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ABSTRACT
Suppose we have a virus or one competing idea/product that
propagates over a multiple profile (e.g., social) network. Can
we predict what proportion of the network will actually get
”infected” (e.g., spread the idea or buy the competing prod-
uct), when the nodes of the network appear to have different
sensitivity based on their profile? For example, if there are
two profiles A and B in a network and the nodes of profile
A and profile B are susceptible to a highly spreading virus
with probabilities βA and βB respectively, what percentage
of both profiles will actually get infected from the virus at
the end? To reverse the question, what are the necessary
conditions so that a predefined percentage of the network
is infected? We assume that nodes of different profiles can
infect one another and we prove that under realistic con-
ditions, apart from the weak profile (great sensitivity), the
stronger profile (low sensitivity) will get infected as well.
First, we focus on cliques with the goal to provide exact
theoretical results as well as to get some intuition as to how
a virus affects such a multiple profile network. Then, we
move to the theoretical analysis of arbitrary networks. We
provide bounds on certain properties of the network based
on the probabilities of infection of each node in it when it
reaches the steady state. Finally, we provide extensive ex-
perimental results that verify our theoretical results and at
the same time provide more insight on the problem.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications -
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1. INTRODUCTION
Suppose a new game has been published for PS4. The

fans of PS4 will start posting tweets on Twitter about this
new game and their followers/friends will retweet in turn,
provided that they are also fans of PS4. Followers/agents
that are not interested in PS4 will be neutral towards this
tweet while followers/agents that are fans of XBOX One will
be rather indifferent, if not hostile, and will not retweet, at
least not to this extent. It is natural to expect that this
information about this game will propagate through most
of the PS4 fans, but will have a smaller degree of propaga-
tion to other groups of agents. This simple example shows
a fundamental truth in information propagation over social
networks: that not all agents have the same affinity for some
particular piece of information. This is true in most of the
settings where an idea/rumor/virus propagates subject to
particular restrictions over the nodes of a network. This pa-
per is a first attempt (to the best knowledge of the authors)
to incorporate the affinity/susceptibility of agents towards
a particular idea/rumor/virus under a specific propagation
model.

The general setting considered in this paper consists of a
(or many) virus that try to infect as many nodes as possible
in a given network. The rules of the game are dictated by
the SIS model, which is an epidemiological model where each
node can be in any of the two states: susceptible to infection
or infected. As implied by our previous discussion, we use
this epidemiological model in the general setting of informa-
tion diffusion, meaning that a virus may as well correspond
to a piece of information diffused on a social network subject
to the rules posed by the SIS model.

There are many interesting questions arising in this set-
ting. How will a virus propagate over a given network? Can
we determine whether all members of the network will be
infected or will it spread in a small group in the network
and then die out quickly? Similarly, when can we say that
such an infectious virus will take off? What are the neces-
sary conditions for the virus to flood the network? What are
the necessary conditions related to the characteristics of the
network (e.g., mean degree) for a particular virus to infect
most (or some percentage of the network)? Finally, what is
the case when the nodes have different endurance/sensitivity
to the ”virus” and have temporary or permanent immunity?
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Table 1: Theoretical results presented in this paper. The
maximum eigenvalue of a square matrix is represented by ρ.

Fixed Point Condition

Clique

IA, IB → 0 N δAβB+δBβA
δAδB

< 1

IA, IB = cN, c ∈
(
1
2
, 1
)

βA = δA
2N(1−c)

βB = δB
2N(1−c)

IA = (1− c)N, IB = cN, c ∈ (0, 1) βA = δA
N

(1−c)
c

βB = δB
N

c
1−c

Arbitrary Graph

f = 0̂ ρ(B ·A−∆) < 0
f = perron eigenvector of

∆−1BQA with eigenvalue 1 ρ(B ·A−∆) > 0

∀i : fi ∈ [a, b], 0 < a < b < 1 a
b(1−a) <

βA
δA
d(i) < b

a(1−b)
a

b(1−a) <
βB
δB
d(i) < b

a(1−b)

∀i ∈ B : fi ∈ [a, b], 0 < a < b < 1 δA
βA

a
b(x−a) <

1
x
dA(i)+

+dB(i) < δA
βA

b
a(x−b)

∀i ∈ A : fi ∈ [ a
x
, b
x

], x > 1 δB
βB

a
b(1−a) <

1
x
dA(i)+

+dB(i) < δB
βB

b
a(1−b)

Our basic assumption and innovation when compared to
all previous approaches is that there is no fair-play and nodes
have different profiles against the virus. That is, the network
is heterogeneous with respect to the virus, which means that
nodes have different sensitivity to it. This is one of our main
contributions in comparison with previous results where all
nodes appear to have the same behavior towards the virus
and the same model parameters [5, 20]. The propagation
model which is followed, resembles the SIS (no immunity
like flu) model where nodes are either susceptible or infected
but with modifications. All nodes can get infected from one
another, despite the difference of their profiles.

Our main contribution is that we provide answers for some
of the questions above, for special topologies as the clique
and arbitrary graphs of high or low connectivity. To the
best of our knowledge, we are the first to provide theoretical
and experimental findings on the propagation of a virus over
a heterogeneous network. We prove that in the case of two
profiles, if one profile has high sensitivity to the virus and the
other one has low sensitivity then nodes from both profiles
will get infected in the case where the network is a clique.
For arbitrary networks, we prove necessary conditions for the
virus to die out allowing for multiple profiles (not just two).
In the case of two profiles, we connect the degree of the nodes
of the network to the footprint of the virus. The problem has
many applications in the field of viral marketing, medicine,
ecology, etc.. In Table 1 we provide an overview of our
theoretical findings.

The outline of the paper is as follows: we provide a review
of recent related work in Section 2 and we give a detailed
formulation of our model in Section 3. Then, we present the
analysis for every fixed point and the proof for our model
in Section 4. Next, in section 5 we verify our results with
simulation experiments. Finally, we discuss issues and fur-
ther extensions of our model and conclude in Sections 6 and
7 respectively.

2. RELATED WORK
We provide an overview of related work on the field of

epidemiology and information propagation. Known propa-
gation models are the SIS model (no immunity), the SIR
(lifetime immunity), SIRS (temporary immunity) etc. A
survey for the available models in the field can be found in
[11]. One of the main topics in the field, is the epidemic
threshold because of its role in the spread of an epidemic.
It provides the conditions and appropriate parameters for a
virus to reach the limit, which when crossed results in an
epidemic. Earlier work in virus propagation models, include
homogeneous models where every member of the group has
equal contact to others in the population [18, 1, 3]. A lot
of research focused on graphs of specific type such as ran-
dom graphs, power-law graphs [14, 19] and other. However,
the authors in [8] prove that for arbitrary topologies in the
SIS model, the epidemic threshold depends on the leading
eigenvalue of the adjacency matrix of the graph.

The majority of the presented models have studied a sin-
gle epidemic in a single topology whereas in later work [20],
multiple virus models are introduced. All of them require
that the network is fair-play, which means that all nodes
have exactly the same behavior towards the viruses. In [20],
an SI1I2S model was used with two competing viruses that
infect nodes of arbitrary topologies where the nodes are mu-
tually immune. The main result is that for any topology
the stronger virus (above threshold) survives and wipes out
the weaker one (”winner takes all”). In later work, the con-
dition for mutual immunity is removed and the focus is on
the conditions where nodes are infected from both viruses
[5]. In both cases, the model used is SIS-like whereas in
[21] the authors provide a generalized model that includes
the majority of known epidemiological models with appro-
priate parameter definition in discrete time. All the afore-
mentioned models, are applied to simple networks whereas
recent work [23], refers to competing viruses in a composite
network and conjectures that the stronger one will prevail
over the weaker. Once again, the problem is formulated by
a non-linear dynamical system.

Another section of related work is in the field of informa-
tion diffusion. This includes apart from biological viruses,
”viruses” with social, economic and market content, such as
memes, competing products, rumors. As a result, research
focus on information cascades, viral marketing, and com-
peting product penetration [7]. The models presented for
information cascade, are divided in two classes, the Inde-
pendent Cascade [13] and the Linear Threshold (LT) [10].
An interesting approach is presented in [15] where the au-
thors construct a layered graph and apply bond percolation
with a pruning strategy in order to efficiently estimate the
influence function for the SIS model in social networks while
in [22] the authors try to discover influential nodes in such
networks. In the field of IC and LT, an important extension
can be seen in [4]. Here the authors present a topic-aware ex-
tension of these well-know models and they propose a strat-
egy for modelling authoritativeness, influence and relevance
from such a perspective, a topic-aware perspective.

3. PROBLEM FORMULATION
We assume a SIS propagation model [11] that is applied on

a heterogeneous network. That is, we assume that there is
no fair game using the terminology of [20, 5]. Since this is the
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Table 2: Frequently used symbols.

Symbol Interpretation

G =
(V,E)

the graph G with set of nodes V and set of
edges E

N number of nodes in each profile or total
number of nodes

A, B two sets of nodes that correspond to differ-
ent profiles

βA infection rate for profile A
δA healing rate for profile A
pi,A probability that node i in profile A is in-

fected
pi probability that node i is infected (profile

is indifferent)
d(i),
dA(i)

degree of node i and degree of node i w.r.t.
profile A nodes only, respectively.

IA number of nodes infected in profile A
J the jacobian of the dynamical system
A adjacency matrix of the underlying graph
∆ a diagonal matrix containing the healing

rates (δ) for each node (depends on the pro-
file)

B a diagonal matrix containing the attack
rates (β) for each node (depends on the pro-
file)

p a state column vector with probabilities of
infection (pi) for each node

Q a diagonal matrix containing the probabil-
ities (1− pi) that nodes are not infected

λ the eigenvalue of the corresponding matrix
I identity matrix of appropriate size
x̂ column vector full of x’s

first theoretical treatment of heterogeneous environments for
virus propagation we choose to work in the simple model of
SIS. Even in this model, the analysis is quite complex. The
heterogeneity of the network is realized by the existence of
different profile agents with respect to the virus. That is,
the virus has different behavior based on the profile of the
agent.

This is completely different when compared to the exis-
tence of multiple viruses over a network (e.g., [5]). In the
case of multiple viruses, the interesting issues are related
to how the footprints of these viruses reaches an equilib-
rium subject to various rules of interaction. In our case, we
assume a single virus which affects a network of multiple
profiles. Until now there was no treatment (e.g., [21]) of
heterogeneous networks. To simplify the analysis we focus
on a simple model (SIS) and we also assume the existence of
two profiles, profile A and profile B - although in the general
case we can allow for multiple profiles.

The following parameters define our problem:
Healing Rate: It is the death rate δA of the virus in profile
A. This means that when an agent (a node in the network)
is infected then the time taken to heal is exponentially dis-
tributed with respect to the parameter δA. Intuitively, a
high δ value means that the time taken to heal is small while
for low δ the time taken to heal is high and the virus per-
sists. For example, imagine a rumor about PS3 in a social

network where there are groups of PS4 fans (low δ), groups
of XBOX One fans (very high δ) and other groups that have
relatively high δ.
Attack Rate: It is the infection rate of the virus. This
depends on the endurance of the agent, which defines its
profile with respect to the virus. An agent belonging to pro-
file A has endurance βA towards the virus, or alternatively,
the virus has attack rate βA towards agents in profile A. In
our game console setting, a high β means that the agent is
susceptible to the rumor about PS4 while a low β means
that the agent does not care about it since he may be a fan
of a competitive product (XBOX One).

3.1 Formal Problem Statement
We assume an undirected connected graph G = (V,E),

where the set of nodes V corresponds to agents and the set
of edges E corresponds to an established relation through
which the virus can infect other nodes.

The general statement of the problem we wish to solve
is the following: Given a network G = (V,E) and the SIS
parameters {βA1 , βA2 , . . . βAk} and {δA1 , δA2 , . . . δAk} for
a set of profiles {A1,A2, . . . Ak}, determine the conditions
under which the virus reaches a particular equilibrium state.

In the following, most of the times we focus on the case
of two profiles, in which case we name the second one A2 as
B.

4. ANALYSIS - PROOFS
We first analyze the case where the graph G is a clique of

size |V | = 2N . The reasons for this choice are twofold. First,
we provide exact theoretical results. Second, we acquire
intuition as to how the virus propagates on heterogeneous
networks. Finally, we proceed with the analysis of arbitrary
graphs.

4.1 Proof Roadmap
The proof consists of the following steps:
1. Dynamical System: We construct a dynamical sys-

tem of differential equations to approximate the virus prop-
agation model and the process followed. In particular, the
dynamical system is of the form x′ = F (x), where x′ is the
component-wise derivative of x and F : < → < is continuous
and differentiable.

2. Fixed Points: We want to find the possible points
where the dynamical system is in equilibrium and does not
change state. Every point ~x (~x is a vector) where F (~x) = 0 is
considered to be such a point, called a fixed point. There are
several fixed points of the system, depending on the spread
of the virus and the sensitivity/endurance level of the agents.
However, we choose to present those that give better insight
of the system behavior.

3. Stability conditions: We focus on the conditions re-
quired for each fixed point to be stable so that a possible
perturbation will not push the system away from the equi-
librium point. We are interested in the stability conditions
of three scenarios:
a. HIGH: Both profiles in the network have great en-

durance against the virus and tend to stay susceptible.
b. LOW: Both profiles have equally low endurance against

the virus and all agents get infected.
c.MIXED: One profile has low endurance against the virus

and the corresponding proportion of the network tends to
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get infected while the other profile has high endurance and
the corresponding agents tend to stay susceptible.

In conclusion, after constructing a suitable dynamical sys-
tem to describe the propagation process we continue with
the analysis of the possible fixed points. Intuitively, one
would require for each fixed point to be a stable attractor
and not lead the system far away from the equilibrium point
because of opposing forces. More specifically, we require
each fixed point to be a hyperbolic fixed point, in which
case the eigenvalues of the corresponding Jacobian matrix
will not have a zero real part [12]. With this requirement, a
hyperbolic fixed point is stable when the eigenvalues have a
negative real part and hence all the eigenvalues of the cor-
responding Jacobian matrix should satisfy this condition.

4.2 Clique
We start by analyzing the case of a clique with 2N nodes.

We assume two profiles, A and B with N nodes each. Let
IA and IB

1 be the number of infected nodes. The following
differential equations describe the evolution of the system:

dIA
dt

= βA(N − IA)(IA + IB)− δAIA (1)

dIB
dt

= βB(N − IB)(IB + IA)− δBIB (2)

Indeed, the change of IA (similarly for IB) is equal to the
new infected nodes of profile A due to the already infected
nodes in both profiles (recall that because the graph is a
clique all nodes connect to all other nodes) minus the already
infected nodes of IA that heal with probability δA.

These equations constitute a non-linear dynamical system
and its Jacobian is:

J (IA, IB) =

[
βA(N − 2IA − IB)− δA βA(N − IA)

βB(N − IB) βB(N − 2IB − IA)− δB

]
We are only interested in the hyperbolic fixed points of

this system since a hyperbolic equilibrium point is topo-
logically equivalent to the orbit structure of the linearized
dynamical system. We identify four interesting fixed points
of the dynamical system:

1. IA, IB → 0 where the virus dies out in both profiles.

2. IA, IB → N where the virus infects all nodes in both
profiles.

3. IA → 0, IB → N where the virus infects one profile (B
in this case) and leaves the other unaffected. There
are two such fixed points that hold symmetrically for
both profiles and they are the most interesting in this
setting.

For the discussion to follow, we assume w.l.o.g. that δB >
δA (the other case is symmetric in most cases).

4.2.1 Fixed point: IA → 0, IB → 0

We compute the partial derivatives when the rates of change
in IA and IB are zero, and the corresponding Jacobian for
this fixed point will be:

J (0, 0) =

[
βAN − δA βAN
βBN βBN − δB

]
1These are time-dependent variables but for brevity we do
not write them as such (IA(t)).

In order to compute the eigenvalues of the Jacobian matrix
we solve: det(J (0, 0)−λI) = 0⇒ λ2 +λ(δA+ δB−N(βA+
βB)) + δAδB −N(δBβA + δAβB) = 0

The discriminant of this quadratic equation is always pos-
itive. Assuming that δB > δA we get the following real
eigenvalues:

λ1,2 =
N(βA+βB)−(δA+δB)±

√
((δB−δA)−N(βA+βB))2+4NβA(δB−δA)

2
This fixed point will be hyperbolic only when none of the

eigenvalues of the corresponding Jacobian has a zero real
part. In addition, the system will be stable at a hyperbolic
fixed point only if the real part of the eigenvalues of the
Jacobian is negative. Since the discriminant is ∆ > 0 the
resulting eigenvalues will be real. For stability we require
that λ1, λ2 < 0. We find conditions only for the case where
λ1 < 0, since λ2 < λ1.

As for λ1 we require that: N(βA + βB) − (δA + δB) <

−
√

((δB − δA)−N(βA + βB))2 + 4NβA(δB − δA) which gives:

N
δAβB + δBβA

δAδB
< 1 (3)

Just as a sanity check, imagine that there is only one
profile, that is δA = δB = δ and βA = βB = β. In this case,
we get the condition 2Nβ

δ
< 1 which is stated in [21], since

the largest eigenvalue of the adjacency matrix of a clique
with 2N nodes is 2N − 1.

4.2.2 Fixed point: IA → N, IB → N

In fact, we assume that IA → cN, IB → cN , 0 < c < 1,
and c→ 1. Thus, we are going to substitute these values and
find necessary conditions so that c tends to 1. Substituting
these values in Equations (1) and (2) when dIA

dt
= dIB

dt
= 0

we get:

βA =
δA

2N(1− c) (4)

βB =
δB

2N(1− c) (5)

Increasing the values of βA or βB , the value of c will in-
crease accordingly for the same healing rates and network
size. Having proved that these are fixed points (by construc-
tion) we move to proving that they are hyperbolic and stable
and get the necessary conditions. We get:

J (cN, cN) =

[
(1− 3c)βAN − δA (1− c)βAN

(1− c)βBN (1− 3c)βBN − δB

]
To find the eigenvalues of this jacobian we need to solve

the following equation: λ2+λ(δA+δB+(3c−1)N(βA+βB))+
δAδB + 4c(2c− 1)βAβBN

2 + (3c− 1)N(βAδB + βBδA) = 0.
The discriminant is: ∆ = (δA+δB+(3c−1)N(βA+βB))2−

4δAδB − 4(3c− 1)N(δBβA + δAβB)− 16c(2c− 1)βAβBN
2

which results in:
∆ = (δA+δB+(3c−1)N(βA+βB))2−4δAδB−12cNβAδB−
12cNβBδA+4NβAδB+4NβBδA−32c2βAβBN

2+16cβAβBN
2

By using Equations 4 and 5 and replacing above we get:

∆ =
(
δA + δB + (3c− 1)

(
δA+δB
2(1−c)

))2
− 4δAδB − 12c δAδB

(1−c) +

4 δAδB
(1−c) − 8c2 δAδB

(1−c)2 + 4c δAδB
(1−c)2 ⇒

∆ =
1

4(1− c)2
[
(δA + δB)2(1 + c)2 − 4cδAδB

]
This means that the eigenvalues are the following:
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λ1,2 =
−(c+ 1)(δA + δB)±

√
(c+ 1)2(δA + δB)2 − 4cδAδB

4(1− c)

Let x = (c + 1)(δA + δB) and y = 4cδAδB. Then, by
imposing 1

2
< c < 1, it holds that x, y > 0 and it follows

that the real part of λ1 =
−x−
√
x2−y

4(1−c) is always negative

since x2 − y < x2 and if x2 − y is negative then its square
root will be of the form zi, where z ∈ R and i =

√
−1. For

the same reasons, the real part of λ2 =
−x+
√
x2−y

4(1−c) is always

negative. In fact, one can prove that ∆ = x2 − y > 0 but it
requires a lot of algebraic handling.

The values for βA and βB as determined by Equations 4
and 5, for c ∈

(
1
2
, 1
)

ensure that the fixed point is at cN
for both profiles. Note that in contrast to the fixed point
where the virus dies out here we do not get a condition in
the form of an inequality since this is much harder to get.
However, we get a relationship between all parameters so
that the virus infects all nodes when c → 1. In addition,
we get necessary conditions so that a part of the network is
infected (e.g., imagine choosing c = 2/3). Finally, βA (the
same holds for βB) should be less than 1 which means that

c < 2N−δA
2N

and c < 2N−δB
2N

.

4.2.3 Fixed point IA → 0, IB → N

In fact we are going to prove necessary conditions for the
case where IA → (1 − c)N, IB → cN , where 0 < c < 1.
Note, that having one profile completely infected with the
virus allows for some infections in the other profile, which
may be resilient, since there will be some nodes infected with
positive probability.

We substitute these values in Equations 1 and 2 and we
get a relation between the parameters:

βA =
δA
N

1− c
c

, βB =
δB
N

c

1− c (6)

Thus, when these two relations hold then we guarantee
that (1− c)N and cN are fixed points. In the following, we
assume w.l.o.g. that c→ 1 and thus profile A is the resilient
one while profile B is the more susceptible one.

Our main work is to examine the necessary stability con-
ditions. The Jacobian matrix in this case is the following:

J ((1− c)N, cN) =

[
(c− 1)βAN − δA cβAN

(1− c)βBN −cβBN − δB

]
In order to compute the eigenvalues of the Jacobian matrix

we solve the following quadratic equation: λ2 +λ(δA+ δB+
cβBN + (1− c)βAN) + δAδB+ (1− c)βAδBN + cδAβBN = 0.

Similarly to 4.2.2, let x = c2−c+1
c(1−c) (cδB + (1 − c)δA) and

y = 4δAδB
2c2−2c+1
c(1−c) . Note that x, y > 0 for c ∈ (0, 1) and the

characteristic polynomial can be written as λ2+xλ+ 1
4
y = 0.

Then, the eigenvalues are λ1,2 =
−x±
√
x2−y

2
.

The real part of λ1 =
−x−
√
x2−y

2
is always negative since

x2−y < x2 and if x2−y is negative then its square root will
be of the form zi, where z ∈ R and i =

√
−1. For the same

reasons, the real part of λ2 =
−x+
√
x2−y

2
is always negative.

Similarly to 4.2.2, we provide two equalities that define
the relationship between the parameters of the problem. We

can choose c, δA and δB, compute βA and βB and then
the resulting dynamical system tends to have a footprint of
(1− c)N for profile A and cN for profile B.

4.3 Arbitrary Simple Relation Graphs
Let A be the adjacency matrix of the arbitrary connected

graph G with N nodes. Let pi,Ak be the probability of node i
in profile Ak to be infected. Finally, let pi be the probability
that node i is infected when the profile of i is irrelevant.

In this case the dynamical system that describes the evo-
lution for all profiles Ak is the following:

dpi,Ak

dt
= −δAkpi,Ak + βAk (1− pi,Ak )

∑
j

(1jAji) (7)

where 1j is the indicator random variable denoting whether
node j is infected from the virus. Due to the presence of
random variables 1j , our system is not a Markov chain. By
applying a first order mean-field approximation (see [9] for
a nice presentation) we deliberately assume that these indi-
cator variables are equal to their expected value. As such,
1j ≈ E[1j ] = pj , and thus we get the following equations for
each node i:

dpi,Ak

dt
= −δAkpi,Ak + βAk (1− pi,Ak )

∑
j

(pjAji) (8)

We are interested in computing necessary conditions for

fixed points. At a fixed point it holds that
dpi,Ak
dt

= 0 and
thus we get:

δAkpi,Ak = βAk (1− pi,Ak )
∑
j

(pjAji) (9)

Writing this in a vector form we get:

p = ∆−1BQAp (10)

where p is the state column vector [p1, p2, . . . , pN ]T . In ad-
dition, ∆ is a diagonal N × N matrix, where element (i, i)
is equal to δA if node i belongs to profile A and δB if it be-
longs to profile B. Similarly, B is a N ×N diagonal matrix
containing values βA or βB depending on the profile of the
corresponding node. Finally, Q is also a diagonal N×N ma-
trix where its element (i, i) contains the probability 1 − pi,
that is Q = I − diag(p) and represents the probability that
a node is not infected. Note also that the adjacency matrix
A is symmetric and as a result A = AT .

This is a homogeneous non-linear system of equations,
which makes finding the solutions a rather herculean task.
This is why, apart from the obvious zero solution, all other
interesting fixed points and stability conditions will be only
qualitatively characterized.

4.3.1 The Zero Fixed Point and Stability Condition
The jacobian of Equation 10 can be written as:

J (p) = −I + ∆−1BQA−∆−1Bdiag(Ap) (11)

where diag(Ap) is the diagonal N ×N matrix, whose diag-
onal contains the elements of the column vector Ap.

Apparently, p = 0̂, where 0̂ is the column vector full of
zeros, is a fixed point since it is a solution of Equation 10.
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The fixed point p = 0̂ is stable if it holds that the real part
of all eigenvalues of J (0̂) = ∆−1BA − I (Q = I in this
case) are negative. As a sanity check, if β = βA = βB and
δ = δA = δB, which means that there is only one profile,
then if λ is the largest eigenvalue of A the largest eigenvalue
of J (0̂) will be βλ

δ
− 1. Thus, the fixed point will be stable

if βλ
δ
− 1 < 0⇒ βλ

δ
< 1, which in fact is the result provided

in [21] for one profile and one virus for the SIS model.

4.3.2 Other Fixed Points
What happens when the healing and infection rates are

such so that 0 is not a stable fixed point? This happens
when ρ(B ·A−∆) > 0. We start by looking at point p = 1̂,
where 1̂ is the column vector full of ones. Then, the right
hand-side of Equation 10 becomes zero (since Q = 0) and
the only case for the equality to hold is if ∆ = 0 (of course
all infection rates should be non-zero). This means that all
nodes will definitely be in an infected state if the probability
to heal is zero, which is a sound conclusion.

We start with some easy facts about the matrix ∆−1BQA.

Lemma 1. Matrix ∆−1BQA is non-negative and irreducible.

Proof. Matrix ∆−1BQ is a diagonal positive matrix, as-
suming that all infection and healing rates are non-zero. As
such, matrix ∆−1BQA is non-negative since ∆−1BQ is non-
negative and A is also non-negative. Finally, A is irreducible
since it is the adjacency matrix of a connected simple graph
whose entries are simply multiplied by the diagonal entries
of ∆−1BQ.

Lemma 2. ∆−1BQA has a positive real eigenvalue λ as
its largest in absolute values. The multiplicity of λ is 1 and
it has the only positive eigenvector.

Proof. By Perron-Frobenius theorem λ is called Perron-
Frobenius (PF) eigenvalue with its corresponding PF eigen-
vector.

Lemma 3. The PF eigenvector f is a fixed point.

Proof.

J (f) = −I + ∆−1B(I − diag(f))A−∆−1Bdiag(Af)

All eigenvalues of J (f) are negative.

λ(J (f)) ≤ −1+λ
(
∆−1B(I − diag(f))A

)
+λ
(
−∆−1Bdiag(Af)

)
However, we know that λ

(
∆−1B(I − diag(f))A

)
≤ 1 and

thus we get:

λ(J (f)) ≤ λ
(
−∆−1Bdiag(Af)

)
Since ∆−1Bdiag(Af) is a positive diagonal matrix we get
that λ

(
−∆−1Bdiag(Af)

)
≤ 0 which proves the fact that

λ(J (f)) ≤ 0.

This PF eigenvector does not really provide us with enough
information. In fact, it seems pretty hard and rather overly
optimistic to get a clean result. This is why focusing back
in the case of two profiles, we are interested in fixed points
that correspond to the following two cases: a) almost all
nodes are infected in both profiles and b) almost all nodes
of one profile are infected and the nodes in the other profile
are healthy. We will focus on specific cases of graphs and
provide a rather qualitative explanation of results.

4.3.3 The Case of Two Profiles
Assume two profiles A and B. We also assume that the

edges of the network have no weights and as a result the
adjacency matrix is a 0/1 matrix. Then the PF eigenvector

f could be written as f =

[
fA
fB

]
corresponding to the two

profiles. We write differently Equation 9 for the two profiles
as follows:

∑
j∈B

(pjAji) +
∑
j∈A

(pjAji) =
δA
βA

pi,A
1− pi,A

(12)

∑
j∈A

(pjAji) +
∑
j∈B

(pjAji) =
δB
βB

pi,B
1− pi,B

(13)

We first look at the case where both profiles are suscepti-
ble to the virus and the network is flooded. As previously
mentioned, we only provide a qualitative analysis by going
backwards in some sense. In particular, we assume that ∀i,
pi ∈ [a, b], for 0 < a < b < 1. Then, we get the following
inequalities by Equations 12 and 13.

∀i :
βA
δA

d(i) <
b

a(1− b) , ∀i :
βA
δA

d(i) >
a

b(1− a)

∀i :
βB
δB
d(i) <

b

a(1− b) , ∀i :
βB
δB
d(i) >

a

b(1− a)

where d(i) is the degree of node i. Apparently this describes
a rather limited (albeit infinite) family of graphs.

For example, assume that βA
δA

= 2 and βB
δB

= 4 and let a =

0.6 and b = 0.9. Then, we get that the following restrictions
should hold on this graph to show indeed such behavior with
respect to the virus.

d(i) < 7.5, d(i) > 0.8, d(i) < 3.75, d(i) > 0.4

This means that all graphs with minimum degree 1 and max-
imum degree 3 will have a PF eigenvector whose entries will
be in the range [0.6, 0.9] for the particular choice of param-
eters.

Now we move to the case where fA has small entries and
fB has large ones. This means that B is susceptible to the
virus while A is not. Thus, we assume that all entries of fB
are in the range [a, b] and all entries in fA in the range

[
a
x
, b
x

]
.

Parameter x > 1 allows for simplifications and expresses
how smaller the probability for nodes in B is w.r.t. the
probability of nodes in A.

Similarly, we get the following inequalities by Equations 12
and 13.

∀i :
δA
βA

a

b(x− a)
<

1

x
dA(i) + dB(i) <

δA
βA

b

a(x− b)

∀i :
δB
βB

a

b(1− a)
<

1

x
dA(i) + dB(i) <

δB
βB

b

a(1− b)
where dA(i) is the degree of node i w.r.t. profile A and
similarly is defined dB(i).

For example, assume that δA
βA

= 103 and δB
βB

= 0.01 and

let a = 0.8, b = 0.99 and x = 102. Then, we get that
the following restrictions should hold on this graph to show
indeed such behavior with respect to the virus.

1

x
dA(i) + dB(i) < 12.4,

1

x
dA(i) + dB(i) > 8.1
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1

x
dA(i) + dB(i) < 61.9,

1

x
dA(i) + dB(i) > 2.02

This means that all graphs with minimum degree 9 and
maximum degree 12 will have a PF eigenvector whose en-
tries will be in the range [0.8, 0.99] for fB and in the range
[0.008, 0.0099] for fA for the particular choice of all the other
parameters.

5. EXPERIMENTAL RESULTS
We evaluate our results using simulation experiments on

various synthetic datasets including publicly available datasets.
In particular, tha datasets used are:

• Clique: A clique graph of 2000 nodes.

• Arbitrary topologies: Arbitrary graphs with varying
average node degree.

• Enron email network: The Enron email communica-
tion network [16] covers all the email communication
within a dataset of email addresses. Nodes of the net-
work are email addresses and if an address i sent at
least one email to address j, the graph contains an
undirected edge from i to j. The graph consists of
36692 nodes and 183831 edges. For all non-Enron
email addresses we can only observe their communi-
cation with Enron email addresses.

• Montgomery: A physical contact graph, representing
the synthetic population of Montgomery County [17],
which contains 77, 820 people interacting with each
other during their daily activities. The total number
of activities for the population is 429, 590, which are
conducted in 26, 941 distinct locations (besides home
locations). The resulting social contact network has
77, 820 nodes (one per person) and 2, 019, 220 edges.

In our experiments we implemented a discrete-time simu-
lation in Java of the SIS model with two profiles A and B,
unless otherwise stated. In the experimental evaluation the
profiles are set by dividing randomly the respective dataset
in two equal parts based on the size of the graph. In one
case the profiles are specified based on age groups and we
examine the results of such profiling. For the experiments
regarding the clique graph, the initial infection consists of
10 nodes in each profile and every simulation is run for 2000
time steps. In the contact networks (Enron email and Mont-
gomery), the initial infection consists of the 5% of nodes with
maximum degree (in range) and every simulation lasts for
5000 rounds.

We run experiments that verify our results for each fixed
point for the following cases: a) Both profiles in the net-
work have great endurance against the virus and tend to
stay unaffected by the virus, b) both profiles have equally
low endurance against the virus and all agents get infected
and c) one profile has low endurance against the virus and
the corresponding proportion of the network tends to get
infected while the other profile has high endurance and the
corresponding agents tend to stay susceptible.

5.1 Simulation Results

5.1.1 Simulations for clique
Figure 1 demonstrates our results for the clique for var-

ious cases. In Figure 1(a), we observe the case where the

nodes have very high endurance against the virus and as a
result the infected nodes in both profiles heal and the virus
dies out. The figure depicts the number of infected nodes
of both profiles and the total amount of infected nodes in
the clique versus time. The used parameters that satisfy
condition 3 are (βA, δA) = (0.0000005, 0.01) and (βB, δB) =
(0.0000009, 0.01). While the simulation was run for 2000
rounds the fixed point (0, 0) is stable and as a result the
system converges to this point very quickly, in 200 rounds.
As a result we omitted to depict the amount of infected
nodes for rounds (201− 5000) since it is still down to zero.

In Figure 1(b) we assume a network where the nodes from
both profiles A and B have very high healing rates as well
as infection rates (βA, δA) = (0.01, 0.0005) and (βB, δB) =
(0.03, 0.0006) which satisfy conditions 4 and 5. Here, the
stable point is (cN, cN) where c = 0.99. It is expected that
the majority of nodes from both profiles, will get infected
and the equilibrium point will be reached when almost cN
nodes from every profile get infected. We observe that the
system converges very quickly due to high infection rate and
consequently this is a stable fixed point since for all rounds
of execution, the amount of infected nodes from both pro-
files is steadily up to 2000. The amount of infected nodes
in profile A in Figure 1(b),is covered from the amount of
infected nodes in profile B since they are equal. We forgot
to mention that experimentally, we consider a fixed point as
stable when the amount of infected nodes for the majority
of rounds, is almost the same. The value of variable c af-
fects the amount of nodes that get infected as well as the
time required for the system convergence. Instinctively, we
expect that for lower values, the amount of infected nodes
will be smaller and the time required for the system to reach
an equilibrium state will be increased.

Finally, in the case where profile A has low sensitivity
against the virus while profile B has high sensitivity, the
stable fixed point according to our results, should be ((1 −
c)N, cN). As it can be seen in Figure 1(c), the amount of
infected nodes in profile A is very low in comparison with
the amount of infected nodes in profile B. In this case, we
have assumed that c = 0.99 where infection rates and healing
rates, satisfying the conditions in Equation 6, are (βA, δA) =
(0.0000055, 0.1) and (βB, δB) = (0.1, 0.01). As it can be
seen, this is also a stable fixed point since for all rounds
of execution, the amount of infected nodes from profile B
is steadily up to 1000 while for profile A is down to zero.
The amount of infected nodes in profile B in Figure 1(c), is
covered from the amount of totally infected nodes.

5.1.2 Simulations for arbitrary graphs
In the case of arbitrary graphs, the experiments were ex-

ecuted using the Enron email network that was described
in the beginning of the experimental section. Using this
network, we verify our theoretical results for the zero fixed
point and we evaluate the existence of other fixed points in
the case of two profiles. Similarly to the clique experiments,
the dataset is divided to two profiles based on the size of the
graph (half nodes in each profile) while the simulations last
for 5000 rounds. Here, as in all social contact graphs, we ini-
tially infect the top 5% of nodes according to their degree.
It has been noticed that social graphs tend to create small
highly connected subgraphs while weak connections exist be-
tween them. In order to effectively initialize the simulation,
we chose to infect nodes that have relatively high degree.
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(a) (0, 0) (b) (cN, cN) (c) ((1− c)N, cN)

Figure 1: Simulations in a clique graph of 2000 nodes. Figure (a) depicts the case where both profiles have low sensitivity
against the virus. Figure (b) depicts the case where both profiles have high sensitivity against the virus and c=0.9. In Figure
(c), profile A has low sensitivity against the virus while profile B has high sensitivity and c=0.9

Figure 2: Simulation where both profiles have low sensitivity
against the virus in the Enron email network.

To verify the zero fixed point we used the following infec-
tion and healing parameter values: (βA, δA) = (0.0009, 0.5)
and (βB, deltaB) = (0.0005, 0.7). In Figure 2, we can observe
that the system converges to zero in the first 12 rounds,
presenting the same behavior for the rest of the total 5000
rounds. (We omit the rest of rounds in order to present the
rapid convergence in the first rounds while for the rest part
of the simulation, the result as expected is stable at zero).

Next, we examine the case where both profiles have very
high sensitivity against the virus and as a result, the net-
work is flooded due to virus propagation. In this case, the
infection and healing parameter values that were used, are
βA = βB = 0.006 and δA = δB = 0.0001 for (α, b) =
(0.001, 0.99). These parameter values satisfy the general
conditions in Equations 12, 13 according to which, the node
degree should be in the range (1−1650). From the initial in-
fection process, 1866 nodes get infected and the initial status
as well as the final status of the graph is depicted in Figure
3.

Now we move to the case where profile A has high sen-
sitivity against the virus while profile B presents low sensi-
tivity against the virus. In this case, we expect that a small
percentage of nodes in profile B will get infected whereas
in profile A the majority of nodes will get infected. The
parameter values used for this experiment are (βA, δA) =
(0.006, 0.0001) and (βB, δB) = (0.009, 0.1) for (α, b) = (0.001,
0.99). The results are depicted in Figure 4.

Finally, we present an alternative approach in profiling
graphs, using the Montgomery network. Using the social
contact graph file and the corresponding demographics file
which are publicly available, we created a dataset file which
consists of all interactions where besides all other charac-
teristics, the age of the interacting nodes is included. Un-
fortunately, the available demographics dataset has missing
values. For this reason, we omitted all interactions of nodes
where the respective age of the node is not available. Con-
sequently, the resulting graph consists of 67700 nodes and

Figure 4: Simulation in Enron email network where profileA
has high sensitivity against the virus while profile B presents
low sensitivity.

1626453 edges. Using the age parameter, we divided nodes
in five age groups: 1) where nodes are children below the
age limit of 10 years, 2) where nodes correspond to children
from the age of 10 till the age of 18, 3) where the nodes are
adults in the range of (18-30) years, 4) where the nodes are
adults in the range of (30-50) years and 5) where the nodes
are adults with age 50+.

With this profile initialization in the experiments, we in-
fected 20 children in profile 1 as a highly sensitive group
against attacking virus and 1 in 100 humans in all other
age profiles, resulting in 2942 initially infected nodes. The
infection and healing parameter values that were used here
are β1 = β5 = 0.9, δ1 = δ2 = δ3 = δ4 = δ5 = 0.01 and
β2 = β3 = β4 = 0.6 for (α, b) = (0.001, 0.99). The parame-
ter values that were chosen, satisfy the assumption that chil-
dren under the age of 10 are a highly sensitive social group
against the virus. The results are depicted in Figure 5.

One could notice that even though the parameter values
that were chosen, were very high, the amount of infected
nodes in Figure 5 is very small. This is due to the topology
of the graph and the corresponding connectivity. While the
maximum degree is 378, most nodes have degree in the range
(1−10). In Figure 5, we provide a visualization of the finally
infected nodes after 5000 rounds simulation.

6. DISCUSSION
Here we discuss the results we presented in the previous

sections and their possible extensions. The main charac-
teristic of our setting is that there are infinite fixed points
based on the relationship between the various parameters of
the problem. This is in contrast to the finite and small num-
ber of fixed points in the case of two viruses [20]. One could
erroneously think that having two profiles in the network is
like having two viruses but the truth is that the introduced
heterogeneity of the underlying network adds complexity to
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(a) Initial Status (b) Final Status

Figure 3: Visualization of the Enron email network infection process. In Figure (a) it is depicted the network after the
infection initialization. Red nodes (with respective red edges) are infected while green nodes are susceptible. In Figure (b) it
is depicted the final state where the network is flooded and the majority of nodes are infected.

Figure 5: Visualization of the Montgomery network infected
nodes, after 5000 simulation rounds using age profiles. The
red nodes represent children under the age of 10. The blue
nodes represent adults in the age range (18− 30), the green
nodes represent adults in the age range (30−50) and yellow
nodes represent adults with 50+ age.

the problem of finding the necessary stability conditions for
the fixed points.

Clique.
We have given conditions so that a virus in presence of

two different profiles in the network will die out. We also
gave conditions so that a particular number of nodes will get
infected from each profile, thus connecting the footprint of
the virus in the profiles with the parameters of the profiles
with respect to the virus. Of course, we have provided such
results for particular interesting cases since tackling the gen-
eral case seems much harder.

Arbitrary Graph.
In this case, we have provided a general condition in 4.3.1

so that the virus will die out or persist in the network. In

case the virus persist, we prove conditions that should hold
for the graph so that the steady-state infection probability
for each node is within some prespecified range. Although
this is a useful result, it is not the whole story. This is
because we impose that the probabilities of all nodes should
be within this range. As a result, we fail to catch the case
where most of the nodes are within this range but there are
some nodes with probabilities that are outside this range.
For example, imagine a clique Kn and a path Pn of n nodes
respectively so that the path Pn hangs from some node in
Kn creating a graph of 2n nodes in total. It is expected that
nodes in Pn will have lower probabilities than those in Kn

and thus some of them may be out of the prespecified range.
To tackle these cases one needs to fully solve the respective
dynamical system.

Profiling.
How does one specify the profile of a node in a given net-

work that captures the relationships between agents within
a particular framework? Take for example an epidemiologi-
cal scenario where the virus is the flu. The network specifies
the contact between people during a day. It is known that
there are groups that are more susceptible to the virus than
other groups of people (e.g., children and adults). In this
case, one would propose to specify profiles based on the age
of nodes (as we have done in one of our experiments). An
interesting approach is presented in [2] where profiling in a
social experiment, shed light in potentially influential users.
In a social network scenario, one could also specify the affin-
ity towards a particular rumor or idea (e.g., a PS4 game)
by looking at relative historical data of each agent and then
decide whether each agent is more susceptible or less suscep-
tible to this particular rumor or idea (or even class of rumors
and ideas). However, there is still the problem of giving a
value that describes the affinity of each agent. This can ei-
ther be the choice of the researcher or can be accomplished
by using a classifier working on relative historical data, if
there is such data of course. Summarizing, we feel that an
empirical study of such an extent would be very interesting
and it would be a different and surely an interesting paper.
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7. CONCLUSIONS
In this paper, we studied the case where one competing

virus/rumor/product is spreading over a heterogeneous net-
work. In this network, the nodes have different endurance
against the ”virus” and we answer the question of what will
happen in the end by providing the necessary conditions so
that the system will reach a steady state. We proved for dif-
ferent scenarios, the fixed points the system can reach and
the stability conditions that are required. Our main results
concern the clique and arbitrary topologies. We also veri-
fied the theoretical analysis with simulation experiments on
synthetic and real-world datasets.

Future directions include the extension of this work to
other virus propagation models as well as the study of mul-
tiple profiles and multiple viruses on a single network. The
theoretical analysis of such a case may be very difficult us-
ing tools from dynamical systems theory but we feel that
a more algorithmic approach may bear fruits (algorithmic
analytical tools for Natural Algorithms e.g., [6]). A more
extensive experimental evaluation will be included in the
journal version.
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