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Abstract. In this paper, we propose an accelerated spectral clustering
method, using a landmark selection strategy. According to the weighted
PageRank algorithm, the most important nodes of the data affinity graph
are selected as landmarks. The selected landmarks are provided to a
landmark spectral clustering technique to achieve scalable and accurate
clustering. In our experiments with two benchmark face and shape image
data sets, we examine several landmark selection strategies for scalable
spectral clustering that either ignore or consider the topological proper-
ties of the data in the affinity graph. Finally, we show that the proposed
method outperforms baseline and accelerated spectral clustering meth-
ods, in terms of computational cost and clustering accuracy, respectively.
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1 Introduction

Spectral Clustering (SC) comprises several goals, by adapting to a wide range
of non-Euclidean spaces and detecting non-convex patterns and linearly non-
separable clusters. The key idea is to achieve graph partitioning by performing
eigendecomposition of the graph Laplacian matrix. Given a set of d-dimensional
data points 1 {x1,x2, . . . ,xN} ∈ R

d, SC methods construct an undirected graph
G = (V , E), represented by its W ∈ R

n×n affinity matrix (or the respective adja-
cency), where V and E are the sets of vertices and edges, respectively. The goal
is to find a k-way partitioning 2 {Vc}kc=1 to minimize a particular objective. SC
methods differ in how they define and construct the Laplacian matrix and thus
which eigenvectors are selected to represent the graph partitioning. Ulrike von
Luxburg’s tutorial [15] includes examples of different Laplacians’ constructions.
For example, Ratio Cut [5] tries to minimize the total cost of the edges crossing
the cluster boundaries, normalized by the size of the k clusters, to encourage
balanced cluster sizes. Normalized Cut (NCut) [22] uses the same objective cri-
terion as Ratio Cut, normalized by the total degree of each cluster, making thus

1 Following standard notations, we use capital italic letters for matrices (e.g. A), lower-
case bold letters for vectors (e.g. a) and calligraphic fonts for sets (e.g. A).

2 k disjoint data subsets whose union is the whole data set.
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the clusters to have similar degrees. The aforementioned baseline SC methods
firstly calculate the degree matrix D =

∑
j Wji ∈ R

n×n, a diagonal matrix
whose entries are column (or row, since W is symmetric) sums of W . Then,
SC methods use the top-k eigenvectors of the L = D − W ∈ R

n×n Laplacian
matrix corresponding to the k smallest eigenvalues as the low k-th dimensional
representation of the data. Finally, the k-means algorithm is applied to generate
the clusters.

SC methods have a number of real-world applications such as image segmen-
tation [26], face recognition [4], feature fusion [12], speech recognition [16], 3D
shape retrieval [25] and protein sequences clustering [21]. However, irrespective
of the selected approach, there are two important factors for applying a SC
method to a real world application: (a) the scalability of the method to large
datasets; and (b) the high clustering accuracy.

With respect to the first key factor, baseline SC methods require O(n3) time
to calculate the eigendecomposition of the corresponding L ∈ R

n×n Laplacian
matrix. The cubic complexity prohibits the direct application of SC for gener-
ating clusters in large-scale data sets. Several accelerated methods have been
proposed in the literature trying to reduce the initial problem size of n data
points by selecting p (� n) samples/landmarks of the data set. Accelerated
methods in their approximations perform the eigendecomposition to a highly
reduced L ∈ R

p×p Laplacian matrix. Consequently, accelerated methods signif-
icantly decrease the high complexity O(n3) of the baseline SC methods [5,22].
Nevertheless, with respect the clustering accuracy, the accelerated SC methods
depend on the sampling strategy that is used to perform the eigendecomposition
of the highly reduced matrix.

In this paper, we present an accelerated SC method using a landmark selec-
tion strategy based on the weighted PageRank algorithm. In doing so, the most
important nodes in the data affinity graph are selected as landmarks. With the
help of the selected landmarks and a landmark spectral clustering technique
we achieve scalable and accurate clustering. In particular, our contribution is
summarized as follows:

– High clustering accuracy is achieved by following the proposed landmark
selection strategy of weighted PageRank.

– The complexity of the proposed spectral clustering method is preserved low,
by following the landmark selection strategy of weighted PageRank and a
landmark-based spectral clustering technique.

– In our experiments with two benchmark face and shape image data sets,
several landmark selection strategies are examined for scalable spectral clus-
tering.

– Finally, we show that the proposed method outperforms baseline and ac-
celerated spectral clustering methods, in terms of computational cost and
clustering accuracy, respectively.

The rest of the paper is organized as follows, Section 2 summarizes related work.
The proposed method is presented in Section 3 and our experimental results on
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two benchmark image data sets are discussed in Section 4. Finally, we draw the
basic conclusions of our study in Section 5.

2 Related Work

Several accelerated SC methods have been proposed in the literature for
overcoming the scalability issue. The key idea is to use sampling techniques and
consequently to reduce the high complexity of SC in the L Laplacian matrix’
eigendecomposition step. The k-means-based approximate SC (KASP) method
[29], firstly performs k-means on the data set with a large number cluster num-
ber p and then, a baseline SC method is applied on the p cluster centers, with
each data point being assigned to the cluster as its nearest center.

In [10], Fowlkes et al. applied the Nyström [20] method to accelerate the
eigendecomposition step. Given a random set of p samples, a W ∈ R

p×p affinity
submatrix is computed and then, the calculated eigenvectors are used to estimate
an approximation of the eigenvectors of the original affinity matrix.

In [14], Kulis et al. followed a kernel approach for graph clustering in a unified
framework for graph/vector-based approaches, where they showed that there is
a connection between weighted kernel k-means [9] and graph clustering mini-
mization criterion objectives. Establishing the aforementioned connection led to
algorithms for locally optimizing graph clustering objectives and thus, improv-
ing the clustering accuracy of SC methods. However, weighted kernel k-means
is prone to problems of poor local minima and sensitive to the initial centroids
selection [8].

In [7], Chen and Cai proposed an accelerated SC method with landmark-
based representation (LSC). By selecting p landmarks, a Z ∈ Rn×p affinity
submatrix was created, by expressing the pairwise similarities between the p
landmarks and the n data points. By using a sparse coding technique, authors
significantly reduced the preprocessing cost in O(p3 + p2n) time to compute
the eigenvectors. Two variations of LSC are presented: (a) the LSC-R method,
based on which the selections of the p landmarks is performed randomly; and
the LSC-K method, based on which a preprocessing step is added into LSC
for performing k-means for the p landmarks selection. As it was experimentally
shown, LSC-K outperformed LSC-R in terms of clustering accuracy. However,
by performing the k-means method, LSC-K adds a significant preprocessing cost
into LSC. Moreover, the topological properties of the nodes/data points in the
affinity graph are ignored. In doing so, the landmark selection strategy of LSC-K
has limited clustering accuracy.

3 Proposed Method

3.1 Mathematical Formulation

Given (a) a set of d-dimensional data points {x1,x2, . . . ,xn} ∈ R
d, denoted

by a X ∈ Rd×n matrix, forming thus the data affinity graph G of nn closest
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neighbors; and (b) the p landmarks, the goal is to partition the n points into
k discrete clusters, with the boundaries of the k clusters lying afar. According
to [7] the goal is to design the W ∈ R

n×n affinity matrix as W = ẐT Ẑ, where

Ẑ ∈ R
p×n is the p-th dimensional representation of the n data points, expressed

as similarities/affinities of the n data points to the p landmarks. The X ∈ Rd×n

matrix can be approximated as X ≈ UZ, where the columns of matrix U ∈
R

d×p are called basis vectors, i.e. the d-dimensional vectors of the p landmarks.
Therefore, the goal is to minimize the approximation error min

U,Z
‖X − UZ‖2,

where ‖ · ‖ denotes the Frobenius norm of a matrix.

3.2 Landmark Selection Based on Weighted PageRank

In the first step of the algorithm, we used the weighted pageRank algorithm to
select the p most important nodes in the affinity graph G. According to [28], the
weighted PageRank algorithm assigns rank values to nodes according to their
importance. This importance is assigned in terms of weight values to incoming
and outgoing links, in our case links represent the respective content-based rela-
tionships, denoted by win

<a,b> and wout
<a,b>, respectively. w

in
<a,b> is the weight of

link < a, b >. It is calculated on the basis of number of incoming links to node
b and the number of incoming links to all reference nodes of node a:

win
<a,b> =

ib∑

c∈Ra

ic
(1)

where ib is the number of incoming links of node b, ic the number of incoming
links of node c and Ra is the reference node set (content-based nearest neigh-
borhood) of node a. Accordingly, wout

<a,b> is the weight of link < a, b >. It is
calculated on the basis of the number of outgoing links of all the reference nodes
of node a:

wout
<a,b> =

ob∑

c∈Ra

oc
(2)

where ob is the number of outgoing links of node b and oc is the number of
outgoing links of node c. Then, the weighted PageRank value wpr(b) for a node
b ∈ V is calculated as follows:

wpr(b) = (1− damp) + damp
∑

a∈R(b)

wpr(a)win
<a,b>w

out
<a,b> (3)

where damp is a dampening factor that is usually set to 0.85 [13]. Finally, the p
nodes with the highest wpr values are selected as landmarks.
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3.3 Sparse Representation of the Affinity Submatrix

Following the sparse coding strategy of [7], based on the Nadaraya-Watson kernel
regression [11], for any data point xi its x̂i approximation is calculated as:

x̂i =

p∑

j=1

zjiuj (4)

where uj is the j-th column vector of U and zji is the ji-th element of Z. Then,
to create the sparse representation of the Z affinity sparse matrix, the zji value
is set to 0, if uj is not among the r ≤ p nearest landmarks. Let U〈i〉 ∈ R

d×r

denote a submatrix of U , composed of r nearest landmarks of xi. Then each
element zji is computed as:

zji =
Φ(xi,uj)∑

j′∈U〈i〉
Φ(xi,uj′ )

, i ∈ 1 . . . n and j ∈ U〈i〉 (5)

where Φ(·) is a kernel function with bandwidth σ. The Gaussian kernel Φ(xi,uj)
= exp(−‖xi − uj‖/2σ2) is one of the most commonly used, where σ controls
the local scale of each data point’s neighborhood. Therefore, based on (5), the
Z ∈ R

p×n sparse representation is calculated. Consequently, for the W affinity
matrix it holds that W = ẐT Ẑ, where Ẑ = D−1/2Z is the normalized Z by the
D =

∑
j Zji degree matrix.

3.4 Clusters’ Generation

Let the Singular Value Decomposition (SVD) of Ẑ = AΣBT , where Σ =
diag(σ1, . . . , σp) and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 are the singular values of

Ẑ, A = [a1, . . . , ap] ∈ R
p×p and ai’s are called left singular vectors, B =

[b1, . . . ,bp] ∈ R
n×p and bi’s are called right singular eigenvectors. It is easy

to verify that B are the eigenvectors of matrix ẐT Ẑ and A are the eigenvectors
of matrix ẐẐT . Since the size of ẐẐT is p× p, we can compute A in O(p3) and

then according to [7] B can be computed as B = Σ−1AT Ẑ. The overall time
is O(p3 + p2n), which is a significant reduction from O(n3) since p � n. To
obtain the final k clusters the traditional k-means method is applied to the n
right singular eigenvectors, bi’s, i.e. the rows of B.

4 Experimental Results

4.1 Data Sets

In our experiments we used two high-dimensional benchmark data sets 3, includ-
ing a shape image data set of the Columbia University Image Library (COIL100

3 All data sets were downloaded in the .mat format, publicly available at
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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[18]) and a face data set (CMU-PIE [23]) of Carnegie Mellon. COIL100 con-
tains 100 objects, where the images of each object were taken five degrees apart
as the object is rotated on a turnable view, generating thus for each object 72
shape images. The size of each image is 32 × 32 pixels, with 256 grey levels
per pixel. Thus, each image is represented by a d =1024-dimensional vector.
Therefore, COIL100 consists of n=7,200 vectors of d =1,024 dimensions with
k =100 clusters, where each cluster represents the shape images of each object.
Additionally, CMU-PIE is a database of 41,365 face images of 68 people, each
person under 13 different poses, 43 different illumination conditions and with 4
different expressions. We used the face evaluation data set of [3], which consists
of n =11,554 vectors of d =1024 dimensions with 68 clusters, where each cluster
represents the face images of each person.

  

(a) (b)

Fig. 1. (a) The 100 objects of the COIL100 data set; (b) examples of face images of
the CMU-PIE data set

4.2 Evaluation Protocol

In our experiments, the performance was measured in terms of (a) clustering
accuracy, (b) Normalized Mutual Information and (c) preprocessing cost.

The clustering accuracy (Acc) [2] is defined as:

Acc =

∑n
i=1 δ(ci,map(c′i))

n
(6)

where ci is the true class label and c′i is the cluster label of xi obtained from the
clustering algorithm, δ(·) is the delta function and map(·) is the best mapping
function. Themap(·) function matches the true class labels and the best mapping
is solved by using the Kuhn-Munkres algorithm [17]. The Acc values range from
0 to 1, where a larger Acc indicates a better performance.
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Let Cgnd denote the set of clusters obtained from the ground truth and Calg ob-
tained fromagiven clustering algorithm.TheirMutual InformationMI(Cgnd, Calg)
is defined as:

MI(Cgnd, Calg) =
∑

ci∈Cgnd,c′j∈Calg

p(ci, c
′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
(7)

where p(ci) and p(c′j) are the respective probabilities that an arbitrary sample
of the data set belongs to the clusters ci and cj , respectively. p(ci, c

′
j) is the joint

probability that the sample belongs to ci and c′j . Then, the Normalized Mutual
Information (NMI) [24] is defined as:

NMI(Cgnd, Calg) = MI(Cgnd, Calg)
√
H(Cgnd)H(Calg)

(8)

where function H(X ) = − ∑

ci∈X
p(ci) log pci is the entropy of the X clusters. It is

easy to check that NMI(Cgnd, Calg) ranges from 0 to 1, with NMI=1 if the two
sets of clusters are identical and NMI=0 if the two data sets are independent.
In our experimental results, Acc and NMI are expressed as a percentage.

All experiments were performed on a Windows 7 PC with Intel core i7 2700K
at 3.50 GHz, 8GB Ram using Matlab 2011a.

4.3 Results

In this first set of experiments, we evaluate the following landmark selection
strategies:

– Random: nodes are randomly selected as landmarks, irrespective of their
topological features in the affinity graph.

– k-means: the k-means algorithm is used to determine the landmarks. For p
landmarks, k = p centroids of the clusters are selected as landmarks.

– Degree centrality: is defined as the number of links incident upon a node.
Nodes with the highest degree centrality are selected as landmarks.

– Betweenness centrality: is a measure of a node’s centrality in a graph [1].
It is equal to the number of shortest paths from all vertices to all others that
pass through that node, expressing how each node controls the flow within
the graph. Nodes with the highest betweenness centrality are selected as
landmarks.

– PageRank: is the widely known Google’s PageRank measure [13], which
estimates the importance of a node in the graph. To consider the weights of
the links we used the weighted PageRank algorithm of [28]. Nodes with the
highest PageRank values are selected as landmarks, as described in Section
3.2.

With respect to the computational cost, degree centrality has the less complex-
ity, i.e. 0.01 and 0.02 seconds for the COIL100 and CMU-PIE data sets, whereas
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betweenness centrality requires 52.6 and 222.47 seconds, respectively. The com-
putational cost of betweenness centrality is high, since it requires the calculation
of all-to-all paths in the graph. Weighted PageRank needs 0.83 and 1.56 seconds
for the COIL100 and CMU-PIE data sets, respectively. The landmark selection
strategy using the centroids of the k-means clustering depends on the number of
landmarks. Therefore, for p = 5, 10, 15, 20% landmarks, expressed as a percent-
age of the data set size n, k-means requires 1.39, 1.61, 3.09 and 3.46 seconds for
COIL100 and 3.15, 6.37, 8.78 and 12.06 seconds for the CMU-PIE data set.
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Fig. 2. Landmark selection strategies for Landmark Spectral Clustering (LSC)

In Fig. 2, we present the experimental results of the Landmark Spectral Clus-
tering (LSC) method (Sections 3.3 and 3.4), for the different landmark selection
strategies, where PageRank clearly outperforms the competitive strategies. This
happens because PageRank identifies the most important nodes of the affinity
graph, improving thus the clustering accuracy of LSC. The landmark selection
strategy based on the Degree centrality reduces the clustering accuracy, making
LSC prone to problems of poor local minima. Therefore, the proposed landmark
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Fig. 3. Comparison of the proposed LSC-PageRank method against (a) the baseline
NCut and (b) the accelerated Nyström spectral clustering methods.

selection strategy of weighted PageRank achieves high clustering accuracy, by
adding a low preprocessing cost to LSC, in contrast to the rest of landmark
selection strategies.

The proposed LSC-PageRank method is compared against the baseline NCut
method 4 [22] and the accelerated Nyström spectral clustering method with
orthogonalization 5 [10]. According to the experimental results of Fig. 3, LSC-
PageRank achieves high clustering accuracy, comparable to the clustering ac-
curacy of the baseline NCut method (in the case of p =20% landmarks), while
significantly outperforming the accelerated Nyström method for all number of
landmarks/sampled points variations. In Table 1, the computational cost of
each examined method is presented. The baseline NCut method has high pre-
processing cost O(n3), due to the eigendecomposition of the Laplacian ma-
trix L ∈ R

n×n, whereas the accelerated Nyström method and the proposed

4 http://vision.ucsd.edu/~sagarwal/clustering.html
5 alumni.cs.ucsb.edu/~wychen/sc.html

http://vision.ucsd.edu/~sagarwal/clustering.html
alumni.cs.ucsb.edu/~wychen/sc.html
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Table 1. CPU-time (sec) of the baseline NCut, the proposed LSC-PageRank and the
accelerated Nyström spectral clustering methods.

COIL100 CMU-PIE

NCut LSC-PageRank Nyström NCut LSC-PageRank Nyström

p = 5% 361.69 3.99 2.05 1,388.1 5.55 4.16

p = 10% 361.69 4.99 5.38 1,388.1 6.99 17.14

p = 15% 361.69 5.28 13.43 1,388.1 7.66 50.57

p = 20% 361.69 6.54 28.45 1,388.1 9.08 115.27

LSC-PageRank method have a low computational overhead, by performing the
eigendecomposition to a highly reduced matrix.

Summarizing, the proposed landmark selection strategy of weighted PageR-
ank improves the clustering accuracy of LSC, by adding a low computational
cost, in contrast to the rest of selection strategies that either ignore or consider
the topological features of the nodes in the affinity graph. Additionally, the pro-
posed LSC-PageRank method significantly outperforms the baseline NCut and
the accelerated Nyström spectral clustering, in terms of preprocessing cost and
clustering accuracy, respectively.

5 Conclusion

In this paper we presented an efficient method for accurate and scalable spec-
tral clustering. In particular, we propose a landmark selection strategy based on
the weighted PageRank algorithm for selecting the most representative nodes
in the data affinity graph. As we experimentally showed, the proposed method
outperforms state-of-the-art landmark selection strategies, that either ignore or
consider the topological properties of the nodes in the affinity graph. Finally, by
following a landmark spectral clustering method we showed that the proposed
method significantly outperforms competitive methods of baseline and acceler-
ated spectral clustering, in terms of preprocessing cost and clustering accuracy,
respectively.

In real-world applications continuously and efficiently updates are required,
over the data sets evolution. Recently, several incremental strategies [19] have
been proposed in the literature, able to handle not only insertion/deletion of
data points but also similarity changes between existing points. In our future
research we plan to examine the incremental strategy of the proposed method.

Additionally, several semi-supervised spectral clustering methods [8,27] have
been proposed in the literature to improve the clustering accuracy, by adding
must-link and cannot link constraints to the affinity graph. Nevertheless, ir-
respective of the final constructed affinity graph, where the constraints have
been embedded to, the eigendecomposition of the respective Laplacian matrix
L ∈ R

n×n is still performed, preserving thus the high complexity of the base-
line spectral clustering methods. However, the influence of must-link and cannot
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link constraints to the affinity graph must be further examined, since the most
important nodes may vary, modifying thus the proposed landmark strategy of
weighted PageRank.

Finally, modern web databases require a significantly large preprocessing cost
for spectral clustering in billions of data. For instance, the work of Chen et al
[6] introduced a parallel spectral clustering in distributed systems. Towards this
aim, in our future work we plan to design the proposed method for distributed
databases.
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