connect directly
users either with locations or sessions, which results to lower recommendation
accuracy when data (i.e., session/location nodes) are sparse.

In this paper, we provide recommendations based on a Heterogeneous Spatio-
Temporal graph (HST graph) by incorporating time dimension into our model.
To build this HST graph, we create a new type of an artificial node, denoted
as session node, which is associated with the co-location of two or more users
in a location at a specific time period. Our HST graph incorporates 7 different
unipartite or bipartite graphs, which makes it more informative in comparison
to STG. Moreover, we follow a star-schema structure, where users are directly
connected with locations and sessions. This structure can be more resistant in
cases of sparsity (e.g. when there are not enough session nodes as a result of the
fact that users check-into locations at different time periods).

Based on our HST graph that incorporates user, location and session nodes,
we run the well known Random Walk with Restart algorithm (RWR) to provide
spatio-temporal recommendations. RWR has properties, which can adequately
capture the notion of user-user similarity or the user-location relevance in our
HST graph. That is, social drivers which influence the ties formation in commu-
nities like homophily, social influence, common friendship, etc. are incorporated
by nature in RWR algorithm, as it will be shown later.

The contributions of this paper are summarized as follows: i) We propose the
construction of HST graph, which is a tripartite graph that consists of 3-disjoint
sets of nodes (i.e. sessions, users, locations), and incorporates edges among nodes
of the same set, including also three unipartite graphs ii) We use the Random
Walk with Restart algorithm (RWR) on this new graph to examine how spatial
and temporal features can leverage the recommendations according to proximity
and time distance. iii) We have compared our method with one state-of-the-art
algorithm over two real world datasets.

The rest of this paper is organized as follows. Section 2 summarizes the
related work, whereas Section 3 describes the construction of our HST graph,
its edge weighting and our proposed algorithm. Experimental results are given
in Section 4. Finally, Section 5 concludes this paper.

Title Suppressed Due to Excessive Length 3

2 Related Work

Time is a crucial factor in LBSNs, since it could leverage the accuracy of friend,
location and activity recommendations. Recently, Yuan et al. [14] exploited
spatio-temporal characteristics of POIs by using a unified framework consist-
ing of spatial and temporal dimensions.

Gao et al. [2] proposed the Location Recommendation with Temporal effects
(LRT) algorithm. They argue that time dimension is crucial in recommendation
and introduce a framework to make time-aware recommendations. In the same
direction, a time-aware method was proposed by Marinho et al. [6] to improve
location recommendations in LBSNs. Ho et al. [4] extract spatio-temporal in-
formation for future events from news articles. Furthermore, Raymond et al. [8]
proposed a method to provide location recommendations for users that use buses.
Their method is based on users’ location histories and spatio-temporal correla-
tions among the locations. By combining collaborative filtering algorithms with
link propagation, they are able to predict origins, destinations and arrival times
of buses.

The creation of artificial session nodes has been originally proposed by Xi-
ang et al. [12], who designed a framework that models users’ long-term and
short-term preferences over time. Their model is based on a Session-based Tem-
poral Graph (STG), which incorporates user, location and session information.
In addition, Xiang et al. [12] proposed a novel recommendation algorithm named
Injected Preference Fusion (IPF) and extended the personalized Random Walk
for temporal recommendation.

Assume that, there are 2 users, 4 locations and 3 session nodes. User U1
has visited locations L1, L2 and L3, whereas user U2 has visited locations L3
and L4. Notice also that locations L1 and L2 are linked to Session 1 node. This
means, both locations (L1 and L2) were co-visited by U1 at the same period
T1 (e.g. during the morning of Thursday 19 September 2013). Based on the
aforementioned graph, the user-location bipartite graph denotes the long term
preferences of a user, whereas the location-session bipartite graph denotes the
short term preferences of a user.

Our work is inspired by the work of Xiang et al. [12]. However, our HST
graph has two main differences in comparison with STG. Firstly, in our case we
create session nodes that connect users and not locations. That is, user nodes
are the heart of a star schema graph and, thus, they are connected with direct
links with both location and session nodes. The second difference is the graph
structure per se. It is not only a 3-partite graph that consists of 3-disjoint sets
of nodes (i.e. sessions, users, locations). In contrast, it incorporates also edges
among nodes of the same set, i.e. three unipartite graphs, which makes it even
richer in information.

3 Background and Preliminaries

In this section, we introduce the most important notations with the necessary
definitions and a motivating example depicted in Figure 1. Also, we provide an

4 Authors Suppressed Due to Excessive Length

Tripartite graph

B
ip

ar
ti

te
gr

ap
h
s

Time-User-Location graph

Time-Time graph

User-Time graph

Time-Time graph

User-User graph

User-Location graph

Location-Location graphLocation-Time graph

U
n
ip

artite
grap

h
s

Fig. 1: Latent Relations among Time, Users, Locations dimensions of an LBSN
and the generated k-partite graphs

analytical description of the basic entities that interact in a LBSN, i.e. users,
locations, and time dimension and discuss the information types that can be
extracted from the connections among them. Figure 1 shows the relations among
the aforementioned entities. As shown in Figure 1, we have 3 layers (one layer
for each entity) and 5 users who have visited some places. For each visit we keep
the time of the user’s check-in. As also shown in Figure 1, there are 7 graphs
of different participating entities (i.e. three unipartite, three bipartite and one
tripartite). On the right side of Figure 1, we can see the 3 generated unipartite
graphs (Time-Time graph, User-User graph, and Location-Location graph). On
the left side of Figure 1, we observe 3 bipartite graphs (User-Time graph, User-
Location graph, and Location-Time graph). Finally, on top of Figure 1, we can
see the tripartite graph (Time-User-Location graph).

It is necessary to emphasize that the above graph is not a k-partite graph,
since there can exist also edges among nodes of the same set (e.g. an edge between
a user and another user, i.e. friendship). We denote this special case of a graph
henceforth, as hybrid k-partite graph because it is a k-partite graph that consists
of k-disjoint sets of nodes (i.e. time, users, locations), incorporating edges among
nodes of the same set as well.

As depicted in Figure 1, our data are in the form of 〈time, user, location〉
triplets, which are usually modeled by a tripartite graph or a tensor. However,
if we had to use a tripartite graph or a tensor for capturing the time dimension
as well, then we should create a new node for each different timestamp. This
would create a huge tensor or a temporal graph with an enormous number of
time nodes creating severe noise in the model.

Title Suppressed Due to Excessive Length 5

Based on the above considerations, we choose to create a new type of an
artificial node, denoted as session node, which is associated with the co-location
of two or more users in a location at a specific time period. This co-location
of two or more users reflects their interest for a place at a specific time. For
example, two users can visit a music band at a bar every Thursday night. Thus,
the possibility of having both common music interests is very high. That is, two
users who visit a location at a common time period have a higher possibility
to become friends than those users who visit a location but not on the same
timestamp.

To create a new session node, in the same direction as [12], we transform
the 〈user, location, time〉 into 〈user, location〉 and 〈user, session〉 by dividing
the time into discrete intervals (bins). Then, we associate each bin with corre-
sponding users who visited a place at the same time slot. Notice that a session
node combines a number of users, with a location at a specific time interval. The
length of a session can last from one hour, to six hours, or even one day etc.
Based on the 〈user, location〉 and 〈user, session〉 we create our temporal graph,
i.e. HST graph.

3.1 Session Node Extraction

Users may visit locations all day long. The huge amount of these check-ins,
prevent us from understanding their trends and their likes, without before pre-
processing the time dimension of this information. To have an abstract and
thorough understanding of the users’ behavior, we create artificial session nodes
based on SQL statements. For our running example, let’s assume that we create
a table, which holds information about users, locations, and the time of their
check-ins.

We extract the artificial session nodes, by using an SQL statement as shown
in SQL Statement 1. This SQL statement finds co-locations between two or more
users during the same time period, i.e. a session. In our running example, we set
the time window for a co-location of two or more users equal to 6 hours. It is
obvious that we can also use other lengths of a session’s time window (i.e. we
can split time into bins of an hour, a day, a month or a year, depending on the
desired session for extraction).

Sql Statement 1 SQL query for session nodes extraction
SELECT A.userID, B.userID, A.Locationid
FROM ultime as A,ultime as B
WHERE A.LocationID = B.LocationID AND A.userID <> B.userID AND
(DATEDIFF(HOUR, A.tmp, B.tmp) / 24=0) AND (DATEDIFF(HOUR, A.tmp,
B.tmp) \% 24 between 0 and 6)

6 Authors Suppressed Due to Excessive Length

3.2 Constructing the Heterogeneous Spatio-Temporal Graph

We define a hybrid 3-partite graph as G(S,U ,L, E(US), E(SU), E(UL), E(LU), E(SS),
E(UU), E(LL)), which consists of 3-disjoint sets of nodes (S for session, U for user,
L for location). G is called “hybrid” because it has also edges among nodes of the
same set. Similarly, there are edges among sessions and edges among locations.
E(US) represents the edges between nodes in U and S. Vice versa, E(SU) repre-
sents edges between nodes in S and U . E(UL) represents edges between nodes in
U and L, whereas on the other hand E(LU) represents edges between the nodes in
L and U . E(SS) represents the edge set linking the nodes in S. E(UU) represents
the edge set linking the nodes in U . Finally, E(LL) represents the edge set link-
ing the nodes in L. For clarity, in Table 1 we provide a list of all used symbols
notations and descriptions. We assume that graph G is directed and weighted.
We also assume that graph G may have multiple edges connecting two nodes s
and u.

Symbol Description
S Set of sessions, S = {s1, s2, ..., sn}
Su Set of sessions a user participated
Sl Set of sessions a location shown
s, s′ Some sessions
U Set of users, U = {u1, u2, ..., un}
Uu Set of users who are friends with user u
Us Set of users who participated in a session s

Ul Set of users who visited a location l

u, u′ Some users
L Set of locations, L = {l1, l2, ..., ln}
Lu Set of locations visited by a user u
l, l′ Some locations
dl,l′ Distance between locations l and l′

E(US) Set of edges linking nodes of U to nodes of S
E(SU) Set of edges linking nodes of S to nodes of U
E(UL) Set of edges linking nodes of U to nodes of L
E(LU) Set of edges linking nodes of L to nodes of U
E(SS) Set of edges linking the nodes of S
E(UU) Set of edges linking the nodes of U
E(LL) Set of edges linking the nodes of L

Table 1: Symbols notations and descriptions

3.3 Edge Weighting

In this section, we define the weights between nodes in our HST graph. By incor-
porating the artificial session nodes into our HST graph, we have the following 7
types of edges, which have to be weighted differently: a) an edge from a session
node s to a user node u, b) an edge from a user u to a session s, c) an edge from
a user u to a location l, d) an edge from location l to a user u, e) an edge from

Title Suppressed Due to Excessive Length 7

a user u to another user u′, f) an edge from a location l to another location l′,
and g) an edge from a session s to another session s′.

In the following, we define the edge weights for the 7 different edge types,
starting from the edges of the bipartite graphs (session-user and user-location).
Firstly, we set the weight w(s, u) of the edge from a session node s to a user
node u as:

w(s, u) =
1

|Us|
, (1)

where (|Us|) is the number of users who participated in a session s. Notice that
we weight differently an edge that starts from a user u and ends to a session s.
Specifically, w(u, s) is:

w(u, s) =
1

|Su|
, (2)

where |Su| is the number of sessions in which a user u has participated. That
is, the probability of a user to join a session is equally divided on all sessions he
has participated.

Next, we define the edge weight w(u, l) of the edge from a user node u to a
location node l as:

w(u, l) =
nu,l∑

∀l∈L

nu,l
, (3)

where nu,l is the number of times a user u visited a location l and
∑

∀l∈L nu,l
is the total number of check-ins in all locations by user u. For define the edge
weight w(l, u), that starts from location l and ends at a user u as:

w(l, u) =
nl,u∑

∀u∈U

nl,u
, (4)

where the nl,u is the number of times a location l is visited by a user u and∑
∀u∈U nl,u is the total number of check-ins of all users in location l.
We proceed with the edge weighting of the unipartite graphs (user-user,

location-location, session-session). First, the edge weight w(u, u′) between two
user nodes u and u′ is defined as the fraction of 1 to the number of users (Uu),
who are friends with a user u:

w(u, u′) =
1

|Uu|
, (5)

The edge weight between two location nodes l and l′ is defined as:

w(l, l′) =

1− (geodistl,l′)∑
∀l,l′∈L

(geodistl,l′)

 , (6)

8 Authors Suppressed Due to Excessive Length

In this case, we set as link weight the geographical distance between two location
nodes l and l′. To obtain all weights, we calculate the distance between all pairs
of locations.

Finally, for the edge weighting between two session nodes s and s′, we take
under consideration both the location and the time dimensions of each session
nodes after normalizing both dimensions, by using the following equation:

w(s, s′) =

1− (geodists,s′∑
∀s,s′∈S

(geodists,s′)
)

+

1− (timediffs,s′)∑
∀s,s′∈S

(timediffs,s′)

 , (7)

where geodists,s′ and timediffs,s′ are the geographical distance and the time
difference between two session nodes s and s′, respectively.

3.4 Construction of the Transition Probability Matrix

Random walk processes on graphs have been extensively used in social network
analysis [7, 13]. To apply a random walk on a heterogeneous spatio-temporal
graph, we have to construct a transition probability P matrix to configure and
set all transition probabilities among the nodes of our HST graph. To represent
all possible transitions on the HST graph, the size of the P matrix should be
(|S| + |U| + |L|) × (|S| + |U| + |L|). By combining Equations 1-7, we compute
the transition probability matrix P which comprises of several sub-matrices that
correspond to our HST graph, as follows:

P =

SS SU 0
US UU UL
0 LU LL

 (8)

where SS is a |S|×|S| sub-matrix representing the transition probability between
session nodes to session nodes, as defined in Equation 7. UU is a |U| × |U| sub-
matrix, which is not symmetric because transition probabilities between two
user nodes are defined based on the number of neighbors of each user node (see
Equation 5). LL is a |L|× |L| sub-matrix representing the transition probability
from location nodes to location nodes, as defined in Equation 6. US sub-matrix
holds the transition probabilities from user nodes to session nodes, whereas SU
sub-matrix holds the transition probabilities from session nodes to user nodes.
Similarly, UL sub-matrix holds the transition probabilities from user nodes to
location nodes, whereas LU sub-matrix holds the transition probabilities from
location nodes to user nodes.

3.5 Normalization

In Section 3.3, we described the edge weighting among nodes of our HST graph
in both unipartite and bipartite sub-networks. We aimed to assign weights on
edges in the interval [0,1]. All these weights will be inserted in a probability

Title Suppressed Due to Excessive Length 9

transition matrix P , and then we will run our method for capturing the notion
of similarity between the nodes of the HST graph. However, in several cases the
distribution of the weight values in the interval [0,1] between the 7 edge types
(i.e. session-user, user-user, etc.) differs significantly. For example, consider the
case that the most weights in E(US) are normally distributed between 0 and 0.1,
whereas most similarity values of E(LL) are normally distributed between 0.9
and 1. That is, the weighting values of E(US) will always be dominated by those
of E(LL).

To avoid this problem, we present a normalization step for the construction
of the final transition probability P matrix: a) We compute the mean similarity
value mP of the matrix P . b) We compute the standard deviation value sP of
the matrix P . c) For each (i, j) cell of the P matrix, where i 6= j, we apply the
transformation:

P (i, j) =
P (i, j)−mP

sP
(9)

d) Finally, we scale and translate the derived values back in the interval [0,1]:

P (i, j) =
P (i, j)−minP
maxP −minP

(10)

where minP ,maxP are the minimum and maximum values of matrix P after
the transformation by Equation 9, respectively. Please notice, that by adding
the probabilities of propagation through the nodes of a each column, we gain
the maximum probability. Thus, after normalization step, each column of our
transition probability matrix P cast up to 1.

3.6 Random Walk on the Normalized Transition Probability Matrix

Random walk with restart (RWR) algorithm [10] is a variation of the well-known
PageRank algorithm. RWR has properties, which can adequately capture the
notion of user-user similarity or the user-location relevance for a specific user u
of our HST graph. The main advantage of RWR over PageRank is its teleporting
characteristic, which obliges the random walker to re-start his walk from the
initial node u. As expected, RWR assigns more importance/similarity to the
nearby nodes of u. Thus, if two users are close to each other, the probability of
becoming friends is larger. Moreover, RWR can capture the notion of similarity
among users who share a large number of common friends. For the user-location
graph, if two users visit the same locations, then the overall probability for
connecting them (via a location node) increases. The same holds for two users
via a session node.

RWR considers one random walker starting from an initial user node u and
randomly choosing among the available edges with a probability α. In addi-
tion, each time the random walker may return back to the initial node with a
probability 1− α. Therefore, the random walk process can be represented as:

S(UU)(t+ 1) = α× P × S(UU)(t) + (1− α)× I (11)

10 Authors Suppressed Due to Excessive Length

where S(UU)(t) and S(UU)(t+1) are the state probability matrices at time t and
t+1, respectively. S(UU) is a matrix that represents the link relevance from all
HST graph nodes to the target user u. Parameter a is the prior probability that
the random walker will leave its current state. Moreover, I is the identity and P
the transition-probability matrix.

4 Experimental Evaluation

In this section, we compare experimentally RWR [10] with a fast version of the
classic Katz algorithm, denoted as Fast-Katz [1] The parameters used to evaluate
the performance of this algorithm are identical to those reported in the original
paper. However, for datasets that were not used in these papers, we tuned the
parameters so as to get the best results possible.

4.1 Data Sets

We performed our experiments using two real-world datasets, i.e., Foursquare1
and GeoSocialRec2. Foursquare [3] dataset contains 18,107 users 2,073,740 check-
ins, 847,081 locations and 231,148 social ties among users. This dataset is col-
lected between March 2010 and January 2011. Please notice that we did not
use the dataset of our main competitor [15] because it does not incorporate the
friendship network. GeoSocialRec [9] dataset concerns 149 users who have 595
social ties among them (i.e. friendship network). Also, they have performed 853
check-ins to 438 locations. This dataset is collected between August 2011 and
January 2012.

Detailed information about both networks is illustrated in Table 2. In par-
ticular, information about friendship networks can be seen in Table 2(a), where
we present the type of each network (i.e. directed or undirected), the number
of users, the number of links among users, the nodes’ Average Degree (ADG)
and the Local Clustering Coefficient (LLC). As expected, the sparsity of the
user-user matrix is very big, i.e., 97.31% and 99.92% for the GeoSocialRec and
the Foursquare datasets, respectively.

Furthermore, Table 2(b) contains information about the bipartite user-location
network. In this table, we present the number of users, the number of locations,
and the number of check-ins. Moreover, parameter AVGu denotes the average
number of check-ins per user, whereas parameter AVGl denotes the average num-
ber of check-ins per location. Please notice that the average number of check-ins
per user is 11.08 and 101.00 for the GeoSocialRec and the Foursquare dataset, re-
spectively. This is a huge difference in terms of density between the two datasets.
It is inevitable that the accuracy of recommendations for the GeoSocialRec data
set will be low for both algorithms.

In Figure 2 we show statistics on the GeoSocialRec and the Foursquare
datasets. Notice that both x-axis and y-axis are in the log scale. As shown,
1 http://www.public.asu.edu/∼hgao16/dataset.html
2 http://delab.csd.auth.gr/∼symeon/GeoSocialRec_Dataset.rar

Title Suppressed Due to Excessive Length 11

(a) Friendship Network

Dataset Type Users Edges ADG LCC
GeoSocialRec undirected 149 595 6.3013 0.0342
Foursquare undirected 18107 231148 10.5800 0.1841

(b) User-Location Network

Dataset User Location Check-ins AVGu AVGl

GeoSocialRec 149 438 853 11.08 2.08
Foursquare 18107 847081 2073740 101 48.16

(c) User-Location-Session Network

Session nodes
Dataset Users POIs 3 Hour 6 Hour 9 Hour 12 Hour 24 Hours

GeoSocialRec 149 438 16 27 35 35 47
Foursquare 18107 847081 36606 78402 89079 90012 93204

Table 2: Datasets specifications

100 101 102
100

101

#Check-ins

U
se
rs

(a)

100 101
100

101

102

#Check-ins

L
oc
at
io
ns

(b)

100 101 102 103 104 105
100

102

104

#Check-ins

U
se
rs

(c)

101 102 103 104
100

102

104

#Check-ins

L
oc
at
io
ns

(d)

Fig. 2: Power Law distribution diagrams for GeoSocialRec [(a) and (b)] and
Foursquare [(c) and (d)] datasets

the datasets follow a power law distribution for both the number of users’ check-
ins (Figures 2(a) and 2(c)) and the number of visits to a particular location
(Figures 2(b) and 2(d)). As shown in Figures 2(a) and 2(c), there is a small
number of users who have checked-in to many locations (short head) and many

12 Authors Suppressed Due to Excessive Length

users that have only checked-in a small number of locations (long tail). Simi-
larly, as shown in Figures 2(b) and 2(d), few locations have many visits, whereas
many locations have a small number of visits. Notice that, it is very difficult for
all algorithms to recommend accurately locations, which have not been visited
from many users (i.e., recommendation in the long tail of the distribution).

In addition, as shown in Table 2(c) we have created artificial session nodes
to study the effect of the length of a session slot. We have created session nodes
based on 3 hours, 6 hours, 9 hours, 12 hours and 24 hours. Please notice that
the average session per user (when session is set to 3 Hours) is 0.10 and 2.02
for the GeoSocialRec and the Foursquare dataset, respectively. This means that
it is very difficult to find co-locations among users in the first dataset, which
will affect the recommendation accuracy of all algorithms, as will be shown
experimentally later.

4.2 Comparison with Other Methods

In this section, we compare the well known RWR algorithm with other one state-
of-the art comparison partner i.e. Fast-Katz, in terms of precision and recall. As
the number N of the recommended users/locations varies starting from the top-
1 to top-N , we examine the precision and recall scores. Achieving high recall
scores while precision follows with the minimum decline indicates the robustness
of the examined algorithm.

For the friend recommendation task, in Figures 3(a) and 3(c), we visualise
the precision versus recall curve for the GeoSocialRec and Foursquare datasets,
respectively. As N increases, precision falls, while recall increases as expected
for both algorithms. RWR attains the best results achieving the highest preci-
sion, against Fast-Katz algorithm. The reason is that RWR exploits effectively
information from all sub-networks (i.e., friendship, user-location, etc.) in con-
trast to Fast katz algorithm which exploits the relations of the nodes with the
target node in depth of 4 hops. Please notice, that hidden relation may exist in
greater depth than 4 hops. Thus, it is obvious why our approach gains higher
values of precision versus recall in contrast to our competitor. Also, notice that
while experimenting with GeoSocialRec dataset, the precision and the recall val-
ues are low. Thats is because there are only few relations among the nodes of
constructed HST graph which tackles the performance of both algorithms.

For location recommendations, we get similar results as shown in Figures 3(b)
and 3(d), for the GeoSocialRec and Foursquare datasets, respectively. Notice,
that RWR outperforms again the other algorithm. The reason is that RWR
exploits information from more sub-networks than Fast-Katz. Thus, RWR has
more options to walk through the network structure using different paths and
edge types. Moreover, RWR is more robust as we increase the number of top-
N recommended locations because it achieves high recall scores while precision
score drops smoothly. Please notice, that Fast Katz traverse globally the network,
missing to capture adequately the local characteristics of the HST graph. Also,
Fast Katz defines a measure that directly sums over all paths between any pair
of nodes in the graph, exponentially damped by length to count short paths

Title Suppressed Due to Excessive Length 13

RWR Fast-Katz

0 2 4 6
0

5

10

15

% Recall

%
P
re
ci
si
on

(a)

10 15 20

10

20

30

% Recall

%
P
re
ci
si
on

(b)

50 60 70 80
60

70

80

90

% Recall

%
P
re
ci
si
on

(c)

60 70 80 90

70

80

90

100

% Recall

%
P
re
ci
si
on

(d)

Fig. 3: Comparing RWR against Fast-Katz performance in term of Precision and
Recall at top-N recommended [(a) users and (b) locations] on GeoSocialRec
dataset, [(c) users and (d) locations] on Foursquare dataset.

more heavily. This way Fast Katz misses the relations existing in greater depth
in contrast to our approach which takes them into account.

5 Conclusions

Since recommender systems incorporate information from explicit and implicit
sub-networks to provide recommendation we argue that time is an important
factor. Thus, we introduce the creation of an artificial node which captures the
time dimension into our model. Moreover, we construct a novel hybrid k-partite
graph which holds information from all participating networks. Then, we evalu-
ate to what extent the well RWR algorithm improves its recommendation agains
Fast-Katz algorithm in terms of precision and recall.

References

1. K. C. Foster, S. Q. Muth, J. J. Potterat, and R. B. Rothenberg. A faster katz status
score algorithm. Computational & Mathematical Organization Theory, 7(4):275–
285, 2001.

14 Authors Suppressed Due to Excessive Length

2. H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal effects for location
recommendation on location-based social networks. In Proceedings of the 7th ACM
Conference on Recommender Systems (RecSys), pages 93–100, 2013.

3. H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on location-based
social networks. In In Proceedings of the 6th International Conference on Weblogs
and Social Media (ICWSM), pages 114–121, 2012.

4. S.-S. Ho, M. Lieberman, P. Wang, and H. Samet. Mining future spatiotemporal
events and their sentiment from online news articles for location-aware recom-
mendation system. In Proceedings of the 1st ACM SIGSPATIAL International
Workshop on Mobile Geographic Information Systems (MobiGIS), pages 25–32,
2012.

5. Z. Lu, B. Savas, W. Tang, and I. S. Dhillon. Supervised link prediction using
multiple sources. In Proceedings of the 10th IEEE International Conference on
Data Mining (ICDM), pages 923–928, 2010.

6. L. B. Marinho, I. Nunes, T. Sandholm, C. Nóbrega, J. a. Araújo, and C. E. S. Pires.
Improving location recommendations with temporal pattern extraction. In Pro-
ceedings of the 18th Brazilian Symposium on Multimedia and the Web (WebMedia),
pages 293–296, 2012.

7. A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. A random walk around the city:
New venue recommendation in location-based social networks. In Proceedings of
the International Conference on Privacy, Security, Risk and Trust (PASSAT), and
International Conference on Social Computing (SocialCom), pages 144–153, 2012.

8. R. Raymond, T. Sugiura, and K. Tsubouchi. Location recommendation based on
location history and spatio-temporal correlations for an on-demand bus system. In
Proceedings of the 19th ACM International Conference on Advances in Geographic
Information Systems (SIGSPATIAL), pages 377–380, 2011.

9. M. Sattari, I. Toroslu, P. Karagoz, P. Symeonidis, and Y. Manolopoulos. Extended
feature combination model for recommendations in location-based mobile services.
Knowledge and Information Systems, 2014.

10. H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and its applica-
tions. In Proceedings of the 6th International Conference on Data Mining (ICDM),
pages 613–622, 2006.

11. V. Vasuki, N. Natarajan, Z. Lu, B. Savas, and I. Dhillon. Scalable affiliation rec-
ommendation using auxiliary networks. ACM Transactions on Intelligent Systems
and Technology (TIST), 3(1):3:1–3:20, 2011.

12. L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal
recommendation on graphs via long- and short-term preference fusion. In Proceed-
ings of the 16th ACM International Conference on Knowledge Discovery and Data
Mining (KDD), pages 723–732, 2010.

13. Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified framework for link recom-
mendation using random walks. In Proceedings of the IEEE International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM), pages
152–159, 2010.

14. Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-
of-interest recommendation. In Proceedings of the 36th ACM International Con-
ference on Research and Development in Information Retrieval (SIGIR), pages
363–372, 2013.

15. Q. Yuan, G. Cong, and A. Sun. Graph-based point-of-interest recommendation
with geographical and temporal influences. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management
(CIKM), pages 659–668, 2014.

