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Abstract With the increasing availability of location-based services, location-based social
networks and smart phones, standard rating schema of recommender systems that involve
user and item dimensions is extended to three-dimensional (3-D) schema involving context
information. Although there are models proposed for dealing with data in this form, the
problem of combining it with additional features and constructing a general model suitable for
different forms of recommendation system techniques has not been fully explored. This work
proposes a technique to reduce 3-D rating data into 2-D for two reasons: employing already
developed efficient methods for 2-D on a 3-D data and expanding it with additional features,
which are usually 2-D also, if it is necessary. Our experiments show that this reduction
is effective. The proposed 2-D model supports content-based, collaborative filtering and
hybrid recommendation approaches effectively, whereas we have achieved the best accuracy
results for pure collaborative filtering recommendation model. Since our method was built
on efficient singular value decomposition-based dimension reduction idea, it also works very
efficiently, and in our experiments, we have obtained better run-time results than standard
methods developed for 3-D data using higher-order singular value decomposition.
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1 Introduction

Increasing use of mobile devices and new technologies in mobile communication enabled
the collection of data involving context such as location and time, which affected the rec-
ommender systems as well. In a typical collaborative filtering recommendation model, the
input is the rating matrix corresponding to users and items. However, in many real-world
data, there are additional features that could be useful. Mainly, the following extensions are
possible:

– In recent applications, the rating data include additional dimensions to user and item in
the form of context information mostly involving time and location. Typically, the context
is time, or place, or both. This addition changes the main data structure of the problem
from 2-D to 3-D (or even higher). Some recent studies on this direction are [1,2].

– In some applications, there are additional data about the objects of the dimensions that
could be useful. Usually, these data represent the relationships, more specifically simi-
larities, among the objects of the dimensions. Indeed, when there are no rating data, only
these similarities are used that could be interpreted as a form of content-based filtering.
Recent studies on extending rating data with additional features for standard 2-D rating
matrix can be found in [33,41].

– There are also some applications (hybrid models) with both multidimensional rating data
and additional features’ data on the objects of the dimensions [38,40].

The main objective of this paper is to develop a uniform model suitable for all the models
explained above. To achieve this, multidimensional rating data (we will focus on 3-D form)
will be reduced to 2-D form, which can potentially be extended with the additional features.

The extension of 2-D rating matrix with additional features has been introduced in [33].
It has also been shown that the approach is quite effective and outperforms other more
complicated solutions, such as [41]. There are studies that specifically attempt to deal with
3-D rating data input [37,40]. In this work, we show that 3-D rating matrix can be reduced
to three 2-D matrices with a very little information loss. Our evaluations show that our
reduction-based model outperforms 3-D-based model inspired from [37].

Some methods use ratings that are given by users to find similar objects (generally users and
items) within the system to fulfill the recommendation [11,18]. Some others incorporate the
context-based information about users and items to catch a probable similarity between them,
which is used to find like-minded users and similar items [38]. Furthermore, some methods
try to combine several sources of data with different concepts to improve the precision of
the final results [35]. The latter one is indeed the approach we have extended in our previous
work in [33], and in this paper, we aim to further extend the given approach.

Main contributions of this paper are as follows:

– Defining a 2-D matrix structure for rating data that could be constructed from 3-D or
higher-order rating data.

– Introducing a general data combination approach that could be used for content-based
recommendation by using similarity matrices on objects of the different dimensions, and
combining these matrices with rating matrices of collaborative filtering.
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The rest of paper is organized as follows. In Sect. 2, problem definition is given. In Sect. 3, an
overview of dimensionality reduction for two-dimensional matrix and tensor (third-order or
higher dimensional matrix) [21] is presented. Extended feature combination (EFC) method
and some examples that present different models of EFC are discussed in Sect. 4. Performed
experiments and evaluating the results are shown in Sect. 5, and finally, a conclusion is given
in Sect. 6.

2 Problem definition

In recommender systems’ domain, conventionally ‘user–item’ matrix is used to denote and
keep the rating given by a user for an item. However, considering the characteristics of
the data and the field in which recommender system is used, these objects and even their
dimensions may change. Social activity recommendation is one of the domains in which
the types of objects are changed, and even another dimension is added to the original data.
That is, we have user, location and activity as objects, and high-dimensional data structure
(tensor) [21] is used to handle the existent ternary relation among them. In social activity
recommendation, beside the original user–location–activity rating matrix, we might have
access to different informative resources of data. As we have already explained in [33], it is
possible to acquire several data and merge them into a single integrated matrix and propagate
the effect of additional data to the core part of the matrix. Observed results for this model
show that the matrix merging can influence the process of recommendation and, actually,
improves the final results.

In this work, we extend the model given in [33] by exploiting even more data and merge
them to create a single matrix, which further is utilized as an input to the recommendation
model. One of the problems in construction of integrated matrix is to maintain its structure.
That means we have to combine additional data so that, in addition to making use of its
informative content, we should keep the structure of final matrix in a rectangular shape. In
order to maintain its structure, we might need to insert zero value to the portion where its
corresponding data are not available.

In practice, the main data are a 3-D tensor A having user, location and activity in each
dimension. Each entry of this tensor contains a rating value corresponding to user–location–
activity triple. The first step of this work is to reduce these 3-D data into a 2-D matrix
form. In order to generate 2-D matrices, namely activity–user, location–user and location–
activity matrices from 3-D tensor A, it should be aggregated over location, activity and user
dimensions, respectively. For instance, to obtain location–activity matrix, the original tensor
is aggregated over user’s dimension. To calculate the rating value of an entry in location–
activity matrix, we use mean value of ratings for all users who have rated activity a in location
l. Note that, the mean value is calculated over the entries that have nonzero rating values.

In the model which is introduced in Fig. 1, we propose to utilize location–location,
activity–activity and user–user similarity matrices as well as activity–user, location–activity
and location–user data which have been obtained from the 3-D tensor A.

2.1 User–User similarity matrix

Similarity among users has a significant effect on the result of neighborhood-based recom-
mendation systems such as social networks as reported in [3]. In addition, several distance
metrics have been proposed in the literature such as Graph Distance, Common Neighbors,
Jaccard Coefficient, Pearson Correlation and Adamic & Adar [13]. The impact of some of
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them on recommendation systems has been discussed in [6] and [31] as well. In this study,
User–User similarity matrix has been constructed by using the friendship network among the
users. We have conducted tests using several distance metrics. However, Jaccard Coefficient
which is defined in Eq. (1) produced the best result for our data sets.

Jaccard ′s Coe f f icient (x, y) = |�(x) ∩ �(y)|
|�(x) ∪ �(y)| (1)

In this definition, �(x) and �(y) are first level neighbors of x and y. Figure 2 shows a small
sample of friendship network out of 149 users’ friendship graph.

In order to find the similarity between User1 (u1) and User2 (u2) in this friendship network,
we first find neighbors of each user and then calculate Jaccard similarity as given in below
calculations:

� (u1) = {u3, u5, u6} � (u2) = {u3, u4}
similari t y (u1, u2) = |{u3, u5, u6} ∩ {u3, u4}|

|{u3, u5, u6} ∪ {u3, u4}| = 0.25

2.2 Activity–Activity similarity matrix

As also stated in various resources in the literature [41], activities that we do in normal life
are not independent and have a relation. A simple method to find the correlation between

Fig. 1 Proposed integrated
matrix (M) model
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Fig. 2 Users’ friendship network
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Fig. 3 Simple tree structure of activities

Table 1 Sample location table

Location name X coordinate Y coordinate Address District City

Starbucks 22.95 40.63 Egnatias 123 City Center Thessaloniki

Goodys 22.93 40.63 Dodekanisou 7 Vardaris Thessaloniki

McDonalds 23.73 37.97 Ermou 2 Sintagma Square Athens

Hard Rock Cafe 23.73 37.97 Filellinwn 18 – Athens

activities is proposed in [40], such that Web is searched for any two activities and from
retrieved total and related Web sites, similarity between these activities is calculated. Another
method, which may help us to find this relation, is using activity ontology. In this method,
each activity is denoted as a vertex and a relation between two vertices is shown by an edge.
However, the conceptual structure may be a simple tree structure as shown in Fig. 3 or may
be obtained from available ontologies in the Web. WordNet is a large lexical database of
English nouns, verbs, adjectives and adverbs, which labels the semantic relations among
words [27], and it can be used as an ontology for activities in our approach. In order to find
similarity between words from WordNet, several distance metrics have been proposed in the
literature [16,17,22,23,30]. In this work, we utilize these metrics to find similarity between
activities.

2.3 Location–Location similarity matrix

In social activity recommendation systems and in location-based social networks, coordi-
nates of visited locations are kept in terms of geographical altitude and longitude. Fur-
ther information such as location address, district and city may be available as well.
In order to find the similarity between two locations, it is sufficient to use simple
Euclidian distance calculation. Table 1 shows sample location information from our data
set.
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3 Preliminaries in dimensionality reduction

In this section, we give an overview of background techniques that are utilized later in our
approach.

3.1 Singular value decomposition (SVD) overview

Singular Value Decomposition (SVD) [21] is a well-known matrix factorization technique
that factorizes an m × n matrix R into three matrices as given in Eq. (2).

Rm×n = Um×m Sm×n V T
n×n (2)

In this equation, U (left singular vector) and V (right singular vector) are two orthogonal
matrices of size m × m and n × n, respectively, and V T is transpose of V . The eigenvectors
of R RT and RT R make up columns of U and V correspondingly. Also, the singular values
in S are square roots of eigenvalues of R RT or RT R [25,32].

S is a matrix of size m × n having all singular values of matrix R as its diagonal entries.
All the entries of S are real numbers (if matrix R is a real matrix) and stored in decreasing
order of their magnitude. SVD provides the best lower-rank approximations of the original
matrix R in terms of difference in Frobenius norm [12].

We utilize SVD in recommender systems to perform two different tasks: First, we use it to
capture latent relations among users and items that allow us to compute the predicted likeliness
of a certain product by a customer. Second, we use SVD to produce a low-dimensional
representation of the original user–item space and then compute neighborhood in the reduced
space [32]. In general, SVD is used for dimensionality reduction, so that, with selecting the
k largest values of S and k columns of U and V (or k rows of V T ) and by multiplying them,
respectively, we can represent matrix R with reduced-rank matrix Rk , which has rank of k
(k ≤ Rank(R)) as it is shown in Eq. (3).

Rk = Um×k Sk×k V T
k×n (3)

However, dimensionality reduction is a data lossy approach. It means that the more we reduce
the dimensionality, the bigger the portion of original data that is lost. It is possible to determine
the percentage of loss in advance. According to study in [5], to maintain p percent of original
data, we can select k highest singular values from matrix S regarding the relations in Eq. (4).

p =
∑k

i=1 Si
∑

all S
× 100 (4)

For instance, if singular values of a matrix are S = {10, 7.2, 5.4, 3.2, 3.1, 2.2, 1.9, 1.3, 0.8,
0.4, 0.1}; in order to keep 80 % of original data, we should reduce the rank of matrix to k = 5
since:

∑5
i=1 Si

∑
all S

= 28.9

35.6
× 100 ≈ 80

For simplicity, in the rest of the paper we show the reduced-rank components with Uk , Sk

and V T
k .

3.2 Tensor-based recommendation

A Tensor is a multidimensional matrix which can be used as a rating storage in recommen-
dation systems. In this work, the dimensions of 3-order (3-D) tensor corresponds to user,
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Fig. 4 Unfolding of 3-order
tensor [37]

location and activity, respectively. Each entry of form (i, j, k) is a numerical value which
shows the rating that is given by user i for performing activity k at location j . The high-
order singular value decomposition (HOSVD) [20] is generalized to apply SVD to tensors.
Cutting-edge research is conducted by Symeonidis et al. [37] and Marinho et al. [24], which
propose a unified social tagging recommendation system model exploiting HOSVD.

3.2.1 Dimensionality reduction in tensor

Initially, the method in [37] starts the tensor reduction process by giving matrix-shape repre-
sentation of rating tensor A. Applying unfolding to A yields three matrices A1, A2 and A3,
which are defined as follows:

A1 ∈ RIu×Il Ia , A2 ∈ RIl×Iu Ia , A3 ∈ RIu Il×Ia

Unfolding is a method of representing a flat mode of tensor A by rearranging each slice
(page) of A as a column of corresponding flat mode in a specific dimension as shown in
Fig. 4. Each of A1, A2, and A3 is called 1-mode, 2-mode and 3-mode matrix unfolding of A.

In the next step, regular SVD is applied to each of unfolded matrices (A1, A2, A3), which
is shown in Eq. (5).

A1 = U (1).S(1).(V (1))T , A2 = U (2).S(2).(V (2))T , A3 = U (3).S(3).(V (3))T (5)

Despite regular SVD in which we select k singular values to reduce the rank of matrix, for
each mode of tensor we should determine three distinct parameters k1, k2 and k3 since SVD
is applied to A1, A2 and A3 independently. The parameters k1, k2 and k3 are empirically
chosen by preserving a percentage of information of the original matrices S(1), S(2) and S(3)

after appropriate tuning [37]. As we discussed in previous sections, we can determine the
percentage that we desire to maintain from original data. In [37], Symeonidis et al. mention
that the percentage is usually set to be 50 % of each unfolded matrix.
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After the rank of left singular vectors is determined for all three unfolded matrices, con-
struction of the core tensor S is started. Core tensor acts as an intermediate, which can control
the interaction between user, location and activity. Core tensor S is constructed as shown in
Eq. (6).

S = A ×1 (U (1)
k1 )T ×2 (U (2)

k2 )T ×3 (U (3)
k3 )T (6)

In this equation, A is the original tensor, and U (1)
k1 , U (2)

k2 and U (3)
k3 are reduced matrices of left

singular vectors in Eq. (5) by rank of k1, k2 and k3, respectively.
In addition, ×n is defined as the n-mode product of an N -order tensor A ∈ RI 1×I 2×...×I N

by a matrixU ∈ R Jn×I n . The result of product is an I1× I2×. . .× In−1× Jn × Jn+1×. . .× IN -
tensor whose entries are defined as presented in Eq. (7).

(A ×n U )i1i2...in−1 jn in+1...iN =
∑

in

ai1i2...in−1in in+1...iN u jnin (7)

Finally, tensor Â is constructed from product of core tensor S and dimensionally reduced
left singular vectors of each unfolding mode as demonstrated in Eq. (8).

Â = S ×1 U (1)
k1 ×2 U (2)

k2 ×3 U (3)
k3 (8)

As discussed in [37], authors expect to extract latent semantic relation from Â as well as the
value of missing entries in A. A visual description of HOSVD is depicted in Fig. 5.

As an example, we have a sample rating tensor T containing 5 users, 5 locations and 4
activities as illustrated in Fig. 6. This running example is used throughout the paper.

In HOSVD, the process begins by producing unfolding matrices of T , and then, SVD is
applied to each mode which results the matrices that are shown in Eq. (5). Applying HOSVD
to this tensor, according to Fig. 5 and reducing to rank 2, yields three matrices U (1)

2 , U (2)
2 , U (3)

2
(subscript 2 shows the rank of each matrix) and a core tensor C which are shown in Figs. 7
and 8.

3.2.2 Recommendation steps for tensor-based method

Tensor A presents the associations among the entities and serves as rating data model that is
used during the recommendation. In order to predict the rating value that is given by user i
for performing activity k in location j , firstly, we find most similar neighbors of user i from
reduced tensor. Since each of U (1)

k1 , U (2)
k2 and U (3)

k3 corresponds to user, location and activity,
we use them to find similarity among users, locations and activities, respectively. Cosine
similarity is used as the metric to accomplish this task. Secondly, we freeze the indices of
location and activity and retrieve the rating values given by similar neighbors of user i for

Fig. 5 Visualization of tensor reduction using HOSVD [37]
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doing activity k in location j . Finally, we combine the rating values of each neighbor utilizing
Eq. (11), whose details are given in the next subsection, to produce a partial prediction from
user. Likewise, the routine of index freezing and exploring the similar neighbors’ rating is
applied to location and activity.

As it is discussed in the previous subsection, applying HOSVD to tensor A yields three
matrices U (1), U (2) and U (3). Considering the relation among entries, U (1) is the left singular
vectors matrix of A1 that is the result of aggregation on original tensor over location and
activity. In other words, each row of U (1) is a vector for observation of user having location
and activity together as the second dimension. This fact also holds for U (2) and U (3) where
the former one is observations of location regarding user and activity and the latter one is
observations of activities regarding user and location. This fact allows us to use these three
matrices as a source to find similarity among entries. For example, choosing U (1) and any
similarity metric (Euclidean, Cosine…), we can construct User–User similarity matrix.

3.2.3 Rating prediction

In the prediction process, once the neighbors are determined, the neighbors’ ratings must
be combined to produce the target prediction. A trivial method uses an average neighbors’

Fig. 6 Sample rating tensor (T)

0.46 0.57 0.70 -0.16

0.38 0.55 0.39 0.36 0.56 0.13

0.37 -0.34 0.46 -0.56 0.48 0.68

0.53 -0.31 0.09 0.57 0.57 -0.29

0.47 -0.40 0.37 0.46 0.36 -0.65

(a) User ( ( ) ) (b) Location ( ( ) ) (c) Activity ( ( ) )

Fig. 7 Components of tensor, a user (U (1)
2 ), b location (U (2)

2 ), c activity (U (3)
2 )
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Fig. 8 Core tensor C

ratings so that rating of user a for item b(Pa,b) is calculated using ratings given by n neighbors
of a for item b(Pj,b) as shown in Eq. (9).

Pa,b =
∑n

j=1 Pj,b

n
(9)

However, this is nonpersonalized method which does not consider the correlation among
users, location or activity. In order to utilize the correlation among users, when it is available,
in a better way, use of weighted average is proposed in [34], which takes similarity into
consideration as given in Eq. (10). In this formula, wa, j is the similarity among user a and
its neighbor j .

Pa,b =
∑n

j=1 Pj,b.wa, j
∑n

j=1 wa, j
(10)

Nevertheless, there might be subjective factors in real-world problems. There are some users
that always give high scores to whatever they rate for. In contrast, some other users tend
to give very low scores. Therefore, the deviation of ratings from rating mean of each entry
should be considered as an effective factor to prediction step. In [14], deviation from average
rating of all entries (either user or activity or location) is calculated and incorporated in the
prediction as given in Eq. (11) in which r̄a and r̄ j are rating means of user a and its neighbor
user j , respectively.

Pa,b = r̄a +
∑n

j=1(Pj,b − r̄ j ).wa, j
∑n

j=1 wa, j
(11)

We have made experiments with all three equations discussed above. As the result of the
analysis, we employ Eq. (11) to combine the results obtained from each neighborhood, since
it produced the best accuracy result.

Indeed, usually more than one prediction is made for each entry. Therefore, the final
prediction for a given entry in tensor T can be calculated using a weight factor and p
predictions as follows:

T̂
(
ui , l j , ak

) = W.P redi ct i on
∑p

i=1 wi
(12)

In this equation, W is weight vector, P redi ct i on is vector of predictions and the operator
is matrix dot product. Also, T̂ demonstrates the predicted value for (ui , l j , ak) in tensor T .
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Fig. 9 Rating mean of users,
locations, and activities

U1 U2 U3 U4 U5

Users rating mean 2.53 2.58 2.31 2.67 2.57

L1 L2 L3 L4 L5

Locations rating mean 3.22 2.06 2.44 2.4 2.36

A1 A2 A3 A4

Activities rating mean 2.5 2.57 3.07 2.11

U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

Sorted sim
ilarity values

0.99 0.99 0.99 0.98 0.99 0.79 0.99 0.77 0.86 0.99 A1 A2 A3 A4

0.15 0.08 0.98 0.98 0.98 0.57 0.78 0 0.78 0.86 0.76 0.75 0.82 0.82

0 0 0 0.15 0 0.45 0.57 -0.05 0 0.45 0.75 0.13 0.75 0.26

-0.03 -0.09 -0.06 0.08 -0.03 0 0 -0.19 -0.05 0 0.26 0 0.13 0

-0.06 -0.13 -0.13 0 -0.09 -0.06 -0.05 -0.66 -0.66 -0.19 0 -0.43 0 -0.43

(a) (b) (c)

Fig. 10 Similarity values of HOSVD, a sorted value of similarity from U1, b sorted value of similarity from
U2, c sorted value of similarity from U3

3.2.4 Example for tensor-based recommendation system

Considering the sample rating tensor T in Fig. 6, we explain the procedure of predicting the
values of randomly chosen entries a1 = (2, 1, 2), a2 = (5, 2, 2) and a3 = (5, 1, 4). Before
applying HOSVD, the original values of a1, a2 and a3 are replaced with zero. We also need to
know rating mean for each user, location and activity since it is needed in prediction process
as shown in Eq. (11). For instance, to compute rating mean for all user, we first find the
entries with nonzero ratings in sample tensor T . Then, we sum up T over second and third
dimensions and divide the result by number of entries that are greater than zero. The rating
mean of users, locations and activities for T is presented in Fig. 9. In this figure, U1, L1 and
A1 correspond to user1, location1 and activity1.

In order to find similarity between entries of matrices U (1)
2 , U (2)

2 and U (3)
2 , cosine similarity

is used as the distance metric. The similarity matrices are shown in Fig. 10. In each of Fig. 10a–
c, columns represent users, locations and activities, respectively. Entries in each column show
sorted similarity values of the item in that column to another items. Corresponding ID’s for
items (users, locations and activities) are given in the index matrices of Fig. 11. Note that,
similarity between each item and itself is equal to 1 (distance between each item and itself
is 0), and in order to show a correct relation among similar items, the values altered so that
each item is the least similar item to itself.

In the first step of prediction, for randomly selected entry a1 = (2, 1, 2), we keep values
of location1 and activity2, and then, we find the most similar user (the size of neighborhood
in this sample is 1) to user2 from column U2 of Fig. 11a (column U2 shows similar users
to user2 sorted from the most similar to the least similar) which is user1. Its corresponding
similarity value is 0.99 according to column U2 of Fig. 10a. The rating value of (1, 1, 2) with
regard to sample tensor T is equal to 3. To accomplish the prediction, we also need to know
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U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

ID
’s of sorted values

2 1 5 5 3 3 5 1 5 2 A1 A2 A3 A4

4 4 4 3 4 2 4 3 2 4 3 1 4 3

1 2 3 1 5 5 1 2 4 1 2 3 1 1

5 5 1 2 1 1 2 5 1 5 4 2 2 4

3 3 2 4 2 4 3 4 3 3 1 4 3 2

(a) (b) (c)

Fig. 11 Similarity indices of HOSVD a sorted index of similarity from U1, b sorted index of similarity from
U2, c sorted index of similarity from U3

rating mean of users 2 and 1, which is 2.58 and 2.53 as computed in Fig. 9. Using Eq. (11),
first prediction can be calculated as:

PUser = 2.58 + (3 − 2.53) ∗ 0.99

0.99
= 3.05

In the second step, we maintain the values of user2 and activity2 and then find the most
similar location to location1 referring to column L1 of Fig. 11b (column L1 shows similar
locations to location1 sorted from the most similar to the least similar) which in this case is
location3 with similarity value of 0.79 as presented in column L1 of Fig. 10b. The value of
T (2, 3, 2) is 1, and rating mean of locations 1 and 3, according to Fig. 9, is 3.22 and 2.44.
Therefore, the prediction is calculated as follows:

PLocation = 3.22 + (1 − 2.44) ∗ 0.79

0.79
= 1.79

Finally, we freeze values of user2 and location1 and then find the most similar activity to
activity2 using column A2 of Fig. 11c which is activity1 with similarity value of 0.75. The
value of T (2, 1, 1) is 3, and rating mean of activities 2 and 1, according to Fig. 9, is 2.57 and
2.5. Final prediction is computed as:

PActivi t y = 2.57 + (3 − 2.5) ∗ 0.75

0.75
= 3.07

At the end, utilizing the formula introduced in Eq. (12), the final prediction for a1 = (2, 1, 2)

can be calculated as:

T̂ (2, 1, 2) = [1 1 1] . [3.05 1.79 3.07]T

3
= 2.64

4 Proposed method: extended feature combination (EFC)

When SVD is applied to a single user–item matrix, it produces left singular vectors U and
right singular vectors V matrices. Each row of U represents a user object, and each row of V
represents an item object which both of them together with S (singular values) can be used
to reduce the dimension of original matrix and finding the similarity within users and items
as well. In this work, we intend to make use of additional data and propagate their influences
to other data matrices in order to improve the accuracy of recommendation.

Generally speaking, the basic step in most of recommendation systems begins by pre-
dicting unknown values in rating matrix. Afterward, item recommendation is performed
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Activity Location User Activity Location User Activity Location User

Activity Activity
Activity  
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Activity

Activity  
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Fig. 12 Extended feature combination (EFC) models overview (empty submatrices contain zero values),
a model 1: collaborative filtering recommendation system, b model 2: content-based recommendation system,
c model 3: hybrid recommendation system

according to some threshold of estimated rating. Earlier we mentioned that, for a given user–
location–activity entry (ui , l j , ak) in rating tensor T , HOSVD-based technique finds similar
entries to ui , l j and ak from reduced-rank matrices and then refers to original tensor to find
corresponding rating values. In EFC, we propose to find similarities from two-dimensional
integrated model. To do so, we firstly construct the model from available matrices (details
are given below in Sect. 4.1). Secondly, we apply SVD to extract the similarity matrices, and
at the end, we calculate the value of missing entry using similarity matrices and referring to
original rating tensor.

4.1 Model construction

Integrated matrix M as introduced in Fig. 1 can be used to define three different models as
shown in Fig. 12. They are as follows:

• By using the three 2-D matrices (B, D, E) obtained from the original tensor data A, it is
possible to construct purely collaborative filtering recommendation system (Fig. 12a).

• Likewise, by using three similarity matrices (A, C, F) calculated from feature data of
users, locations and activities, we may construct a content-based recommendation system
(Fig. 12b).

• Finally, by combining the former two methods, we define a hybrid recommendation system
as shown in Fig. 12c.

Note that, since the values of other matrices B, D and E are in the range of [0, 5] and in order
to keep the magnitude of all entries in the same range, we scale all three similarity matrices
A, C and E within the range of [0, 5] using min–max normalization method [13].

4.2 Similarity calculation

Once the final integrated matrix has been obtained, we proceed with applying SVD and
finding similarity for a given user, location and activity (ui , l j , ak) in rating tensor T . Once
SVD is applied to integrated matrix, matrices U , S and V T are produced. By selecting first r
columns of U and first r rows of V T and also keeping r greatest singular values of S, we may
reduce the rank of the integrated matrix to r . However, the value of parameter r practically
affects the total accuracy of model and needs to be determined in advance. We can determine
the value of r using Eq. (4) in order to maintain 50 % of the original data.
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Fig. 13 Reduced-rank
visualization of U

r columns

Activity

Location

User

Fig. 14 Visualization of matrix trimming

As it is shown in Fig. 13, we may think about Ur as row vectors in which columns are
representing hidden attributes that reflect the latent relations within data set. Hence, we can
trim Ur such that only required information can be selected. If we define si ze_Activi t y to
be the number of activities in the data set and select first si ze_Activi t y rows of Ur , then
we get a matrix that its rows represent activities and its columns show the latent attributes
of data set. Furthermore, we call the matrix Ur _Activi t y and use it to calculate similarities
between a distinct activity and other activities.

We define si ze_Location and si ze_User to be the numbers of locations and users in our
data set. Similarly, by proper trimming of rows in Fig. 13, we get matrices Ur _Location and
Ur _User whose rows represent locations and users correspondingly and columns show the
latent attributes of data set. Figure 14 shows the overall schema of trimming process.

Analogously, we can think about V T
r as column vectors in which rows are rep-

resenting latent attributes of data set (Fig. 15). By a proper trimming and selecting
columns of V T

r according to size of user, location and activity, we can extract matrices
V T

r _Activi t y, V T
r _Location and V T

r _User whose columns are representing activities,
locations and users, and rows are representing hidden relations of the data set. Trimming
process of V T

r is very similar to Fig. 14 with a difference that instead of row-wise selection,
we trim it column-wise.

So far, by exploiting Ur and V T
r and performing trimming on them, we have achieved

6 matrices which we can directly use to calculate the required similarity matrices. Cosine
similarity is a typical and efficient proximity metric, which has been reported to outperform
other measures in domain of recommendation systems, and thus, we utilize it at this step as
well [14]. Suppose that, we have chosen Ur _User as the matrix that we want to calculate
cosine similarity. Column ci of the similarity matrix shows the similarity between user ui

and all other users in data set. However, we are not interested in all of those users and seeking
for the most similar users to user ui (it means they have the highest values in column ci

of similarity matrix). In order to find similar users conveniently, we sort each column in
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Fig. 15 Reduced-rank
visualization of V T

Activity Location User

r 
ro

w
s

Table 2 Similarity matrices

Trimmed matrix Similarity matrix (sorted) Comment

1 Ur _Activi t y U_Activi t y_sim Activity–Activity similarity produced from Ur

2 Ur _Location U_Location_sim Location–Location similarity produced from Ur

3 Ur _User U_User_sim User–User similarity produced from Ur

4 V T
r _Activi t y V _Activi t y_sim Activity–Activity similarity produced from V T

r

5 V T
r _Location V _Location_sim Location–Location similarity produced from V T

r

6 V T
r _User V _User_sim User–User similarity produced from V T

r

descending order of similarity magnitude and name it U_User_sim, so that the most similar
user to ui stands at the top of column ci of matrix U_User_sim. We are going to utilize these
matrices in the examples below. The trimmed matrices and corresponding sorted similarity
matrices together with short comments about each one are listed in Table 2.

4.3 Rating prediction

In order to predict the rating value of an entry (ui , l j , ak) in user–location–activity rating
tensor T, in each step, we maintain two indices of the entry and find similar objects of
remaining index using information in Table 2.

In the first step, we freeze the index values of location l j and activity ak for selected
entry (ui , l j , ak). Then, referring to Table 2, we choose similarity matrices at rows 3 and 6
(U_User_sim and V _User_sim). Using U_User_sim we select m3 similar users to user
ui ({um

i }) so that:

∀um
i ∈ {

u1
i , u2

i , . . . , um3
i

}
, T

(
um

i , l j , ak
) 
= 0 (13)

Once we have found the value of T
(
um

i , l j , ak
)

for desired neighborhood {1, . . . , m3}, first
prediction is calculated as the weighted average of deviations from the similar neighbor’s
mean [14]. The formula is just a customized version of Eq. (11).

PU
User = r̄ui +

∑m3
p=1

(
T

(
u p, l j , ak

) − r̄u p

) ∗ sim
(
ui , u p

)

∑m3
p=1 sim

(
ui , u p

) (14)

Similarly, utilizing V _User_sim, we select m6 similar users to user ui ({um
i }) and compute

another prediction by freezing the index values of location l j and activity ak .
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Table 3 Estimated values and parameters

Similarity matrix Estimated value Size of neighborhood

1 U_Activi t y_sim PU
Activi t y m1

2 U_Location_sim PU
Location m2

3 U_User_sim PU
User m3

4 V _Activi t y_sim PV
Activi t y m4

5 V _Location_sim PV
Location m5

6 V _User_sim PV
User m6

In the second step, we freeze the index values of user ui and activity ak for selected entry
(ui , l j , ak). Then, again referring to Table 2, we choose similarity matrices at rows 2 and 5
(U_Location_sim and V _Location_sim). The rest of process is similar to previous step
except that the size of neighborhood is m2 and m5.

Similarly, in step three, we freeze the index values of user ui and location l j for selected
entry (ui , l j , ak) and make predictions using similarity among activities. Table 3 shows the
estimated values and parameters that are achieved from mentioned three steps.

Similar to HOSVD, the final step combines 6 predictions using Eq. (12) that are calculated
from previous steps. We may have a weighted combination method which assigns separate
weights for each individual prediction. However, for simplicity, we assign same weights for
all predictions.

4.4 Feature combination using collaborative filtering

In this model, we aim to reconstruct a model that utilizes only the data which are extracted
from rating tensor T . In other words, the condition is to integrate those matrices from Fig. 12a
that reflects the property of users’ rating and not any contextual information about users,
locations or activities. Main idea for this reconstruction is to include the impact of only
rating on prediction, without using the information coming from resources other than users’
feedback.

As it is discussed in Sect. 2, we have only three matrices location–activity (B), user–
activity (D) and user–location (E), which satisfy the condition above. To accomplish the
reconstruction, matrices with all zero values also have to be inserted into the model. Integra-
tion of those matrices is depicted in Fig. 12a.

We construct a sample model using the rating matrix of Fig. 6 such that we only insert
matrices, which are achieved from rating values into the final model as illustrated in Fig.16.
Once the SVD is applied to the model and rank of it is reduced to 2, matrices in rows 2, 3,
4 and 5 of Table 2 and their corresponding similarities in Table 3 are calculated. Figure 17
presents the matrices which are obtained from applying SVD and reduced to the rank of
2 (subscripts in names show the rank of matrices). Remember that we sort the similarity
matrices in descending order as are illustrated in Figs. 18 and 19 in forms of indices and
values.

To predict the value of the first randomly selected entry a1 = (2, 1, 2) with rating value
of 3, we freeze the index of location = 1 and activi t y = 2. Then, referring to column U2
of Fig. 18a (column U2 shows sorted index of similar users of user2 from the most similar
to the least similar), we find the most similar user (the size of neighborhood in this case is
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Activity Location User

A
ctivity

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

L
ocations

3.4 3.6 4 1.75 0 0 0 0 0 0 0 0 0 0
2.4 2.4 1.5 1.5 0 0 0 0 0 0 0 0 0 0
2.67 2 2.6 2.67 0 0 0 0 0 0 0 0 0 0
1.5 0 0 3 0 0 0 0 0 0 0 0 0 0
2 1 3.5 2 0 0 0 0 0 0 0 0 0 0

U
ser

2.5 2 3 2.5 2.75 2.5 1 2.5 3.33 0 0 0 0 0
2.75 2 3 2.67 3 2.67 1.5 3 2.67 0 0 0 0 0

3 1.67 2.33 2 3.25 1.25 2.25 0 3 0 0 0 0 0
2.5 3.5 3.34 1.5 4 2.5 2.75 1 1.75 0 0 0 0 0
1.75 3.33 3.67 2 3 1.67 3.5 0 1.67 0 0 0 0 0

Fig. 16 Collaborative filtering-based combination model

-0.41 0.25 -0.26 -0.67 -0.37 0.44

-0.42 0.26 -0.41 -0.41 -0.17 -0.38 -0.25 0.32

-0.37 0.17 -0.39 -0.39 -0.11 -0.31 -0.26 0.25

-0.44 0.13 -0.47 -0.32 -0.08 -0.06 -0.15 0.25

-0.41 0.05 -0.29 0.08 -0.19 -0.36 -0.28 0.38

(a) (b) (c) (d)

Fig. 17 Reduced-rank matrices, a U2_User , b V T
2 _activi t y, c U2_Location, d V T

2 _Location

Fig. 18 Similarity indices of CF
model, a sorted index of
U_User_sim, b sorted index of
V _Activi t y_sim, c sorted index
of U_Location_sim, d sorted
index of V _Location_sim

U1 U2 U3 U4 U5

2 1 1 3 4 A1 A2 A3 A4

3 3 2 5 3 2 1 2 3

4 4 4 1 1 3 3 1 2

5 5 5 2 2 4 4 4 1

1 2 3 4 5 1 2 3 4

(a) (b)

L1   L2   L3   L4   L5 L1   L2   L3   L4   L5

3 1 1 5 2 2 5 1 5 2

2 5 2 2 1 5 1 2 2 1

5 3 5 1 3 3 4 5 1 4

4 4 4 3 4 4 3 4 3 3

1 2 3 4 5 1 2 3 4 5

(c) (d)

1) to user2 which is user1. According to the sample tensor T , the rating value of new entry
(1, 1, 2) is equal to 3. The similarity between user2 and its most similar neighbor (user1) is
0.99 with regard to the corresponding entry in column U2 of Fig. 19a. We also need to know
the mean rating of user2 and its similar neighbor user1, which can be computed from sample
tensor T . Knowing the mean rates of user2 and user1 are 2.58 and 2.53, first prediction is
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U1 U2 U3 U4 U5

0.99 0.99 0.99 0.99 0.98 A1 A2 A3 A4

0.99 0.99 0.99 0.98 0.95 0.99 0.99 0.98 0.65

0.96 0.96 0.98 0.96 0.91 0.98 0.98 0.98 0.51

0.90 0.90 0.95 0.96 0.90 0.49 0.51 0.65 0.49

0 0 0 0 0 0 0 0 0

(a) (b)

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.98 0.99 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99

0.96 0.98 0.96 0.94 0.92 0.99 0.99 0.98 0.98 0.99

0.94 0.95 0.92 0.90 0.90 0.98 0.99 0.96 0.96 0.98

0 0 0 0 0 0 0 0 0 0

(c) (d)

Fig. 19 Similarity values of CF model, a sorted value of U_User_sim, b sorted value of V _Activi t y_sim,
c sorted value of U_Location_sim, d sorted value of V _Location_sim

calculated as follows:

PU
User = 2.58 + (3 − 2.53) ∗ 0.99

0.99
= 3.05

In the second prediction, we freeze the index of user = 2 and activi t y = 2 and then find
the most similar location to location = 1. However, we can find the similarity from two
matrices in Fig. 18c, d, which results to calculate two separate predictions. Using column L1
of Fig. 18c (column L1 shows the sorted index of similar locations of location1 from the most
similar to the least similar), the most similar location of 1 is location3 with its corresponding
similarity value of 0.99 (same entry in column L1 of Fig. 19c). Rating value for the new
entry (2, 3, 2) in T is 1. In addition, mean ratings of locations 1 and 3 are computed from T ,
which is 3.22 and 2.44. Hence, we obtain the prediction as:

PU
Location = 3.22 + (1 − 2.44) ∗ 0.99

0.99
= 1.76

Analogously, using column L1 of Fig. 18d, the most similar location is location2 with simi-
larity value of 0.99 with respect to column L1 of Fig. 19d. Rating value of T (2, 2, 2) is equal
to 2. Also, mean rating of locations 1 and 2 is 3.22 and 2.06. Related prediction is calculated
as follows:

PV
Location = 3.22 + (2 − 2.06) ∗ 0.99

0.99
= 3.16

Finally, we keep the index of user = 2 and location = 1 and find the most similar activity
to activi t y = 2 utilizing column A2 of Fig. 18b which is activity1 with corresponding
similarity of 0.99. Moreover, T (2, 1, 1) = 3, mean rating of activities 2 and 1 is 2.56 and
2.5, and the final prediction is:

PV
Activi t y = 2.56 + (3 − 2.5) ∗ 0.99

0.99
= 3.06
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The prediction of entry a1 = (2, 1, 2) is shown by T̂ (2, 1, 2) and is calculated from partial
predictions that are produced from previous steps as formulated in Eq. (12).

T̂ (2, 1, 2) = [1 1 1 1] . [3.05 1.76 3.16 3.06]T

4
= 2.76

4.5 Feature combination using contextual information

In this second model, we are interested in considering the effect of contextual information on
accuracy of predicted values as well. In this case, contextual information is such information
that is not achieved from rating matrix. In contrast, it is related to contents of users, locations
and activities, which reflect their intrinsic characteristic. That information is comprised of
user–user, location–location and activity–activity similarity matrices, which were discussed
in detail before.

As the model reconstruction in Fig. 12b presents, contextual information is inserted as
the main diagonal, and similar to other models, zero is inserted to the other components of
the model in order to construct the big integrated matrix. The procedure of finding similarity
matrices is very similar to what explained in Sect. 4.2.

As discussed in content-based model definition, in the following example we merely insert
similarity matrices into the combination model. Similar to the previous method, in each step
index values of two dimensions are frozen and similar entries are found using the third
dimension of randomly selected entry from tensor T . Note that, regarding Table 3 and the
construction of model for content-based information, we only have three similarity matrices
that are available in rows 1, 2 and 3 of Table 3. Calculations are analogous to the CF model,
and hence, we only present value of each prediction and final estimation of given random
values.

T̂ (2, 1, 2) = [1 1 1] . [2.58 3.22 2.56]T

3
= 2.79

4.6 Hybrid feature combination

In previous models, each of integrated data has specific properties which both are informative
and reveal us different aspect of data set. Proposed hybrid model corresponds to combining
both of the models explained above. In this case, we combine contextual information with
the data extracted from rating values.

In this model, we insert location–activity (B), user–activity (D) and user–location (E)

matrices into the output from previous step. As Fig. 12c illustrates, we still have three missing
submatrices. One solution to complete the missing parts is to use transpose of location–
activity (BT ), user–activity (DT ) and user–location (ET ) from model 1 in Fig. 12a. However,
if we want to treat fairly, we should not utilize them twice even with different format. Hence,
we insert zero into the missing parts of model which completes the matrix and makes it lower
triangular.

We demonstrate the hybrid feature combination model with an example. The typical data
set which is introduced in Fig. 6 is used in this example. It is a real subtensor of the original
data, and the similarity matrices are also available as shown in Fig. 20.

Additionally, the model requires three more partial matrices to complete the final integrated
matrix as displayed in Fig. 12c, which can be easily obtained from tensor T as explained in
Sect. 2. Obtained matrices are shown in Fig. 21.

Once we get all partial matrices, we proceed with constructing the model according to
Fig. 12c. As explained in model construction, similarity matrices are located in main diagonal
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1 0.9 0.5 0.7 0.55 1 0.6 0.5 0.1 0.3

0.9 1 0.7 0.4 0.3 0.6 1 0.7 0.75 0.65 1 0.6 0.9 0.7

0.5 0.7 1 0.3 0.1 0.5 0.7 1 0.3 0.1 0.6 1 0.2 0

0.7 0.4 0.3 1 0.8 0.1 0.75 0.3 1 0 0.9 0.2 1 0.1

0.55 0.3 0.1 0.8 1 0.3 0.65 0.1 0 1 0.7 0 0.1 1

(a) (b) (c)

Fig. 20 Similarity matrices, a user–user similarity, b location–location similarity, c activity–activity similarity

3.4 3.6 4 1.75 2.5 2 3 2.5 2.75 2.5 1 2.5 3.33

2.4 2.4 1.5 1.5 2.75 2 3 2.67 3 2.67 1.5 3 2.67

2.67 2 2.6 2.67 3 1.67 2.33 2 3.25 1.25 2.25 0 3

1.5 0 0 3 2.5 3.5 3.337 1.5 4 2.5 2.75 1 1.75

2 1 3.5 2 1.75 3.33 3.67 2 3 1.67 3.5 0 1.67

(a) (b) (c)

Fig. 21 Additional extracted matrices, a location–activity, b user–activity, c user–location

and other matrices are inserted into the lower triangle of model. Applying SVD to the model
and reducing its rank to 3 (to keep 50 % of original data) from one side and trimming it
together with calculation of cosine similarity from other side yields all six matrices which
are shown in second column of Table 2.

In order to make prediction for the value of a1 = (2, 1, 2), we freeze the index of
location = 1 and activi t y = 2 and find similar users referring to Fig. 22. As shown
in column U2 of Fig. 22a, the most similar user to user2 is user number 3. Additionally, using
Fig. 22.d, the most similar user to user2 is also user1. Note that values of parameters m1 to
m6 are set to 1. According to the U2 column of Fig. 23a, d, both of the similarity values are
0.99. Rating mean of users 2, 3, and 1 is 2.58, 2.31 and 2.53, respectively. Predictions from
users are calculated as:

PU
User = 2.58 + (3 − 2.31) ∗ 0.99

0.99
= 3.28

PV
User = 2.58 + (3 − 2.53) ∗ 0.99

0.99
= 3.05

In the second step, we freeze the index of user = 2 and activi t y = 2 and find similar
locations to location = 1. According to part b and e of Fig. 22, the most similar location to
location1 is 5 in both parts. Since T (2, 5, 2) = 0, second similar locations are chosen which
are locations 2 and 3, respectively. The calculations are given as follows:

PU
Location = 3.22 + (2 − 2.06) ∗ 0.84

0.84
= 3.16

PV
Location = 3.22 + (1 − 2.44) ∗ 0.75

0.75
= 1.79

Similarly, by freezing the index value of user = 2 and location = 1, we find the most
similar activity to activi t y = 2 which in Fig. 22c is activity1 and in Fig. 22f is activity4.
Since T (2, 1, 4) = 0, second similar activity in Fig. 22f is chosen which is activity1. Hence,
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U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

2 3 2 5 4 5 3 4 3 1 A1 A2 A3 A4

3 5 5 3 3 2 4 2 2 2 2 1 4 3

5 4 4 2 2 3 1 1 1 3 4 4 2 2

4 1 1 1 1 4 5 5 5 4 3 3 1 1

1 2 3 4 5 1 2 3 4 5 1 2 3 4

(a) (b) (c)

U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

3 1 1 5 4 5 4 2 2 1 A1 A2 A3 A4

2 3 2 3 3 3 3 4 3 3 3 4 1 1

4 4 4 1 1 2 1 1 1 2 4 1 4 3

5 5 5 2 2 4 5 5 5 4 2 3 2 2

1 2 3 4 5 1 2 3 4 5 1 2 3 4

(d) (e) (f)

Fig. 22 Indices of similarities for the hybrid model, a sorted index of U_User_sim, b sorted index of
U_Location_sim, c sorted index of U_Activi t y_sim, d sorted index of V _User_sim, e sorted index of
V _Location_sim, f sorted index of V _Activi t y_sim

U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 A1 A2 A3 A4

0.98 0.99 0.99 0.99 0.99 0.84 0.99 0.99 0.99 0.95 0.97 0.97 0.99 0.99

0.97 0.99 0.99 0.99 0.99 0.84 0.98 0.96 0.95 0.93 0.83 0.94 0.90 0.94

0.97 0.99 0.98 0.97 0.97 0.81 0.95 0.93 0.91 0.91 0.77 0.90 0.77 0.83

0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) (b)

U1 U2 U3 U4 U5 L1 L2 L3 L4 L5

1 0.99 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 A1 A2 A3 A4

1 0.99 0.99 0.99 0.99 0.75 0.99 0.99 0.99 0.77 0.99 0.98 0.99 0.99

0.99 0.99 0.99 0.99 0.99 0.75 0.80 0.86 0.79 0.70 0.99 0.81 0.99 0.99

0.99 0.99 0.99 0.99 0.99 0.73 0.70 0.77 0.68 0.68 0.95 0.81 0.95 0.98

0 0 0 0 0 0 0 0 0 0 0 0 0 0

(c)

(d) (e) (f)

Fig. 23 Values of similarities for the hybrid model, a sorted value of U_User_sim, b sorted value of
U_Location_sim, c sorted value of U_Activi t y_sim, d sorted value of V _User_sim, e sorted value of
V _Location_sim, f sorted value of V _Activi t y_sim

predictions are computed as follows:

PU
Activiy = 2.56 + (3 − 2.5) ∗ 0.97

0.97
= 3.06

PV
Activiy = 2.56 + (3 − 2.5) ∗ 0.81

0.81
= 3.06
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The final prediction for a1 = (2, 1, 2), as discussed before, is calculated from the mean of
all predictions as follows:

T̂ (2, 1, 2) = [1 1 1 1 1 1] . [3.28 3.05 3.16 1.79 3.06 3.06]T

6
= 2.97

5 Experimental results

In this section, we evaluate the results and compare the accuracy of each method in the EFC
model for the prediction of unknown rating values. Then, we consider the effect of several
parameters on the final results. All the experiments are performed on a 2.53 GHz PC machine
with 4 GB of main memory. Program codes are written in MATLAB R2009a [26], and the
tensor dimensionality reduction part is implemented using Sandia tensor toolbox [4,19]. For
the experimental evaluation of the proposed approach, we have utilized two data sets from
location-based social tagging networks, which are briefly described as follows.

In order to evaluate the prediction accuracy of the proposed models, we employ 10-fold
cross-validation on our data set [36]. Note that, in this method, each single member of data is
set to be only one time in test set and nine times in training set, and at the end, final evaluation
metric is the average accuracy over all folds.

5.1 Data sets

For our first experiment, we have used Geosocial2 data set which extracted from a location-
based network and is available online.1 Since the data set is introduced and utilized for the
first time in the literature, we aim to give more details about it. The Geosocial2 data set is
gathered from ratings that are given by 149 users to 112 different social activities. Ratings
are submitted to system for performing the activities in 438 physical locations, which are
located in some cities of Greece.

The original data set consists of Activities, Places (coordinates and name), Users (user
profiles) and Paths (users’ friendship network) in form of data matrices, as well as Check-ins
table which shows the relation between the user, location, activity, rating and a time stamp
which contains the time and date of performing an activity. We organize check-ins matrix in
a 3-order tensor T , so that each entry T (x, y, z) shows the rating that user x gives to activity
z in location y. Since similarity matrices are not directly available, we have to extract them
from data set.

In order to examine the functionality and accuracy of proposed approach and observe
how each method predicts the values, we have selected another data set named Gowalla2

[9] that was a location-based social network in which users were able to check in the net-
work from various physical locations. Later, it was reportedly acquired by Facebook on
2011. The system stores user ID, date and time of check-ins, altitude and longitude of the
point user checked in and a location ID which is assigned to that coordinates. In addition,
the data set also contains an undirected graph of users which shows the friendship relation
among the users. To properly utilize the data set, we have to modify it so that it conforms
to our system’s structure. Since it consists of around 196K users and 6400K check-ins,
we may reduce its scale so that its size is similar to Geosocial2 data set. One idea is to
filter the data in a way that it covers a small portion of physical location. For instance,

1 http://delab.csd.auth.gr/geosocial2/index2.html.
2 http://snap.stanford.edu/data/loc-gowalla.html.
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Paris can be chosen as a target location. Hence, we diminish the scale by choosing the
check-in points in which their coordination is within a triangle which represents the city of
Paris. Additionally, users are selected so that at least checked in once in mentioned loca-
tions.

As we mentioned earlier in previous data set, each entry in user–location–activity table
demonstrates a rating value (between 1 and 5) which a user gives for performing a specific
activity in a determined location. However, check-ins data only show that a user either checked
in a location or not. To construct a 3-D matrix similar to discussed one, we may think user ID
and location ID as being our first and second dimension of the matrix. In practice, we do not
have any information about performing an activity, and hence, the problem arises when we
want to construct the third dimension of data which is activity in user–location–activity. To
deal with this problem, one may think that each check-in of a user in a location is performed
for doing an activity. Since we do not have any activity category or ID here, we may construct
the third dimension to be time slice. That means, we may divide the time interval of 24 hours
to slices of 1, 2, 3, … hours and assign each check-in to the slice that it has been occurred.
With this definition, we will have 24, 12, 8, … time slices as the third dimension depending
on the number of hours in each slice.

The other problem we encounter during diminishing the scale of data is the rating issue.
We previously stated that users give their feedback as form of rating values to the system.
However, when we are talking about check-ins, there is no feedback and rating from users.
Instead, it is a binary state that shows whether a user has checked in a specific location or not.
If we consider the frequency of check-ins in a location, human intuition tells us that the place
or the activity which is done in that place may have an interest to the user. In other words,
by counting the number of check-ins performed by a user in a specific location, we would
be able to estimate the level of eagerness of the user. Notice that, the frequency of check-ins
in some locations reaches more than 50 times. Hence, we have to define a function which
maps the check-in frequency to the range of rating value which is between 1 and 5. Proposed
mapping function for a given check-in frequency fc is given by CheckinMap( fc), which is
described in Eq. (15) as:

CheckinMap( fc) =
{

0 if fc = 0
�1 + ln fc� if fc > 0

(15)

This function guaranties that return value of CheckinMap( fc) for all fc is member of
{0, 1, 2, 3, 4, 5}, since the maximum value of check-in frequency observed for reduced-scale
data set is 76 check-ins. The rest of test scenario is similar to the first data set, and the
evaluations are discussed in following subsections.

5.2 Prediction evaluation metrics

In our study, the accuracy of the proposed models is measured by mean absolute error (MAE)
[13] and root mean square error (RMSE) [13], which are known statistical evaluation metrics
and commonly are used in prediction systems to measure how close forecasts are to the
original values [15]. Corresponding formulas are given in Eqs. (16) and (17) in which O and
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Eare observed values and estimated values and n is the cardinality of test set.

M AE (O, E) = 1

n

n∑

i=1

|oi − ei | (16)

RM SE (O, E) =
√∑n

i=1(oi − ei )2

n
(17)

5.3 Neighborhood selection

Selecting proper neighborhood set is a tricky task which potentially influences the accuracy
of prediction. One solution is to choose top-N neighborhood in which neighbors with the
highest similarity to active entry (user, location, or activity) is selected to predict the target
rating [29]. However, determining the magnitude of N is crucial since if it is too low, it cannot
be a precise prediction and if it is too high, the noise will affect the result negatively.

An alternative solution proposed in [8] chooses neighbors with regard to a threshold of
similarity value. For instance, one strategy is to add such entries to neighborhood set that the
value of similarity (correlation) is greater than 0.7 to active entry. Another simple method
which is mostly utilized in small data sets is to set a threshold to the percent of similarities
that are going to determine neighborhood. In this case, for example, we can seek top 10 %
of sorted similarity matrix to construct the neighborhood set. When there is no neighbor for
the defined boundaries, zero value is set as the prediction value.

In this test, for both data sets we reduce the rank so that 50 % of original data are maintained
and Jaccard correlation is opted to calculate User–User similarity from friendship network
as well. For the first data set, “Wu And Palmer” [39] is chosen as a metric to compute
the similarity among activities. All these configurations are maintained same for EFC and
HOSVD.

Figure 24 illustrates the influence of neighborhood size on MAE for all methods in Geoso-
cial2 data set. In HOSVD, for a small size of neighborhood MAE is high but as the size is
increased, error is decreased and reaches to a minimum value. Collaborative filtering shows
an interesting result since it begins with high MAE for small size of neighborhood and soon
after it reaches to 5, MAE shows a steady trend to the size of neighborhood.

In the content-based model, in which we use the similarity matrices to construct the model,
MAE tends to be steady by changing the size of neighborhood. Finally, Hybrid model shows
a slightly fluctuations by increasing the size of neighborhood, and it reaches to the lowest
value of MAE in size = 10 and after that point it keeps an ascending move. It can be the
influence of extra noise in calculation as the size of neighborhood is increased.

For the Gowalla data set as it shown in Fig. 25, HOSVD and content-based method seems
to give the same results. However, collaborative method and hybrid method give better results
in comparison to others. All methods have their best results for small size of neighborhood,
and as the size is increased, the value of MAE also increases. We believe that sparseness of
data set affects the similar neighbors, so that as we search for more similar neighbors, we get
more entries with zero ratings which in turn mislead the predicted values.

5.3.1 Other parameters

The rank of SVD or HOSVD defines the amount of original data maintained, which has been
explained in the Sect. 3.1. Hence, by changing the amount of the data, we control the rank of
the matrices in each model. In our experiments, for Geosocial2 and Gowalla data sets, we set
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0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 10 15 20 30 40 50

M
A

E

Size of neighborhood

HOSVD
Collaborative Filtering
Content based
Hybrid

Fig. 25 Neighborhood size versus MAE for Gowalla data set

the neighborhood size to be 10 and 1 correspondingly. In the first data set, “Wu And Palmer”
is chosen as a metric to compute the similarity among activities.

As illustrated in Figs. 26 and 27, we analyze the effect of the amount of the data maintained
to MAE. HOSVD model shows the optimum result at 10% of original data and the perfor-
mance drops as the percent is increased. Together with increasing the percent of original data
to maintain, actually some noise is included which also increases MAE.

Collaborative filtering and hybrid models show slightly similar effect to the magnitude of
rank. Both start from an initial MAE for lower ranks and after some fluctuation reach to a
minimum value of MAE and take an increasing trend as the rank gets larger. Similar to the
same trend in size of neighborhood given in Fig. 24, content-based model shows a steady
trend and changing the rank of reduced dimension data has no effect on this model.

Earlier we mentioned in Sect. 4.6 that to construct EFC model, we utilize the Activity–
Activity similarity matrix. Moreover, there are different metrics that are used to calculate
similarity between words within WordNet [27]. Utilizing various metrics yields different
results for similarity matrix which in turn influences the efficiency of final predicted results.
Note that, this experiment is only applicable to the first data set, since we use time slice
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Fig. 27 Percent of the data maintained in dimension reduction versus MAE in Gowalla data set

instead of activity in Gowalla. The size of neighborhood and the percent of data to keep in
this data set are 10 and 50 %.

As presented in Fig. 28 for the several distance metrics we experimented with to find
similarity among activities, “Wu And Palmer” has better results in Hybrid model.

5.4 Recommendation evaluation metrics

In a typical recommendation system, items are recommended to users. Since in our model
we have both activities and locations, our system can be used to recommend activities at
certain locations, or locations for certain activities. We simply predict the rating value of
user–location–activity triple, if it is unknown, and then generate either activity or location
recommendation if that rating value is greater than some threshold.

To assess the quality of the recommendations generated by the methods introduced in
this paper, we employed precision and recall which are standard and widely used metrics in
information retrieval [28]. The way we measure them for each method is as follows:

– First, we randomly pick 10 % of the nonzero entries from rating tensor and set their values
to be zero.
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Fig. 28 Distance metrics of WordNet versus MAE in Hybrid model

– Then, we use one of our methods and predict their values.
– For each predicted value, we determine the followings:

I. True positives (TP): if both the original value and its predicted value are greater than
the threshold, then that means we have made correct recommendation.

II. False positives (FP): if the original value is less than the threshold, but the predicted
value is greater than it, then that means we have made an incorrect recommendation.

III. True negatives (TN): if both the original value and the predicated value are less than
the threshold, then that means we did not make recommendation and it was correct.

IV. False negatives (FN): if the original value was greater than the threshold, but the
predicted value was less than it, then we have missed the recommendation that we
should have done.

Using these values, precision and recall are calculated as combination of TP, FP and FN as
given in Eqs. (18) and (19).

Precision = T P

T P + F P
(18)

Recall = T P

T P + F N
(19)

Additionally, F-measure as a combination of precision and recall [31] can be computed as
shown in Eq. (20).

F − measure = 2 × Precision × Recall

Precision + Recall
(20)

As explained above, recommendation in top-N neighbor systems is determined using a thresh-
old. In this experiment which is performed for Geosocial2 data set, we have examined the
values of 2, 3 and 4 for the threshold. The size of neighborhood is chosen to be 10, and similar
to other tests, we maintain 50 % of the data after reducing its rank. The impact of each value
on precision, recall and F-measure is shown in Figs. 29, 30 and 31.

When the objective is to predict rating values less than or equal to 2, all methods give a
reasonable results in terms of recall as seen in Fig. 29. However, to predict the rating values
less than or equal to 3, all methods show a decreasing result for recall, but hybrid method
outperforms others considering the recall and F-measure in Fig. 30. Once the objective is
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to predict higher rating values, hybrid and CB methods give better results for precision, but
both have a higher rate of FN as it is presented in Fig. 31.

5.4.1 Overall discussion

Table 4 presents the comparison of MAE, RMSE and execution time for different models
we have discussed so far. Running time can be a quantitative factor to assess the response
time of each technique. However, it is divided into two parts in which first one is the time of
preparation for the task of prediction, and the second one is actual time of prediction. Note
that, for each fold of execution in Geosocial2 data set, we randomly select 10 % of nonzero
values of rating tensor (which in this work is 82) and replace them with zero. Consequently,
it is the time required for predicting all those 82 entries selected randomly from data set.
Similarly, in Gowalla data set 250, nonzero entries are selected to be predicted in given time.
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Table 4 Comparison between models according to MAE, RMSE, and time of execution

MAE RMSE Preparation time (s) Prediction time (s)

Geosocial2

HOSVD 0.767 0.958 0.83 1.12

Collaborative filtering 0.72 0.927 0.43 0.84

Content based 0.764 0.945 0.37 0.78

Hybrid 0.755 0.955 1.12 1.78

Gowalla

HOSVD 0.941 1.056 0.08 0.17

Collaborative filtering 0.716 0.913 0.12 0.29

Content based 0.924 1.047 0.18 0.24

Hybrid 0.672 0.864 0.21 0.29

We applied paired t test [7] on 20 MAE experiment results of HOSVD and hybrid methods
on both Geosocial2 and Gowalla data sets. For both of them, the two-tailed P value is less than
0.0001. By conventional criteria, this difference is considered to be statistically significant.

6 Conclusion

In this work, we have introduced a simple model that could be used for nonstandard recom-
mendation systems with multidimensional rating data and other forms of information about
the objects of its dimensions. It has been shown that with our technique, 3-D rating data can
easily be reduced to 2-D matrix. The resulting 2-D matrix could be extended with additional
feature matrices. We have applied this idea on geospatial data with user–activity–location
dimensions. In addition to a very sparse 3-D tensor with these three dimensions, we also had
three similarity matrices for the objects of each dimension.

Our main idea can be summarized as combining several matrices into single big matrix,
applying SVD for dimensionality reduction and finally looking for similar entries for an entry
whose rating value is being predicted. Since an entry has three dimensions in 3-D data struc-
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ture, this similarity search operation has been performed on different domain corresponding
to the different parts of the low-rank reduced matrices obtained after SVD, which is the main
reason for constructing the results efficiently. Moreover, since the information loss is very
little due to 3-D to 2-D reduction process, the accuracy of the prediction is also very high.

HOSVD-based approach has already been effectively used for 3-D rating data. However,
our experiments show that pure collaborative filtering on the 2-D reduced model is even more
effective and efficient than HOSVD-based solution. Moreover, the model is also suitable for
content-based recommendation systems if only similarity matrices are utilized. Although
it is not better than collaborative filtering method, the results for content-based method is
surprisingly very good as well. Finally, our method allows combining 3-D data together with
additional feature matrices very easily. Although we had anticipated even better results by
combing these additional features, at least on our data set the accuracy values were obtained
between pure collaborative filtering and the content-based recommendation models. As the
future work, the performance of the method may be evaluated on several other data sets.

Acknowledgments This work has been partially funded by the Greek GSRT (project number 10TUR/4-3-3)
and the Turkish TUBITAK (project number 109E282) national agencies as part of Greek-Turkey 2011-2012
bilateral scientific cooperation.

References

1. Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A (2005) Incorporating contextual information in
recommender systems using a multidimensional approach. ACM Trans Inf Syst 23(1):103–145

2. Anand SS, Mobasher B (2007) Contextual recommendation. In: Berendt B, Hotho A, Mladenic D, Semer-
aro G (eds) From web to social web: discovering and deploying user and content profiles. Springer, Berlin,
pp 142–160

3. Anderson A, Huttenlocher D, Kleinberg J, Leskovec J (2012) Effects of user similarity in social media.
In: Proceedings of the fifth ACM international conference on web search and data mining (WSDM ’12).
ACM, New York, USA, pp 703–712

4. Bader BW, Kolda TG (2012) MATLAB Tensor Toolbox Version 2.5. http://www.sandia.gov/tgkolda/
TensorToolbox/. Accessed 1 May 2013

5. Bardsley E (2002) Lossy compression using SVD. http://edbardsley.org/classes/15-211/lab4/lossy.html.
Accessed 1 May 2013

6. Bellogin A, de Vries AP (2013) Understanding similarity metrics in neighbour-based recommender
systems. In: Proceedings of the 2013 conference on the theory of information retrieval (ICTIR ’13).
ACM, New York, USA, pp 48–55

7. Box JF (1987) Guinness, gosset, fisher, and small samples. Stat Sci 2(1):45–52
8. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative

filtering. In: Proceedings of the fourteenth conference on uncertainty in artificial intelligence. Morgan
Kaufmann, San Francisco, CA, USA, pp 43–52

9. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social
networks. In: Proceedings of the 17th ACM SiGKDD international conference on knowledge discovery
and data mining. ACM, New York, USA, pp 1082–1090

10. Fan J, Li R (2003) Local modeling: density estimation and nonparametric regression. In: Fang J, Lu Y
(eds) Advanced medical statistics. World Scientific, New Jersey, pp 885–930

11. Foltz PW (1990) Using latent semantic indexing for information filtering. In: Proceedings of the ACM
SIGOIS and IEEE CS TC-OA conference on office information systems. ACM, New York, USA,
pp 40–47

12. Golub GH, Loan CFV (1996) Matrix computations. Johns Hopkins, Baltimore
13. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco,

CA, USA
14. Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for performing collab-

orative filtering. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval (SIGIR ’99). ACM, New York, USA, pp 230–237

123

http://www.sandia.gov/tgkolda/TensorToolbox/
http://www.sandia.gov/tgkolda/TensorToolbox/
http://edbardsley.org/classes/15-211/lab4/lossy.html


Extended feature combination model for recommendations

15. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender
systems. ACM Trans Inf Syst 22(1):5–53

16. Hirst G, St-Onge D (1998) Lexical chains as representations of context for the detection and correction of
malapropisms. In: Fellbaum C (eds) WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
pp 305–332

17. Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy, In:
Proceedings of 10th international conference on research in Computational Linguistics (ROCLING’97).
Taiwan, pp 19–33

18. Kautz H, Selman B, Shah M (1997) Referral Web: combining social networks and collaborative filtering.
Commun ACM 40(3):63–65

19. Kolda TG, Sun J (2008) Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of
the 8th IEEE international conference on data mining (ICDM 2008). IEEE Computer Society, Washington,
DC, USA, pp 363–372

20. Lathauwer LD, Moor BD, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J
Matrix Anal Appl 21(4):1253–1278

21. Lax PD (2007) Linear algebra and its applications. Wiley, New York
22. Leacock C, Chodorow M (1998) Combining local context and WordNet similarity for word sense iden-

tification. In: Fellbaum C (eds) WordNet: An Electronic Lexical Database. MIT Press, Cambridge, pp
265–283

23. Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of the 15th international
conference on machine learning (ICML’98). Morgan Kaufmann, San Francisco, CA, USA, pp 296–304

24. Marinho LB, Nanopoulos A, Schmidt-Thieme L, Jaschke R, Hotho A, Stumme G, Symeonidis P (2011)
Social tagging recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender
systems handbook. Springer US, New York, pp 615–644

25. Massachusetts Institute of Technology (2002) Singular value decomposition (SVD) tutorial. http://web.
mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm. Accessed 1 May 2013

26. MATLAB Release 7.8.0 (R2009a) The MathWorks Inc, Natick, Massachusetts, United States
27. Miller GA (1995) WordNet: a lexical database for english. Commun ACM 38(11):39–41
28. Raghavan V, Bollmann P, Jung GS (1989) A critical investigation of recall and precision as measures of

retrieval system performance. ACM Trans Inf Syst 7(3):205–229
29. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for

collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported
cooperative work (CSCW ’94). ACM, New York, NY, USA, pp 175–186

30. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings
of the 14th international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco,
CA, USA, pp 448–453

31. Sanchez JL, Serradilla F, Martinez E, Bobadilla J (2008) Choice of metrics used in collaborative filtering
and their impact on recommender systems. In: 2nd IEEE international conference on digital ecosystems
and technologies (DEST 2008). IEEE, pp 432–436

32. Sarwar BM, Karypis G, Konstan JA, Riedl JT (2000) Application of dimensionality reduction in recom-
mender system—a case study. In: ACM WebKDD workshop. ACM SIGKDD

33. Sattari M, Manguoglu M, Toroslu IH, Symeonidis P, Senkul P, Manolopoulos Y (2012) Geo-activity
recommendations by using improved feature combination. In: Proceedings of the 2012 ACM conference
on ubiquitous computing (UbiComp ’12). ACM, New York, NY, USA, pp 996–1003

34. Shardanand U, Maes P (1995) Social information filtering: algorithms for automating “word of mouth”. In:
Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’95). ACM/Addison-
Wesley, New York, NY, USA, pp 210–217

35. Spiegel S, Kunegis J, Li F (2009) Hydra: a hybrid recommender system [cross-linked rating and con-
tent information]. In: Proceedings of the 1st ACM international workshop on complex networks meet
information; knowledge management (CNIKM ’09). ACM, New York, NY, USA, pp 75–80

36. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B
(Methodol) 36(2):111–147

37. Symeonidis P, Nanopoulos A, Manolopoulos Y (2010) A unified framework for providing recommen-
dations in social tagging systems based on ternary semantic analysis. IEEE Trans Knowl Data Eng
22(2):179–192

38. Woerndl W, Schueller C, Wojtech R (2007) A hybrid recommender system for context-aware recommen-
dations of mobile applications. In: Proceedings of the 2007 IEEE 23rd international conference on data
engineering workshop (ICDEW ’07). IEEE Computer Society, Washington, DC, USA, pp 871–878

123

http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm


M. Sattari et al.

39. Wu Z, Palmer M (1994) Verbs semantics and lexical selection. In: Proceedings of the 32nd annual meeting
on association for computational Linguistics (ACL ’94). Association for Computational Linguistics,
Stroudsburg, PA, USA, pp 133–138

40. Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation:
a user-centered approach, In: Proceedings of the twenty-fourth AAAI conference on artificial intelligence
(AAAI 2010). AAAI Press, pp 236–241

41. Zheng VW, Zheng Y, Xie X, Yang Q (2010) Collaborative location and activity recommendations with
GPS history data. In: Proceedings of the 19th international conference on world wide web (WWW ’10).
ACM, New York, NY, USA, pp 1029–1038

Masoud Sattari is currently a Ph.D. student at the Data Mining Lab
of Middle East Technical University (METU), Turkey. He received
his master from the same school under the supervisions of the Prof.
Ismail H. Toroslu and Prof. Pinar Karagoz in 2013. His research inter-
ests include data mining, recommendation systems, and social network
analysis.

Ismail Hakki Toroslu is with the Department of Computer Engi-
neering, Middle East Technical University (METU) since 1993. He
has received his B.S. and M.S. degrees in computer engineering from
METU, Ankara in 1987 and Bilkent University, Ankara in 1989 respec-
tively. Prof. Toroslu received his Ph.D. from the Department of Elec-
trical Engineering and Computer Science at Northwestern University,
IL, in 1993. He has also been a visiting professor in the Department
of Computer Science at University of Central Florida between 2000
and 2002. His current research interests include data mining, bioinfor-
matics and intelligent data analysis. Prof. Toroslu has published more
than 60 technical papers in variety of areas of computer science. His
recent publications are mostly on web mining, inductive logic program-
ming, bioinformatics and recommendation systems. Prof. Toroslu has
also received IBM Faculty Award in 2010.

Pinar Karagoz is currently Associate Professor in Computer Engi-
neering Department of Middle East Technical University (METU). She
received her Ph.D. from the same department in 2003. She worked as
a visiting researcher in State University of New York (SUNY) at Stony
Brook. Dr. Karagoz is the author of more than 80 publications in sev-
eral conferences and journals including VLDB, CIKM, KAIS, Infor-
mation Systems and SIGMOD Record. She has been serving as PC
member or reviewer in conferences and journals in her research areas.
Her research interests include data mining, web usage mining, semantic
web services, web service discovery and composition, workflow mod-
eling and analysis.

123



Extended feature combination model for recommendations

Panagiotis Symeonidis received his bachelor degree in applied infor-
matics in 1996, and the MSc degree in information systems in 2004,
from Macedonia University, Greece. He received the Ph.D. degree in
web mining from Aristotle University of Thessaloniki, Greece, in 2008.
Currently, he is working as a postdoctoral researcher at Aristotle Uni-
versity of Thessaloniki, Greece. He is the coauthor of 2 books and more
than 35 articles in international journals and conference proceedings.
His articles have received more than 850 citations from other scientific
publications. He teaches courses on databases, data mining and data
warehousing in a postgraduate program in Aristotle University of Thes-
saloniki. He is also the director of 1st SEK (School Laboratory Cen-
ter) of Stavroupolis, Thessaloniki. His research interests include web
mining (usage mining, content mining and graph mining), information
retrieval and filtering, recommender systems, social media in Web 2.0
and time-evolving online social networks.

Yannis Manolopoulos is Professor with the Department of Informat-
ics of Aristotle University of Thessaloniki. He has been with the Uni-
versity of Toronto, the University of Maryland at College Park and the
University of Cyprus. He has also served as Rector of the University of
Western Macedonia in Greece, Head of his own department, and Vice-
Chair of the Greek Computer Society. He has co-authored 5 mono-
graphs published by Kluwer and Springer, 8 textbooks in Greek, as
well as ∼ 300 journal and conference papers on Data Management. He
received >8,000 citations from >1,200 distinct academic institutions
and 2 best paper awards from ACM SIGMOD and ECML/PKDD con-
ferences. He has also served as main co-organizer of several major fora,
among others: ADBIS’2002, SSTD’2003, SSDBM’2004, ICEIS’2006,
EANN’2007, ICANN’2010, AIAI’2012, WISE’2013, CAISE’2014,
conferences. He has acted as evaluator for funding agencies in Austria,
Canada, Cyprus, Czech Republic, Estonia, EU, Hong-Kong, Georgia,
Greece, Israel, Italy and Russia. Currently, he serves in the Editorial
Board of The VLDB Journal, The World Wide Web Journal, and The
Computer Journal.

123


	Extended feature combination model  for recommendations in location-based mobile services
	Abstract
	1 Introduction
	2 Problem definition
	2.1 User--User similarity matrix
	2.2 Activity--Activity similarity matrix
	2.3 Location--Location similarity matrix

	3 Preliminaries in dimensionality reduction
	3.1 Singular value decomposition (SVD) overview
	3.2 Tensor-based recommendation
	3.2.1 Dimensionality reduction in tensor
	3.2.2 Recommendation steps for tensor-based method
	3.2.3 Rating prediction
	3.2.4 Example for tensor-based recommendation system


	4 Proposed method: extended feature combination (EFC)
	4.1 Model construction
	4.2 Similarity calculation
	4.3 Rating prediction
	4.4 Feature combination using collaborative filtering
	4.5 Feature combination using contextual information
	4.6 Hybrid feature combination

	5 Experimental results
	5.1 Data sets
	5.2 Prediction evaluation metrics
	5.3 Neighborhood selection
	5.3.1 Other parameters

	5.4 Recommendation evaluation metrics
	5.4.1 Overall discussion


	6 Conclusion
	Acknowledgments
	References


