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Abstract. Graph data structures constitute a prominent way to model
real-world networks. Most of the graphs originating from these networks
are dynamic and constantly evolving. The state (snapshot) of a graph
at various time instances forms an evolving graph sequence. By incor-
porating temporal information in the traditional graph queries, valu-
able characteristics regarding the nature of a graph can be extracted
such as the evolution of the shortest path distance between two vertices
through time. Most modern graph processing systems are not suitable
for this task since they operate on single very large graphs. In this work
we review centralized and distributed methods and solutions proposed
towards handling evolving graph sequences.
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1 Introduction

Modern times, have witnessed a rapidly expanding volume of data generated
by significantly different types of sources. A substantial portion of the available
data, such as data originating from social networks, citation networks, sensor net-
works and others [13], can be modeled into graph data structures. The vertices
of these graphs represent the entities of each network while the edges express
relationships between the different entities. As an example, in a graph corre-
sponding to a social network, the vertices denote the users of the network and
the edges signify the friend-relationships between them.

A common characteristic of most real-world networks is that they do not
remain static and are constantly evolving. For instance, the state of Facebook
on one day is different to its state on the following day since there have been new
user accounts created and friendships formed or deleted. Other networks, such
as citation networks, only grow larger as they move forward in time since, due
to the network’s nature, vertices and edges are only added and never deleted.
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It follows that, there exists a range of queries that aim to provide further insight
on the nature of each network by incorporating temporal aspects in the tradi-
tional graph processing methods. Some examples of these queries would be to
determine the evolution of a graph’s diameter, the shortest path distance of two
vertices through time and the vertex degree distribution of a graph at different
time instances.

By periodically collecting the state of a graph at various time instances
we form an evolving graph sequence. Current centralized and distributed graph
processing systems such as Pregel [14], Neo4j [15], Trinity [19], Giraph [7] and
others focus on processing single and very large graphs without supporting tem-
poral extensions to the typical graph processing queries. As a result, these
systems are not inherently suitable for performing analysis on evolving graph
sequences.

Most of the research conducted towards handling evolving graph sequences
aims to exploit the commonalities that exist between a graph in different time
instances in order to improve space or time efficiency. As an example, even
though social networks are dynamic and change over time, the majority of the
users and the friend relationships between them remain the same across multiple
time instances. For that reason, a system that effectively handles evolving graph
sequences should perform better compared to a single graph processing system
that operates on the individual graphs of the sequence.

The work performed in the area is in an inceptive stage and thus we present
solutions for both centralized and parallel or distributed approaches. Among the
centralized methods is the FVF framework by Ren et al. [17] that groups the
sequence graphs into clusters and operates on them. Another method was pro-
posed by Koloniari et al. [10] and it is based on maintaining a log of operations
(defined as deltas) that occur in the graph between various time instances and
employing it to reconstruct the graph at a particular time instance. Caro et al.
[2,4] proposed space-efficient methods that utilize compact and self-indexed data
structures to reduce the total space cost. Finally, methods have been proposed
[1,8,18,21] that index the sequence in a manner that permits the efficient eval-
uation of certain queries. In the parallel and distributed setting there have been
two main methods proposed: The DeltaGraph system [9] is based on the princi-
ple of deltas and aims to efficiently store and retrieve the graph at specific time
instances. Finally, the G* system [11,12,20] is a parallel graph database that
focuses on taking advantage of the commonalities present between a graph in
different time instances to store the sequence in an efficient manner.

The rest of the work is organised as follows. In Sect. 2 we provide formal
definitions regarding graphs, evolving graph sequences and a general problem
definition. In Sect. 3 we present centralized methods and in Sect. 4 we focus on
the parallel and distributed approaches. Finally, we conclude our work in Sect. 5.

2 Definitions

In this section we will provide some basic definitions about the general problem
setting. First, we will formally define evolving graph sequences and then move on
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to discuss about the different query types that can be performed with regard to
evolving graph sequences. Without loss of generality we will focus on undirected
graphs since directed graphs mostly follow the same principles.

Definition 1 (Evolving Graph Sequence). We define an evolving graph
sequence G to be a collection of snapshots G = 〈G1, G2, G3, . . .〉. A graph snap-
shot Gi ∈ G where Gi = (Vi, Ei), corresponds to the graph G at time instance i
and is characterized by a set of vertices Vi and a set of incoming and outgoing
edges Ei.
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Fig. 1. An evolving graph sequence

The rate at which snapshots are obtained depends on the underlying network
that the graph represents and is largely application-specific. Figure 1 depicts an
evolving graph sequence which will serve as a running example for the remainder
of this work. In this example, the evolving graph sequence G is composed of three
snapshots G1, G2 and G3 with each snapshot corresponding to the state of the
graph G at time instances 1, 2 and 3 respectively. To obtain a particular snapshot
from another snapshot in the sequence a set of operations has to be performed
(e.g. by adding an edge between a and c in G1 and removing the edge between
c and d we obtain G2). It is worth noting that a set of vertices or edges may
not change at all in the entire sequence (e.g. b) and this fact can be exploited
to reduce the total space or time cost when storing or querying the sequence
respectively.

The aim of a system that handles evolving graph sequences is to efficiently
store or index the sequence so as to answer historical analytic queries. We dis-
tinguish between two versions of the problem setting. In the offline version the
entire sequence G is known beforehand and update operations are not supported
in any snapshot (i.e. G = 〈G1, G2, G3〉 only consists of G1, G2 and G3 and no
new snapshots are created). In the online version, G is constantly evolving and is
not characterized by a “final” snapshot (i.e. G = 〈G1, G2, G3, . . .〉 may eventually
end up with more than three snapshots).
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2.1 Query Types

The queries that can be performed upon evolving graph sequences can be char-
acterized with respect to two main types [10]: their time domain and their graph
scope. Regarding the time domain, queries are performed on either a particular
time point or a time interval. In the case of a time point query we are interested
in extracting a characteristic of the graph at a time instance t, while in a time
interval query the objective is to study the evolution of a graph measure through
an interval of time [t, t′]. Queries are also distinguished by the scope of the graph
that they operate on. More specifically, a query is focused on evaluating a graph
measure concerning either a small set of vertices or the entire graph.

Most of the queries can be mapped to a combination of these two categories.
As an example, consider the query “How has the shortest distance between
a and c evolved over time instances ts and te” which can be defined as a time
interval query that focuses on a set of vertices. Similarly, the query “What is the
diameter of G at time instance ti” is a time point query that is concerned with
the entire graph.

3 Centralized Methods

Having provided the basic definitions with respect to the problem of handling
evolving graph sequences, we move on to methods and solutions proposed for
centralized environments. We begin with the FVF framework by Ren et al. [17]
followed by the works of Koloniari et al. [10] and Caro et al. [4]. We conclude the
section by discussing indexing methods for evolving graph sequences that tackle
certain historical queries.

3.1 The FVF Framework

The first centralized method we review is the FVF (FIND - VERIFY - FIX)
framework proposed by Ren et al. [17]. The authors describe a method that
consists of two phases, a preprocessing phase and a query-processing phase,
and additionally propose storage models for the evolving graph sequences that
support the aforementioned framework.

In the preprocessing phase the initial snapshots of the sequence are grouped
into smaller clusters of similar snapshots. This is performed by defining a graph
similarity measure and by incrementally adding snapshots in a cluster (starting
from the first snapshot in the sequence) until a graph similarity threshold has
been surpassed. At that point, a new empty cluster is created and the above
procedure is repeated until all the snapshots have been examined. For each
cluster, two representative graphs G∩ and G∪ are extracted which are the largest
common subgraph and the smallest common supergraph of all snapshots in the
cluster respectively. For example, if we assume that G1 and G2 from Fig. 1 are
grouped in the same cluster their respective G∩ and G∪ graphs correspond to
the graphs in Fig. 2.
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Fig. 2. G∪ and G∩ for the evolving graph sequence in Fig. 1

In the query-processing phase the authors use the clusters and their repre-
sentative graphs to answer shortest path and closeness centrality queries. At first
they evaluate the solution to a query for the representative graphs of the cluster
(“FIND” step) on the basis that the solution will readily apply to a number of the
snapshots in the cluster. In the “VERIFY” step, the evaluated solution is tested
with each snapshot in the cluster in conjunction with a set of intuitive lemmas.
For each snapshot that the evaluated solution does not apply, the framework
attempts to “FIX” the solution so that it also applies to the aforementioned
snapshot.

The authors also propose three storage models that can be used along with
the FVF framework. The models make use of the similarities exhibited between
successive snapshots and between representative graphs of successive clusters to
reduce the total space cost of the evolving graph sequence. Finally, they assess
their work through extensive experiments on both real and synthetic datasets.

3.2 Using Graph Deltas for Historical Queries

The authors in [10] advocate the use of graph deltas to support historical queries
on evolving graph sequences. They begin by stating the operations that are sup-
ported on each snapshot, namely, addNode(ui), remNode(ui), addEdge(ui, uj),
remEdge(ui, uj) which correspond to the addition or removal of a vertex ui and
the addition or removal of an edge between two vertices ui and uj respectively.
Graph deltas are defined to be sets of such operations that when applied on a
particular snapshot they yield another snapshot of the sequence. For example in
Fig. 1, G3 can be obtained by applying {addNode(e), addEdge(a, e)} to G2.

Furthermore, they define complete deltas to be sets of operations that when
applied on the first snapshot of the sequence they are able to yield any of the
sequence’s snapshots.1 Additionally, inverted deltas are defined to be sets of
1 Certain snapshots require applying only a subset of the operations in a complete

delta.
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operations that when applied on a snapshot Gt they yield a snapshot Gt′ where
t′ < t, that is, Gt′ occurs “earlier” in the sequence than Gt.

Having defined the different types of deltas, the authors discuss snapshot
materialization techniques and policies. More specifically, while any of the
sequence’s snapshots may be reconstructed if a complete and invertible delta
and another one of the sequence’s snapshots are maintained, it may be to the
method’s benefit to also maintain interposed snapshots to speed up snapshot
materialization.

The next body of the work proposes three plans for efficient query process-
ing. Perhaps the most universal of the proposed plans is a two-phase query plan
that first materializes a particular snapshot according to the techniques dis-
cussed and then executes the query on the materialized snapshot. Finally, the
authors discuss potential optimizations, delta indexing approaches and present
some preliminary results of their solutions.

3.3 Compact Sequence Representations

Until this point the previous work we discussed was focused on reducing the
total time cost of queries on evolving graph sequences. In the following works by
Caro et al. [4] the authors address the problem of reducing the space cost when
handling evolving graph sequences. Their proposed methods are heavily based on
compact and self-indexed data structures that coupled with certain compression
techniques (such as ETDC [3] and the PForDelta technique [22,23]) achieve
overall high space efficiency with a good trade-off on the total time cost of the
queries.

The authors use the concept of contacts as described by Nicosia et al. [16]
to define temporal graphs.2 A contact is defined to be a 4-tuple (u, v, ts, te) that
signifies the existence of an edge between vertices u and v during the time period
[ts, te]. The collection of all contacts is equivalent to the temporal graph itself,
while, a particular snapshot Gt corresponds to the set of contacts (u, v, ts, te)
such that t ∈ [ts, te].

Next, operations that can be performed upon temporal graphs are presented.
Those include:

– neighbor queries (i.e. report all neighbors of a vertex u),
– reverse neighbor queries (i.e. report all vertices that have a vertex u as neigh-

bor),
– active edge queries (i.e. does there exist an edge between two vertices u and

v at time instance t?),
– retrieving a snapshot of the graph at time instance t,
– edge state change queries (i.e. report all edges that have had their state

changed at time instance t, that is all contacts that ts = t or te = t)

2 Throughout the remainder of this work we will use the terms “evolving graph
sequences” and “temporal graphs” interchangeably.
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After a brief overview of the compression techniques and compact data struc-
tures they use in their work, the authors focus on the four temporal graph rep-
resentations they propose along with their implementations that take advantage
of the compression techniques. The first representation, called EdgeLog is an
index that maintains for every vertex v in the temporal graph a list with the
neighbors of v. Each neighbor of v is also equipped with a list containing all
the time intervals that the particular edge exists in the sequence. The EdgeLog
structure for a sequence composed by the graphs G1 and G2 of the example in
Fig. 1, is depicted in Fig. 3.
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Fig. 3. EdgeLog and EveLog for the evolving graph sequence in Fig. 1

The second representation, called EveLog, follows a similar approach to the
first. More specifically, EveLog is composed of a list with all the vertices that
appear in the temporal graph. For each vertex v, there exists a list with all
the “events” related to v (i.e. edge state change along with the vertex at the
other end of the edge). The third representation is titled Compact Adjacency
Sequence (CAS) and is based on the use of the Wavelet tree, while the fourth
representation (CET) is based on the Interleaved Wavelet tree which is a data
structure proposed in the same work as an additional asset to handling temporal
graphs.

The work is concluded with extensive experimental evaluation over synthetic
and real datasets through which the authors reach an interesting conclusion that
there isn’t a single best data structure for all the queries performed on temporal
graphs. As a last remark, we should note that the above work focuses on the
offline version of the problem, yet it also mentions alterations and modifications
that need to be done in order for the solutions to apply to the online version.
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3.4 Constructing Indices for Specific Queries

The work presented so far mostly focuses on efficiently storing, maintaining
and retrieving the snapshots of an evolving graph sequences. There have been
methods proposed in literature that instead aim to index the evolving graph
sequence in a manner that permits the effective evaluation of specific queries.
We present some notable examples in the section that follows.

Akiba et al. [1] describe dynamic indexing schemes that permit them to
answer distance queries on either the last snapshot (current) or in any “older”
snapshot in the sequence. Furthermore, they support the historical distance
change-point query that reports all the time instances in the sequence where
the distance between two vertices u and v changes. It is worth noting that in
their work, they handle graphs that only support vertex additions and edge
additions.

An other method that concentrates on answering shortest path queries was
proposed by Huo et al. [8]. The authors make use of a Temporally Evolving Graph
structure to store all the updates that occur in the sequence and proceed to use
variations of Dijkstra’s algorithm [5] to compute shortest paths. Furthermore,
they speed up their solutions by making use of preprocessing indexes, namely,
Contraction Hierarchies [6].

Yang et al. [21] propose an algorithm that discovers most frequently chang-
ing components in an evolving graph sequence. They begin by defining measures
of change between vertices and the general problem of extracting the most fre-
quently changing component and proceed to present their solutions.

Finally, Semertzidis et al. [18] tackle the problem of answering historical
reachability queries. Their proposed index structure is called TimeReach and it
is built in a manner that takes advantage of the strongly connected components
that are present in a graph.

4 Parallel and Distributed Methods

In this section we turn our attention to methods and solutions that were pro-
posed for parallel and distributed environments. The two systems that we will be
analyzing are the DeltaGraph system by Khurana et al. [9] and the G* parallel
graph database by Labouseur et al. [11,12,20].

4.1 The DeltaGraph System

Khurana et al. [9] designed and implemented a distributed system called Delta
Graph that aims to efficiently store and retrieve snapshots from an evolving
graph sequence. DeltaGraph supports time point (singlepoint) queries, time
interval snapshot queries and multiple time point (multipoint) queries. Fur-
thermore, along with the graph structure a query is also able to return the
attributes of vertices and edges (e.g. name, weight etc.) The system is composed
of two main components: the DeltaGraph index structure and the GraphPool
in-memory data structure.
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The DeltaGraph index is described as a rooted hierarchical graph struc-
ture that resembles a tree with adjacent leaves connected to each other in a
bidirectional manner. The leaves of the structure correspond to snapshots of
the sequence while the inner nodes correspond to graphs that can be obtained
by applying a differential function (e.g. Intersection) to its children. The edges
between the nodes store sets of deltas that are used to obtain a child node from
its parent and they are horizontally partitioned between workers. It should be
noted at this point that the only data stored are the sets of deltas and not the
graphs themselves although the authors advocate the materialization of specific
snapshots in DeltaGraph so as to speed up query time.

To answer a singlepoint query for a time instance t, the system locates
through a binary search among the leaves the two adjacent leaves that “encom-
pass” the query point t. Afterwards, it finds the minimum-weight path from the
root to either of the two leaves, where the weight of an edge is set to be equal
to the size of its respective delta. For multipoint queries, the system follows the
same procedure with the difference being that instead of finding a path with
minimum weight the system has to find the lowest-weight Steiner tree between
the root and the multiple time instances.

The other component of the system is the GraphPool data structure which
maintains in-memory a combination of materialized snapshots. More specifically,
GraphPool maintains the current graph, historical snapshots and materialized
graphs in a single combined graph. To determine which graphs contain a cer-
tain component or attribute the system makes uses of a mapping table. Finally,
GraphPool is responsible for keeping the current graph index updated and clean-
ing up historical snapshots that are no longer needed.

4.2 The G* Graph Database

The last system we will be reviewing is the G* graph database by Labouseur
et al. [11,20] that focuses on taking advantage of the commonalities that exist
between snapshots in a sequence so that they are stored in an efficient manner.

In the G* system, each server is assigned a set of vertices along with all the
outgoing edges of each vertex in the set. This achieves significant data locality
since obtaining all of a vertex’s edges can be accomplished without the need to
contact any of the other servers. Furthermore, since the snapshots in a sequence
exhibit similarities between them, G* avoids storing redundant information by
only storing each version of a vertex once and, in that way, data that isn’t
modified between different snapshots isn’t needlessly stored again.

Additionally, each server maintains an index named Compact Graph Index
(CGI) that stores a single (vertexID, disk location) pair for each vertex version
that exists in a combination of the sequence’s snapshots. For example, the CGI
of a server maintaining vertex c of Fig. 1 would contain two pairs related to c:
A pair for version c1 in {G1} and another pair for version c2 in {G2, G3}.
It should be noted that the CGI has a low space overhead and can be mostly or
fully kept in memory. As a last remark, the authors have proposed splitting the



190 A. Kosmatopoulos et al.

Table 1. Summary of the works reviewed

Citation Setting/Environment Purpose/Approach

[17] Centralized Snapshot Storage & Retrieval, Shortest Paths,
Closeness Centrality Queries

[10] Centralized Snapshot Storage & Retrieval, Two-Phase Query
Plan

[4] Centralized Snapshot Storage & Retrieval, Compact and
Self-Indexed Data Structures

[1] Centralized Historical Distance Queries

[8] Centralized Shortest Path Queries

[21] Centralized Discovery of Most Frequently Changing
Components

[18] Centralized Historical Reachability Queries

[9] Distributed Snapshot Storage & Retrieval

[11] Distributed Snapshot Storage & Retrieval

CGI in a specific manner when a large number of graph combinations has been
formed in its contents.

In a similar spirit to the storage module of G*, the CGI can also be used
with regard to query processing to ensure that each version of vertex or edge is
only processed once per query evaluation. Furthermore, the G* system supplies
three types of primitives that can be used to construct graph query operators:
summaries, combiners and bulk synchronous parallel (BSP) operators. Finally,
in [12] the authors discuss snapshot replication and distribution techniques.

5 Conclusions

A significant fraction of contemporary networks can be modeled into graph data
structures that are dynamic and constantly evolving. By integrating temporal
information with typical graph queries we can obtain an improved understand-
ing of a graph’s overall nature. In this work we reviewed methods and systems
proposed that aim to efficiently handle evolving graph sequences. A concise sum-
mary of the works presented can be seen on Table 1.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in knowledge society through
the European Social Fund.”



An Overview of Methods for Handling Evolving Graph Sequences 191

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance
queries on large evolving networks by pruned landmark labeling. In: 23rd Interna-
tional World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11
April 2014, pp. 237–248 (2014)

2. Brisaboa, N.R., Caro, D., Fariña, A., Rodŕıguez, M.A.: A compressed suffix-array
strategy for temporal-graph indexing. In: Moura, E., Crochemore, M. (eds.) SPIRE
2014. LNCS, vol. 8799, pp. 77–88. Springer, Heidelberg (2014)

3. Brisaboa, N.R., Fariña, A., Navarro, G., Paramá, J.R.: Lightweight natural lan-
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