
Building an Efficient P2P Overlay for Energy-Level Queries
in Sensor Networks

S. Sioutas
Department of Informatics

Ionian University
49100 Corfu, Greece
sioutas@ionio.gr

K. Oikonomou
Department of Informatics

Ionian University
49100 Corfu, Greece

okon@ionio.gr

G. Papaloukopoulos
Department of Computer

Engineering and Informatics
University of Patras

26500 Patras, Greece
papalukg@ceid.upatras.gr

M. Xenos
School of Sciences and

Technology
Hellenic Open University

26500 Patras, Greece
xenos@eap.gr

Y. Manolopoulos
Department of Informatics

Aristotle University of
Thessaloniki

54124 Thessaloniki, Greece
manolopo@csd.auth.gr

ABSTRACT
After the debunking of some myths about why P2P overlays
are not feasible in sensornets, many such solutions have been
proposed. None of the existing P2P overlays for sensornets
provide ”Energy-Level Application and Services”. On this
purpose and based on the efficient P2P method presented
in [16], we design a novel P2P overlay for Energy Level dis-
covery in a sensornet, the so-called ELDT (Energy Level
Distributed Tree). Sensor nodes are mapped to peers based
on their energy level. As the energy levels change, the sen-
sor nodes would have to move from one peer to another and
this oparation is the most crucial for the efficient scalability
of the proposed system. Similarly, as the energy level of a
sensor node becomes extremelly low, that node may want
to forward it’s task to another node with the desired energy
level. The adaptation of the P2P index presented in [16]
quarantees the best-known query performance of the above
operation. We experimentally verify this performance via an
appropriate simulator we have designed for this purpose.

Categories and Subject Descriptors
H.2 [Database Management]: [Emergent Systems]

General Terms
Algorithms, Data Structures and Indexing, Networks

Keywords
Peer-to-Peer Overlays, Sensor Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MEDES 2009 October 27-30, 2009, Lyon, France
Copyright 2008 ACM 978-1-60558-829-2/08/0003 ...$10.00.

1. INTRODUCTION
In the last years sensornet research primarily focused on

data collection, finding applications in ecology (e.g., environ-
mental and habitat monitoring [12]), in precision agriculture
(e.g., monitoring of temperature and humidity), in civil en-
gineering (e.g., monitoring stress levels of buildings under
earthquake simulations), in military and surveillance (e.g.,
tracking of an intruder [6]), in aerospace industry (e.g., fair-
ing of cargo in a rocket), etc.
P2P query processing in sensor networks is a new concept.
Traditionally, sensors are used as data gathering instruments,
which continuously feed a central base station database. The
queries are executed in this centralized base station database
which continuously collates the data. However, given the
current trends (increase in numbers of sensors, together col-
lecting gigabits of data, increase in processing power at sen-
sors) it is not anymore feasible to use a centralized solution
for querying the sensor networks. Therefore, there is a need
for establishing an efficient access structure on sensor net-
works in order to contact only the relevant nodes for the
execution of a query and hence achieve minimal energy con-
sumption, minimal response time, and an accurate response.
We achieve these goals with our peer-to-peer query process-
ing model on top of a distributed index structure on wireless
sensor networks.
In sensor networks any node should be able to introduce
a query to the system. For example, in the context of a
fire evacuation scenario a firefighter should be able to query
a nearby sensor node for the closest exit where safe paths
exist. Therefore, a peer-to-peer query processing model is
required. A first P2P program for spatial query execution
presented in [7]. In the context of ”energy-level discovery”,
assuming that a sensor is responsible for executing some pro-
gram task but unfortunately it’s energy-level is lower than
a pre-defined threshold. Then, this sensor should be able to
introduce a query to the whole system in order to discover
efficiently another sensor with the desired energy level, in
which the task overhead must be eventually forwarded. In
this way, the ”Life-Expectancy” of the whole network could
be increased. Never before, this context has been examined.
According to [1], the benefits of the P2P overlays in sensor-

P2P Architectures Lookup/update key Data Overhead-Routing information Join/Depart Node
Chord O(logN) O(logN) nodes O(logN) w.h.p.

H-F-Chord(a) O(logN/loglogN) O(logN) nodes O(logN)
LPRS-Chord O(logN) O(logN) nodes O(logN)
Skip Graphs O(logN) O(1) O(logN) amortized

BATON O(logN) Two (2) nodes O(logN) w.h.p.
BATON* O(logmN) m nodes O(mlogmN)

NBDT O(loglogN) O(loglogN) or 22
i−1

for nodes at level i of left spine O(1)/periodical restructuring

Table 1: Performance Comparison between NBDT, Chord, BATON and Skip Graphs

nets are the following: Efficient Data Lookup, Guaranties
on Lookup Times, Location Independence, Overlay Appli-
cations and Services, Elimination of proxies/sinks with un-
desirable central authority, Limited Broadcast. P2P design,
for Internet-like environments, has been a very active re-
search area and there are many P2P Internet protocols and
systems available like CAN [14], Pastry [15], and Chord
[17]. The main arguments against P2P designs in sensor-
nets were the following: Logical Topology=Physical Topol-
ogy, Route Maintenance Overhead, Sensor Nodes are Not
Named, DHTs are Computationally Intensive.
By overcoming the arguments above (for details see [1], [2]
and [3]), in [2] and [3] the first DHT (Distributed Hash Ta-
ble) based protocols for sensornets were presented, the CSN
and VRR respectively. In [1] the Tiered Chord (TChord)
protocol was proposed, which is similar to, and inspired by,
CSN. TChord is a simplified mapping of Chord [17] onto sen-
sornets. Unlike CSN the design of TChord is more generic
(to support a variety of applications and services on top in-
stead of just serving incoming data queries). Gerla et al.
argue for the applicability and transfer of wired P2P models
and techniques to MANETs [8].
Most existing decentralized discovery solutions in practice
are either DHT based, like Chord [17] or hierarchical clus-
tering based, like BATON [10],[11] or Skip-Graphs [9]. Up
to now, none of the existing P2P protocols for sensornets
were designed in hierarchical clustering fashion, because the
latter adds needless complexity to the design. On the con-
trary, all the existing P2P overlays for sensornets were de-
signed in a DHT fashion and the best current solution is
the TChord. Furthermore, none of the existing P2P over-
lays provide Energy-Level applications and services, close re-
lated to the so-called ”life-expectancy” of a sensornet. This
paper presents a novel variation of the existing optimal P2P
method presented in [16], for desired Energy Level discovery,
which combines the benefits of both DHT and hierarchical
clustering methods. The variation above is called Energy
Level Distributed Tree (ELDT) and its main functionali-
ties attempt to increase the ”Life-Expectancy” of the whole
sensor network, providing support for processing: (a) exact
match queries of the form ”given a sensor node with low
energy-level k′, locate a sensor node with high energy-level
k, where k >> k′” (the task will be forwarded to the de-
tected sensor node) (b) range queries of the form ”given an
energy-level range [k, k′], locate the sensor node/nodes the
energy-levels of which belong to this range” (the task will
be forwarded to one of the detected sensor nodes) (c) up-
date queries of the form ”find the new overlay-peer to which
the sensor node must be moved (or associated) according
to it’s current energy level” (the energy level of each sensor

node is a decreasing function of time and utilization). ELDT
overlay adapts the novel idea of NBDT P2P infrastructure
presented in [16] providing functionalities in optimal time.
For comparison purposes, an elementary operation’s evalu-
ation is presented in table 1 between NBDT, Skip-Graphs,
Chord and its newest variation (F-Chord(á) [17], BATON
[11] and its newest variation (BATON* [10]). The rest of
this paper is structured as follows. Section 2 and 3 describe
the ELDT system while section 4 analyses its basic function-
alities. A new simulator and experimental evaluations via
this simulator are presented in section 5 and 6 respectively.
Section 7 concludes.

2. THE SNBDT PROTOCOL
SNBDT, is a simplified mapping of NBDT [16] onto sen-

sornets. Like NBDT, at the heart of SNBDT is one main
operation; the lookup operation. Given a set of sensor nodes,
we hash the unique address of each sensor node to obtain
node identifiers. Meta-data keys, generated from the data
stored on the nodes, are hashed to obtain key identifiers.
Figure1 shows a SNBDT hierarchical arrangement of some
master nodes (the big devices). As meta-data keys are basi-
cally information about data, they are much smaller than the
actual data itself and replicating meta-data keys amongst
neighbors of a sensor node will not require a lot of storage.
The master node of level i maintains information (in its lo-
cal finger table) about all its slave nodes (small devices)

and 22
i−1

other master nodes. All queries are resolved in a
distributed manner with a bound of O(log log N) messages.
When a master node receives a query it first checks its own
keys to resolve the query, if the lookup is not successful (note
this means that the data element is not at the master node
or any of its slaves) the master node then checks its local
finger table. The finger table contains information about

22i−1

other master nodes and if the key can be located ac-
cording to the information stored in the finger table, the
query is directly forwarded to the master node storing the
data. If the lookup on the local finger table also fails then
the master node routes the query to the master node closest
to the target according to the finger table. We handle the
master node joins/leaves and fails according to join/leave
and fail operations respectively presented in [16]. In par-
ticular and concerning the fault tolerance issues, for each
master node, we maintain a cache of k redundant nodes
(see figure 3) with each of them storing a replicated copy
of a data item, where k>1 is a small positive constant, and
make the assumption that the P2P overlay is ”k-robust”,
meaning that the simultaneous failure of all these nodes is
impossible, thus, at least one peer is alive in the overlay.

Slave nodes do not store information about their neighbors.
If a slave node directly receives a query, it checks its own
data and if the lookup fails it simply forwards the query to
its master node. For simplicity, in the SNBDT proposal we
opt for not connecting the slave nodes in a NBDT arrange-
ment and lookups are not implemented in slave nodes (un-
less future experiment results prove otherwise). The master
nodes of our proposal could be thought as ”virtual sinks”
with a NBDT overlay between these virtual sinks. The sen-
sornet protocol (SP) by Polastre et al. [13] allows different
MAC and link-layer technologies to co-exist by providing
a standardized ”narrow waist” interface to MAC, and pro-
vides an important step towards building a larger sensor-
net architecture. Unlike IP in the Internet, SP is not at
the network layer but instead sits between the network and
data-link layer (because data-processing potentially occurs
at each hop, not just at end points). Figure 2 shows how
P2P overlays can be implemented on top of SP. The P2P
overlay (shown as P2P Overlay Management in Figure 2)
could be built on top of any generic network protocol. An
underlying DHT or Hierarchical Clustering routing protocol
(e.g., VRR, CSN, TChord or SNBDT) is not necessary but
recommended as it simplifies the job of overlay management
and Caeser et al. show that it might be more efficient to
build DHT-based routing directly on top of the link layer
instead of implementing it as an overlay on top of a routing
protocol [3]. P2P Services and Applications (e.g. event no-
tification, resource allocation, and file systems) can then be
built on top of the P2P overlay and sensornet applications
could either use these services or communicate with the P2P
overlay themselves.

Figure 1: The SNBDT protocol

3. THE ELDT P2P OVERLAY
Let G a network graph of n sensor nodes and ELDT the

respective overlay of N peers. With each overlay peer p

Physical Architecture sensing carrier sense Transmit Receive

Data Link Media Access Time Stamping ACK

Sensor - Net Protocol (SP)

P
ow

er
 M

an
ag

em
en

t

S
ys

te
m

 M
an

ag
em

en
t

M
ob

ili
ty

 M
an

ag
em

en
t

D
is

co
ve

ry

S
ec

ur
ity

T
im

in
g

DHT && Hierarchical Network
Protocols (e.g. VRR, CSN,

TChord, SNBDT)

Address Free
Protocols

Named - Based
Protocols

P2P Overlay Management
(e.g. route maintenance,

resource discovery)

P2P Services and
Applications

(e.g.storage, naming,
event notification e.t.c.)

Sensor - Net Application

Figure 2: P2P Overlay in SP Architecture

(1 ≤ p ≤ N) we associate a set of pairs Sp = (g,Lg), where
g is a sensor node (1 ≤ g ≤ n) and Lg its current energy
level. The criterion of associating the sensor node g to peer
p depends on it’s current energy level. Obviously, it holds
that N << n. Let’s explain more the way we structure our
whole system.
The degree of the overlay peers at level i is defined to be
d(i) = t(i), where t(i) indicates the number of peers present
at level i. This is required to hold for i ≥ 1, while d(0) = 2
and t(0) = 1 (see figure 3). It is easy to see that we also
have t(i) = t(i − 1)d(i − 1), so putting together the vari-
ous components, we can solve the recurrence and obtain for

i ≥ 1: d(i) = 22
i−1

, t(i) = 22
i−1

. One of the merits of this
tree is that its height is O(loglogN), where N is the number
of elements stored in it.
We build our overlay tree by repeating the same kind of tree-
structure in each group of nodes having the same ancestor,
and doing this recursively. This structure may be imposed
through another set of pointers (it helps to think of these
as different color pointers). The innermost level of nesting
will be characterized by having a tree-structure, in which no
more than two nodes share the same direct ancestor. Fig-
ure 3 illustrates a simple example (for the sake of clarity we
have omitted from the picture the links between nodes with
the same ancestor). Thus, multiple independent tree struc-
tures are imposed on the collection of peers inserted. Each
element inserted contains pointers to its representatives in
each of the trees it belongs.
Lemma 1: The maximum number of nesting of trees that
we can have is itself O(loglogN).
Proof : See [1].
Each overlay peer stores tuples (g, L[g]), where L[g] is a
k − bit key belonging in universe K = [0, 2k − 1], which
represents the current energy-level of the sensor node g.
We associate to ith peer the set Si = {(g,L[g])}, where
L[g] ∈ [(i − 1)lnK, ilnK − 1]. Obviously, the number of
peers is N = K/lnK and the load of each peer becomes
Θ(polylogN) in expected case with high probability (for
more details see[1]). Each energy-level key is stored at most
in O(loglogN) levels. We also equip each peer with the ta-
ble LSI (Left Spine Index). This table stores pointers to the
peers of the left-most spine (for example in figure 3 the peers
1, 2, 4 and 8 are pointed by the LSI table of peer 5) and
as a consequence its maximum length is O(loglogN). Fur-
thermore, each peer of the left-most spine is equipped with

the table CI (Collection Index). CI stores pointers to the
collections of peers presented at the same level (see in figure
3 the CI table of peer 8). Peers having same father belong
to the same collection. For example in the figure 2, peers
8,9,10 and 11 constitute a collection of peers. It’s obvious
that the maximum length of CI table is O(

√
N).

4. ANALYSIS OF BASIC FUNCTIONALITIES
We assume that we are located at sink sensor node S ∈ G,

which has a very low energy level k′ and as a consequence
we want to search for another sink node T ∈ G with energy
level at least k. First, we locate the associating peer at the
p2p overlay, let s ∈ ELDT , and then we find the range
where the key k belongs. Generally assuming that k ∈ [(j −
1)lnK, jlnK − 1], where N the number of current overlay
peers, we have to search for the peer j. For example in figure
3 we are located at (green) peer 5 and we are looking for a
key k ∈ [13lnn, 14lnn − 1]. In other words we are looking
for (green) peer 14. The first step of our algorithm is to
find out the level of ELDT structure where the desired peer
j (14 in our example) is located. For this purpose we have
to exploit a nice arithmetic property of ELDT architecture.
This property says that for every node x located on the left-
most spine at level i, the following formula holds: value(x) =

father(x) + 22
i−2

(1)
For each level i, 0 ≤ i ≤ loglogN , we compute the left most
peer, let x it’s value, by applying the equation (1). Then we
compare the value j with the computed value x. If j ≥ x we
repeat the same process, otherwise we stop the loop process
with current value i. The latter means that node j is located
at ith level as well as the maximum number of repeated
loops is O(loglogN). Then, we follow the ith pointer of
table LSI located at peer s. Let x the destination peer,
meaning the left most peer of level i. Since the processing
overhead compared to communication overhead is negligible,
we ignore the O(loglogN) processing factor at each peer,
thus we need O(1) hops only for locating the desirable peer
x. Now, we must compute the collection in which the peer j
belongs to. Since the number of collections at level i equals
to the number of nodes located at level (i − 1) or t(i −
1) = 22

i−2

, we must divide the distance between j and x

by the factor t(i − 1). Let
⌈

j−x+1

22i−2

⌉

= m, that means we

have to follow the (m + 1)th pointer of table CI . Since,
the collection indicated by CI [m + 1] pointer is organized
in the same way at a next level of nesting, we continue the
above process recursively. Due to the fact that the maximum
number of nesting levels is O(loglogN), the whole searching
process requires O(loglogN) hops or lookup messages. Let
r ∈ ELDT the target node at the p2p overlay, which stores
sensor nodes of G with the appropriate energy level k. Let
R ∈ G the one randomly chosen. Node R becomes the
new sensor in which the task overhead will be eventually
forwarded. The theorem 1 follows:
Theorem 1: Assume an embedding ELDT lookup P2P
system into a sensor network G. Then, all the queries of the
form (a), (b) and (c) require O(loglogN) number of hops in
worst-case.
Let G the sensor network and T the basic ELDT overlay,
without nesting levels. We are located at sensor node S ∈ G
with low energy level k′ and we are looking for a sensor node
R ∈ G with the desired energy level k. Algorithm 1 depicts

the pseudocode for the Sensor Net Search routine.
Let T the basic ELDT overlay, without nesting levels. we
are located at peer p ∈ T and we are looking for the peer
r, which stores sensor nodes with energy-level key k, let
say k ∈ [(j − 1)lnK, jlnK − 1]. Algorithm 2 depicts the
pseudocode for the Overlay Search routine.
Let G the sensor network and T the overlay structure. We
are located at sensor node S ∈ G, the energy level of which
has been decreased from k1 to k2. We have to find the
new overlay peer to which the update node S is going to
be associated. Algorithm 3 depicts the pseudocode for the
update overlay node routine.

Algorithm 1 Sensor Net Search(G,S,T ,k′,k,R)

1: Find the peer node to which S is associated {Let p ∈ T
the respective overlay peer}

2: r = send overlay search(T, p, k) {Let r ∈ T the peer
node which stores sensor nodes with the desired energy-
level k, let say R a randomly chossen one}

3: Return R

1

S1={(A,L[A]),(C,L[C])}

[0,lnK-1]

2 3

[lnK,2lnK-1] [2lnK,3lnK-1]
........
........

.
1 k
Cache

........

........
.

1 k
Cache

........

........
.

1 k
Cache

LSI

CI

CI

LSI LSI

4 6 7

CI

5

........

........
.

1 k
Cache

........
.

1 k
Cache

........
.

1 k
Cache

........
.

1 k
Cache

LSI
LSI LSILSI

8

.........
........
1 k
Cache

9

.........
........
1 k
Cache

10

.........
........
1 k
Cache

11

.........
........
1 k
CacheCI

12

........

........
.

1 k
Cache

13

........

........
.

1 k
Cache

14

........

........
.

1 k
Cache

15

........

........
.

1 k
Cache

G = Sensornet Graph
A

C

K

G ELDT Overlay

Energy
Color

Energy
Color

L[A] and L[C]
belong in range

S4={(K,L[K]),(G,L[G])}

8

9 10

11

12

13 14

15

Figure 3: Building the ELDT Bipartite P2P Overlay

5. A P2P OVERLAY SIMULATOR FOR SEN-
SORNETS

The basic architecture of the Java P2P simulator (see Fig-
ure 4) is based on the message passing environment. The
peers exchange messages in order to build the overlay net-
work and to carry out the search, insert and delete oper-
ations of a sensor with the specific energy level. We have

Algorithm 2 Overlay Search(T ,p,k)

1: Compute j such as k ∈ [(j − 1)lnK, jlnK − 1];
2: if j=1 then i=0;
3: else if (j=2 or j=3) then i=1;
4: else
5: begin
6: x=4;
7: For (i=0; i<loglogN; ++i)
8: begin

9: x = father(x) + 22
i−2

;
10: if j<x then break();
11: end
12: end
13: follow the LSI [i] pointer of peer p;
14: Let x the correspondent node;

15: m =
⌈

j−x+1

22i−2

⌉

;

16: Follow the CI [m + 1] pointer of peer x;
17: Let y the first peer-node of the correspondent collection;
18: Let T ′ the ELDT structure of the collection above at

next level of nesting with root the node y;
19: p = y;
20: r = send Overlay Search(T ′, p, k);{recursive call of the

basic routine}
21: Return r;

Algorithm 3 Update Overlay Node(G,T ,S,k1,k2)

1: Find the peer node to which S is associated according
to old energy level k1;

2: Let p ∈ T the respective overlay peer;
3: Delete (S, k1) from p;
4: r = send overlay search(T, p, k2);
5: Insert the tuple (S, k2) into r;

Figure 4: The Simulator’s Model

implemented a class Message and a class Data. The class
Message has four private fields which hold the id of the
transmitter and the receiver, the type of the message and
a pointer to the Data object. Also, this class has static fi-
nal variables, which declare the type of the message (join,
insert, delete, etc.). To simulate the network’s behavior we
have implemented the class Network, which consists of a
buffer. The buffer is implemented with the Vector type of
Java and stores objects of type Message. This class also im-
plements several methods such as: sendMessage(), recvMes-
sage(), broadcast() and msgForNodeId(). When a node wants
to send a message it calls the method sendMessage which
takes one argument, the message. This method which is
synchronized attends to store the message into the buffer. If
the type of the message is ”search”, ”insert” or ”delete”, then
the algorithm writes to a logger a record with the following
format: i.e. ”Search message for node 3 to node 45.” The
produced log messages are used by the graphical user inter-
face to show how an operation is incrementally completed.
On the other hand, each peer observes consecutively the
network in order to verify if any message has been arrived.
This operation can be done with Network’s method msg-
ForNodeId. If there is a message for this node the method
returns the index where the message will be stored into the
buffer, otherwise it returns -1. In the first case, the node
can receive the message by calling the method recvMessage.
The broadcast() method is used during the construction of
the overlay for sending the same message over a range of
peers. This method which is also synchronized is a wrapper
function of sendMessage and is used only at the time of the
network construction, since no broadcast is needed during a
search operation.

Figure 5: The tab ”Operations”

5.1 The Peer Nodes
To simulate the overlay peers we have constructed the

class Node which extends the Java’s Thread class. This
class holds the tables which are necessary for constructing
the overlay and provides the methods for joining an incom-

Figure 6: The tab ”Experiments”

Figure 7: The tab ”SetUp”

ing node, deleting an existed peer, searching and updating
a sensor’s energy level. The threads communicate via the
network exchanging messages as described in the previous
section. If a new peer wants to join, the network has to send
a join message to one of its introducer nodes. The introducer
node listens to the request and forwards the message to the
appropriate node.

Figure 8: Average Messages per Level

5.2 System User Interface
We have implemented a class SimUI which is the interface

of our system. This class provides the methods for the ini-
tialization of our system, the functions for the search, insert
and delete operations and methods which provide general
information about the status of our structure as the total
number of sensors and peers, the load balance and the range
of the sensors’ energy level. This is the main class which also
starts up the graphical user interface which we describe in
the next.

Figure 9: Load balance after 200 updates with uni-
form distribution.

Figure 10: Lookup Performance Graph

5.3 Graphical User Interface
GUI has been implemented with NetBeans 6.0 software

and consists of a window with four tabs. In the first tab
(see Figure 7) the user can set the number of peers which
will constitute the overlay and select the energy level dis-
tribution over these nodes. The available distributions are:
uniform, normal, beta, and pow-law. After the user has set
these two fields then the system’s initialization can begin.
In the same tab there is a progress bar so the user can ob-
tain the overall process due to the fact that this process
may take several minutes. Also there is a button, which re-
sets the system without the need of closing and reopening
the simulator if we want to carry out several experiments
with different number of peers and energy level distribution.
The other three panels (see Figure 5) provide the ability to
search, insert and update the energy level of a sensor start-
ing the procedure from any peer in the overlay. While one
of these operations is being executed, appropriate messages
are appearing at the bottom of this tab. In the third tab
(see Figure 6) the user can prosecute experiments to eval-
uate the efficiency of the lookup/update operations. There
are two panels one for each operation where the user sets the
number of the experiments and selects the distribution ac-
cording to the energy-level keys of the sensors picked up for
the experiments. After the termination of the experiments
the user can see and save the chart that has been generated.
In the forth tab - statistics - the user can see the current
number of peers into the system, the number of sensors that
have been stored over the peers and the range of sensors’
energy level that we can store in the overlay. This tab rep-
resents also performance statistics such as the minimum,
the maximum and the average path of the total operations
that have been performed. Furthermore, this tab generates
a chart with the sensor’s energy level distribution over the
peers (see Figure 9), the number of messages that have been
forwarded by each peer (see Figure 10)and the number of
messages per tree level (see Figures 8).

6. EXPERIMENTAL RESULTS
By using the p2p java simulator described in previous sec-

tion, we evaluate the search path length and the load bal-
ancing performance of the following two protocols: SNBDT
and TChord. In order to understand in practice the routing
performance of these two protocols, we simulated a random
network graph G of n sensor and N overlay-peers, where

N = 2k and n = 22
k

, storing K = 100×2k energy-level keys
in all. We varied parameter k from 3 to 14 and conducted a
separate experiment of each value.

Pow-Law Distribution of keys

0
20
40
60
80

100
120
140
160
180

0 5 10 15

Parameter - k

Maximum
Current

Load

Load (TChord)

Load (SNBDT)

Figure 11: Load Balancing Performance Compari-
son with TChord when the inserted/deleted energy-
level keys draw pow-law distribution

Beta Distribution of keys

0

50

100

150

200

250

0 5 10 15

Parameter - k

Maximum
Current

Load

Load (TChord)

Load (SNBDT)

Figure 12: Load Balancing Performance Compari-
son with TChord when the inserted/deleted energy-
level keys draw beta distribution

Normal Distribution of keys

0

50

100

150

200

250

0 5 10 15

Parameter - k

Maximum
Current

Load

Load (TChord)

Load (SNBDT)

Figure 13: Load Balancing Performance Compari-
son with TChord when the inserted/deleted energy-
level keys draw normal distribution

Each node in an experiment picked a random set of keys
to query from the system, and we measured the path length
required to resolve each query. For the experiments we con-
sidered synthetic data sets. Their generation was based on
three bad distributions the behaviour of which even belongs
to smooth family it is also far away from the known good

distributions like uniform or regular. We talk about pow-
law, Beta and Normal distribution respectively. Figure 11
depicts that for skew distributions (like pow-law), the load
balancing of SNBDT outperforms TChord by a wide mar-
gin. Figures 12 and 13 depict that for Gaussian like (Beta)
or normal distributions the curves of SNBDT and TChord
converge, while the parameter k increases. The lookup and
update efficiency of our system is obvious (see figures 14
and 15) and in accordance with the aforementioned theo-
retical complexities. In all experiments we’ve done SNBDT
outperforms TChord.

Lookup Performance: Queries of type (a) and (b)

0

5

10

15

0 5 10 15

Parameter - k

Number of
Hops

Path_Length(TChord)

Path_Length(SNBDT)

Figure 14: Lookup Performance Comparison with
TChord

Update Queries of type (c)

0

5

10

15

20

0 5 10 15

Parameter - k

Number of
Hops

Path_Length(TChord)

Path_Length(SNBDT)

Figure 15: Update Performance Comparison with
TChord

7. CONCLUSIONS
We designed a novel P2P overlay for Energy Level discov-

ery in a sensornet, the so-called ELDT. It is the first time
where a P2P overlay network was built providing ”Energy-
Level” functionalities. We experimentally verify these func-
tionalities via an appropriate simulator we have designed for
this purpose. An extended experimental performance com-
parison with all the well-known P2P mapping schemes will
be included in the forthcoming journal version.

8. REFERENCES
[1] Muneeb Ali and Koen Langendoen, A Case for

Peer-to-Peer Network Overlays in Sensor Networks,
International Workshop on Wireless Sensor Network
Architecture(WWSNA’07), pages 56-61, Cambridge,
Massachusetts, USA, 2007.

[2] M. Ali and Z. A. Uzmi., CSN: A network protocol for
serving dynamic queries in large-scale wireless sensor
networks. In 2nd CNSR’04, pages 165-174, Fred-
ericton, N.B, Canada, 2004.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron., Virtual Ring Routing: Network
routing inspired by DHTs. In ACM SIGCOMM’06,
pages 351-362, Pisa, Italy, 2006.

[4] Crainiceanu, A., Linga, P., Gehrke, J. and
Shanmugasundaram, J., P-Tree: A P2P Index for
Resource Discovery Applications, WWW’04, pages
390-391, New York, NY, USA, 2004.

[5] D. Clark, C. Partridge, R. T. Braden, B. Davie, S.
Floyd, V. Jacobson, D. Katabi, G. Minshall, K. K.
Ramakrishnan, T. Roscoe, I. Stoica, J. Wroclawski, and
L. Zhang., Making the world (of communications) a
different place. ACM SIGCOMM’05 CCR, 35(3):91-96,
Philadelphia, PA, 2005.

[6] M.Demirbas, A.Arora, and M.Gouda., A
pursuer-evader game for sensor networks. Sixth
Symposium on Self- Stabilizing Systems(SSS’03), pages
1-16, San Francisco, CA, USA, 2003.

[7] Murat Demirbas, Hakan Ferhatosmanoglu, Peer-to-Peer
Spatial Queries in Sensor Networks, IEEE Proceedings
of the 3rd International Conference on Peer-to-Peer
Computing, pp. 32-40, Linkoping, Sweden, 2003.

[8] M. Gerla, C. Lindemann, and A. Rowstron., P2P
MANET’s - new research issues. In Dagstuhl Seminar
Proceedings, number 05152, Germany, 2005.

[9] Goodrich, M.T., Nelson, M.J. and Sun, J.Z., The
Rainbow Skip Graph: A Fault-Tolerant
Constant-Degree Distributed Data Structure, ACM
SODA’06, Pages 384-393, Miami, FL., 2006.

[10] H. V. Jagadish, B. C. Ooi, K. L. Tan, Q. H. Vu and R.
Zhang., Speeding up Search in P2P Networks with a
Multi-way Tree Structure, ACM SIGMOD’06, pages
1-12, Chicago, Illinois, 2006.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu., Baton: A
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st VLDB’05 Conference, pages
661-672, Trondheim, Norway, 2005.

[12] A.Mainwaring, J.Polastre, R.Szewczyk, D.Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. ACM Int. Workshop on Wireless Sensor
Networks and Applications, Pages 88-97, Atlanta,
Georgia, USA, 2002.

[13] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S.
Shenker, and I. Stoica., A unifying link abstraction for
wireless sensor networks. In 3rd ACM SenSys’05, pages
76-89, San Diego, 2005.

[14] Ratnasamy, S., Francis, P., Handley, M., Karp, R. and
Schenker, S., A scalable content-addressable network,
ACM SIGCOMM Computer Communication Review
31(4),161-172.

[15] Rowstron, A. and Druschel, P., Pastry: A Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems, Springer Book
Chapter, LNCS 2218, 329-350.

[16] S.Sioutas, NBDT: An efficient p2p indexing scheme
for web service discovery, Journal of Web Engineering
and Technologies, Vol. 4 (1), pp 95-113, 2008.

[17] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R.,
Kaashoek, M.F., Dabek, F. and Balakrishnan, H.,
Chord: a scalable peer-to-peer lookup protocol for
internet applications, IEEE/ACM Transactions on
Networking (TON) 11(1), pages 17-32, 2003.

