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Abstract

Online social networks (OSNs) recommend new friends to registered users
based on local-based features of the graph (i.e. based on the number of com-
mon friends that two users share). However, OSNs do not exploit all different
length paths of the network. Instead, they consider only pathways of maxi-
mum length 2 between a user and his candidate friends. On the other hand,
there are global-based approaches, which detect the overall path structure in
a network, being computationally prohibitive for huge-sized social networks.
In this paper we provide friend recommendations, also known as the link pre-
diction problem, by traversing all paths of a limited length, based on the “al-
gorithmic small world hypothesis”. As a result, we are able to provide more
accurate and faster friend recommendations. We also derive variants of our
method that apply to different types of networks (directed/undirected and
signed/unsigned). We perform an extensive experimental comparison of the
proposed method against existing link prediction algorithms, using synthetic
and three real data sets (Epinions, Facebook and Hi5). We also show that a
significant accuracy improvement can be gained by using information about
both positive and negative edges. Finally, we discuss extensively various ex-
perimental considerations, such as a possible MapReduce implementation of
FriendLink algorithm to achieve scalability.
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1. Introduction

Online social networks (OSNs) such as Facebook.com, Myspace.com, Hi5-
.com, etc. contain gigabytes of data that can be mined to make predictions
about who is a friend of whom. OSNs gather information on users’ social con-
tacts, construct a large interconnected social network, and recommend other
people to users based on their common friends. The premise of these rec-
ommendations is that individuals might only be a few steps from a desirable
social friend, but not realize it.

In this paper, which is an extension of our previously published work
in [1], we focus on recommendations based on links that connect the nodes
of an OSN, known as the Link Prediction problem, where there are two main
approaches that handle it [2]. The first one is based on local features of a
network, focusing mainly on the nodes structure; the second one is based
on global features, detecting the overall path structure in a network. For
instance, an example of a local-based approach is shown in Figure 1. Face-
book.com or Hi5.com use the following style of recommendation for recom-
mending new friends to a target user U1: “People you may know : (i) user U7

because you have two common friends (user U5 and user U6) (ii) user U9 be-
cause you have one common friend (user U8) . . . ”. The list of recommended
friends is ranked based on the number of common friends each candidate
friend has with the target user.
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Figure 1: Social Network Example.

1.1. Motivation

Compared to approaches which are based on local-based features of a net-
work, we expand user’s neighborhood horizon by exploiting paths of greater
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length. In contrast, they consider only pathways of maximum length 2 be-
tween a target user and his candidate friends. In our approach, we assume
that a person can be connected to another with many paths of different
length (through human chains). For example, in Figure 1, according to ex-
isting OSNs, U1 would get as friend recommendation with equal probability
U4 or U7. However, if we take into account also paths of length 3, then U4

should have a higher probability to be recommended as a friend to U1.
Compared to global-based approaches, which detect the overall path

structure in a network, our method is more efficient. This means, that our
method, which is based on a limited path traversal, requires less time and
space complexity than the global based algorithms. The reason is that we
traverse only paths of length ℓ in a network based on the “algorithmic small
world hypothesis”, whereas global-based approaches detect the overall path
structure.

1.2. Contribution

The contributions of our approach are summarized as follows: (i) We de-
fine a new node similarity measure that exploits local and global character-
istics of a network. (ii) We provide more accurate friend recommendations,
by traversing paths of different length that connect a person to all other
persons in an OSN. (iii) We provide higher efficiency than the global-based
approaches, by limiting our traversing in ℓ-length paths in a network. (iv) We
also derive variants of our method that apply to different types of networks
(directed/undirected and signed/unsigned). We show that a significant ac-
curacy improvement can be gained by using information about both positive
and negative edges. (v) To run our algorithm with huge sized networks, we
discuss its possible MapReduce [31] implementation. Note that this paper is
an extension of our previously published work in [1].

The rest of this paper is organized as follows. Section 2 summarizes
the related work, whereas Section 3 briefly reviews preliminaries in graphs
employed in our approach. Section 4 defines a new node similarity measure
in OSNs. A motivating example, the proposed approach, its complexity
analysis, and the extension of FriendLink for different types of networks, i.e.
signed networks, are described in Section 5. Experimental results are given
in Section 6. Also, in 7 we discuss the scalability of our method by proposing
a possible MapReduce implementation. Finally, Section 8 discusses basic
research questions, whereas Section 9 concludes this paper.
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2. Related work

Based on his provocative “small world” experiments, Stanley Milgram
claimed that everyone in the world could be connected to everyone else via
an average small path length [3]. This experiment is also known as the
“six degrees of separation”, although Milgram did not use this term himself.
Recently, Goel et al. [4] reported experiments for the “algorithmic small-
world hypothesis”, where half of all chains can be completed in 6-7 steps,
supporting the “six degrees of separation” assertion. However, they report
that the number of steps in a search chain depends not only on the actual
distance between the source and the target, but also on the search strategies
of the intermediaries.

The research for link prediction in social networks, tries to infer new
interactions among members of a social network that are likely to occur
in the near future. There are two main approaches [2] to handle the link

prediction problem. The first one is based on local features of a network,
focusing mainly on the nodes structure; the second one is based on global
features, detecting the overall path structure in a network.

Tylenda et al. [5] proposed methods to incorporate temporal information
available on evolving social networks for link prediction. Schifanella et al. [6]
discover the connection between the usage of shared tags and the social links
existing between users. When they considered the annotations of the most
active users, almost all of the semantic similarity measures considered outper-
form the neighbor suggestions from the Last.fm system at predicting actual
friendship relations. Zheleva et al. [7] study the predictive power of overlay-
ing friendship and family ties on three real-world social networks. Zhou et
al. [8] and Lu et al. [9] propose a similar idea to our own but they do not
include any attenuation factor experimentation, path normalization or a pos-
sible MapReduce implementation scenario to support huge sized networks.

There is a variety of local-based similarity measures [2], which are node-
dependent (i.e. Common Neighbors index or else known as Friend of a Friend
(FOAF) algorithm, Adamic/Adar index, Jaccard Coefficient, etc.) for ana-
lyzing the “proximity” of nodes in a network. FOAF [10] is based on the
common sense that two nodes vx, vy are more likely to form a link in the
future, if they have many common neighbors. More complicated local-based
measures such as Jaccard Coefficient [2] and Adamic/Adar index [11], refine
the simple counting of common features by weighting rarer features more
heavily. Another well-known local-based similarity measure is Preferential
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Attachment [2]. The basic premise of Preferential Attachment (PA) is that
the probability a new edge involves a node is proportional to the current
number of its neighbors.

There is a variety of global-based approaches [2] which are path-dependent
(i.e Katz status index, RWR algorithm, SimRank algorithm etc.). Leo Katz [12]
introduced a status index that computes the important and influential nodes
in a social network. Random Walk with Restart (RWR) algorithm [13] is
based on a Markov chain model of random walks through a graph. In the
same direction with RWR, the Markov Diffusion (MD) kernel [14] is based on
a discrete-time diffusion Markov model. Moreover, Fouss et al. [15, 16] pro-
posed a random walk model that computes matrix kernels (i.e. the average
commute time, the regularized commute time (RCT) etc.) to capture simi-
larities between any pair of nodes in a network. These matrix kernels have
the property of increasing, when the number of paths connecting two nodes
increases and when the length of connecting paths decreases. Furthermore,
Sarkar and Moore [17] proposed a truncated commute time random walk
model to compute all “interesting” pairs of approximate nearest neighbors
in truncated commute times, without computing it between all pairs. Notice
that truncated commute time [17] algorithm shares a similar idea with our
method, but it questionable that it has not yet been compared with other
state-of-art link prediction algorithms. SimRank [18] also computes a global-
based similarity measure based on the structural context of a network that
says “two objects are similar if they are related to similar objects”. Finally,
Clauset et al. [19] proposed an algorithm based on the hierarchical network
structure.

The novelty of our approach compared to existing approaches is as fol-
lows: (i) Our method can be categorized as a local-based similarity measure,
because it relies on a truncated strategy of counting paths in a graph. We
compare our method against FOAF, Adamic/Adar and PA algorithms, as
representative of the local-based measures, and as will be experimentally
shown later, our method outperforms the other methods in terms of accu-
racy. The reason is that we take into account more information by expanding
the user’s neighborhood horizon. (ii) In contrast to global-based algorithms,
our method is more efficient, because it is based on a local-based similar-
ity measure. Thus, it requires less time and space complexity than global
based algorithms. We have compared our method against RWR, Katz, MD
and RCT, among others, as representatives of the global based algorithms,
and our method outperforms all these methods. The reason is that global
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methods have to compute the inverse of a n× n matrix (n is number of ver-
tices in a network) resulting to O(n3) time complexity, whereas our method
requires a linear CPU time to the network size n. Moreover, our method
is more effective in terms of accuracy. The reason is that global methods
traverse globally the social network, missing to capture adequately the local
characteristics of the graph.

3. Preliminaries in Graphs

A graph G = (V, E) is a set V of vertices and a set E of edges such
that an edge joins a pair of vertices. In this paper, G will always be a general
undirected and unvalued graph as shown in Figure 1. G expresses friendships
among users of an OSN and will be used as our running example, throughout
the paper.

The adjacency matrix A of graph G is a matrix with rows and columns
labeled by graph vertices, with a 1 or 0 in position (vi, vj) according to
whether vi and vj are friends or not. For an undirected graph, the adjacency
matrix is symmetric. In Figure 2, we present the resulting adjacency matrix
A of graph G.

U1 U2 U3 U4 U5 U6 U7 U8 U9

U1 0 1 1 0 1 1 0 1 0
U2 1 0 0 1 0 0 0 0 0
U3 1 0 0 1 0 0 0 0 0
U4 0 1 1 0 0 0 0 0 1
U5 1 0 0 0 0 0 1 0 0
U6 1 0 0 0 0 0 1 0 0
U7 0 0 0 0 1 1 0 0 0
U8 1 0 0 0 0 0 0 0 1
U9 0 0 0 1 0 0 0 1 0

Figure 2: Adjacency matrix A of graph G.

The adjacency matrix of graph G when raised to the power of 2 results in
the matrix shown in Figure 3, which presents the number of length-2 paths
that exist between each pair of graph nodes. In our running example, as
shown in Figure 3, node U1 has 2 length-2 paths connecting him to U4 and
U7, and 1 length-2 paths connecting him to U9. Notice that by raising the
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adjacency matrix A to the power of 3, we get the number of length-3 paths
between each pair of nodes in G. This process can be repeated for higher
powers.

U1 U2 U3 U4 U5 U6 U7 U8 U9

U1 5 0 0 2 0 0 2 0 1
U2 0 2 2 0 1 1 0 1 1
U3 0 2 2 0 1 1 0 1 1
U4 2 0 0 3 0 0 0 1 0
U5 0 1 1 0 2 2 0 1 0
U6 0 1 1 0 2 2 0 1 0
U7 2 0 0 0 0 0 2 0 0
U8 0 1 1 1 1 1 0 2 0
U9 1 1 1 0 0 0 0 0 2

Figure 3: Adjacency matrix A of graph G raised to the power of 2.

4. Defining a Node Similarity Measure

In this section, we define a new similarity measure to determine a way
of expressing the proximity among graph nodes. Let vi and vj be two graph
nodes and sim(vi, vj) a function that expresses their similarity. The higher
the similarity score between two nodes, the higher the possibility of them
being friends.

Suppose that two persons in an OSN want to have a relationship, but the
shortest path between them is blocked by a reluctant broker. If there exists
another pathway, the two persons are likely to use it, even if it is longer and
“less efficient”. In general, two persons can use all the pathways connecting
them, rather than just the shortest path between them. Thus, our method
expands the idea of shortest paths connection between two persons in an
OSN.

By traversing all possible paths between a person and all other persons
in an online social graph, a person can be connected to another by many
possible paths (through human chains). Our method assumes that persons
in an OSN can use all the pathways connecting them, proportionally to the
pathway lengths. Thus, two persons who are connected with many unique
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pathways have a high possibility to know each other, proportionally to the
length of the pathways they are connected with.

For example, referring back to Figure 1, if we consider only length-2 paths,
then U1 would get as friend recommendation with equal probability U4 or U7.
However, if we take into account also length-3 paths, then U4 should have a
higher probability to be recommended as a friend to U1.

Definition 1. The similarity sim(vx, vy) between two graph nodes vx and
vy is defined as the counts of paths of varying length ℓ from to vx and vy:

sim(vx, vy) =

ℓ
∑

i=2

1

i− 1
·

∣

∣

∣
pathsivx,vy

∣

∣

∣

i
∏

j=2

(n− j)

(1)

where

• n is the number of vertices in a graph G,

• ℓ is the maximum length of a path taken into consideration between
the graph nodes vx and vy (excluding paths with cycles). By the term
“paths with cycles” we mean that a path can not be closed (cyclic).
Thus, a node can exist only one time in a path (e.g. path v1 → v2 →
v3→v1 → v5 is not acceptable because v1 is traversed twice),

• 1
i−1

is an “attenuation” factor that weights paths according to their
length ℓ. Thus, a 2-step path measures the non-attenuation of a link
with value equals to 1 ( 1

2−1
= 1). A 3-step path measures the attenu-

ation of a link with value equals to 1
2
( 1
3−1

= 1
2
) etc. In this sense, we

use appropriate weights to allow the lower effectiveness of longer path
chains. Notice that we have also tested experimentally other possible
attenuation factors such as Katz’s original exponential βℓ, the logarith-
mic 1

log(i)
, etc. and as will be shown later the attenuation factor 1

i−1

attains the best accuracy results.

•
∣

∣

∣
pathsℓvx,vy

∣

∣

∣
is the number of all length-ℓ paths from vx to vy,

•

i
∏

j=2

(n− j) is the number of all possible length-ℓ paths from vx to vy, if
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each vertex in graph G was linked with all other vertices. Notice that,
we do not count all paths of length-ℓ that lead from all users to every
other user in the social graph.

Finally, the similarity is computed for nodes that are connected with
paths of length ℓ ≥ 2. This is because when there is a path between two
nodes of length 1 they are already friends.

5. The Proposed Approach

In this section, through a motivating example we first provide the out-
line of our approach, named FriendLink. Next, we analyze the steps of the
proposed algorithm.

5.1. Outline

Our FriendLink approach finds similarities between nodes in an undi-
rected graph constructed from the connection data. The FriendLink algo-
rithm uses as input the connections of a graph G and outputs a similarity
matrix between any two nodes in G. Therefore, friends can be recommended
to a target user u according to their weights in the similarity matrix. In
the following, to illustrate how our approach works, we apply the FriendLink
algorithm to our running example. As illustrated in Figure 1, 9 users are
connected in a graph.

If we have to recommend a new friend to U1, then there is no direct
indication for this task in the original adjacency matrix A, as shown in
Figure 2. However, after performing the FriendLink algorithm, we can get a
similarity matrix between any two nodes of graph G and recommend friends
according to their weights.

Firstly, we modify the adjacency matrix A so that instead of holding 0/1
values, the (i, j) entry of the matrix A is a list of paths from i to j. The idea
is that, if you have the 0/1 adjacency matrix of a graph, and you raise that
matrix to theN -th power, then the (vi, vj) entry of the result shows how many
length-N paths exist from node vi to node vj (here the length is measured
in the number of traversed edges). Then, instead of just counting the paths,
we keep track of all the actual paths themselves. Then, we perform matrix
multiplication of the modified adjacency matrix with itself but, instead of
multiplying and adding entries, we produce all paths from node vi to node
vj. As shown in Figure 4, we have created all paths of length 2 and 3, which
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connect each node of graph G to every other graph node. Notice that paths
containing loops are excluded.

U1 U2 U3 U4 U5-U6 U7 U8 U9

U1 -

1→2→4 ... 1→5→7 1→8→9

1→3→4→2 1→2→4→3 1→3→4 1→6→7 1→2→4→9

1→8→9→4 1→3→4→9

U2 -

2→1→3 ... 2→1→5→7 2→1→8 2→4→9

2→4→3→1 2→4→3 2→1→3→4 2→1→6→7 2→4→9→8 2→1→8→9

U3

3→1→2

-

... 3→1→5→7 3→1→8 3→4→9

3→4→2→1 3→4→2 3→1→2→4 3→1→6→7 3→4→9→8 3→1→8→9

U4

4→2→1

-

... 4→9→8

4→3→1 4→3→1→2 4→2→1→3 4→2→1→8

4→9→8→1 4→3→1→8

U5

5→1→2 5→1→3 5→1→2→4 ... 5→1→8 5→1→8→9

5→7→6→1 5→1→3→4 5→1→6→7

U6

6→1→2 6→1→3 6→1→2→4 ... 6→1→8 6→1→8→9

6→7→5→1 6→1→3→4 6→1→5→7

U7

7→5→1 7→5→1→2 7→5→1→3 ...

-

7→5→1→8

7→6→1 7→6→1→2 7→6→1→3 7→6→1→8

U8

8→1→2 8→1→3 8→9→4 ... 8→1→5→7

-8→9→4→2 8→9→4→3 8→1→2→4 8→1→6→7

8→1→3→4

U9

9→8→1 9→4→2 9→4→3 ...

-9→4→2→1 9→8→1→2 9→8→1→3

9→4→3→1

Figure 4: User matrix that contains all paths of length 2 and 3 in graph G of our running
example.

Next, we update the similarity between nodes vi and vj , for each produced
length-ℓ path, where vi is the start node and vj is the destination node (i.e
all paths of length [2..ℓ]). For the calculation of the similarity value between
nodes vi and vj we use Equation 1. In our running example, suppose we
calculate the similarity between U1 with U4 and U7, respectively. Firstly, as
shown in Figure 4, the similarity between U1 and U4 is computed based on
the three paths that connect them (1→2→4, 1→3→4, and 1→8→9→4). Ac-
cording to Equation 1, each of the paths 1→2→4 and 1→3→4 corresponds
to a weight of 0.1428 (1 path of length-2 that connects the two nodes di-
vided to the 7 possible paths of length-2 that could exist between them and
this ratio is multiplied with an attenuation factor equal to 1), while path
1→8→9→4 corresponds to a weight of 0.0119 (1 path of length-3 that con-
nects the two nodes divided to the 42 possible paths of length-3 that could
exist between them and this ratio is multiplied with an attenuation factor
equal to 0.5). Thus, the total similarity between U1 and U4 equals to 0.2975
(0.1428+0.1428+0.0119). Secondly, as shown also in Figure 4, there are two
paths (1→5→7 and 1→6→7) that connect U1 with U7. The weight of each
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path is again 0.1428. The total similarity between U1 and U7 equals to 0.2856
(0.1428+0.1428). Notice that the weight that corresponds to each path of
length ℓ is computed as the ratio between the existed paths of length ℓ to
the total possible paths of length ℓ, which are calculated by the denominator
of Equation 1.

In Figure 5, we present the node similarity matrix of graph G. Therefore,
new friends can be recommended according to their total weight, which is
computed by aggregating all paths connecting them with the target user,
proportionally to the length of each path.

In our running example, as shown in Figure 5, user U1 would receive user
U4 as friend recommendation. The resulting recommendation is reasonable,
because U1 is connected with more paths to user U4 than those that connect
U1 and U7. That is, the FriendLink approach is able to capture the asso-
ciations among the graph data objects. The associations can then be used
to improve the friend recommendation procedure, as will be verified by our
experimental results.

U1 U2 U3 U4 U5 U6 U7 U8 U9

U1 0 0 0 0.2975 0 0 0.2856 0 0.167
U2 0 0 0.286 0 0146 0.146 0.024 0.156 0.156
U3 0 0.286 0 0 0.146 0.146 0.024 0.156 0.156
U4 0.298 0 0 0 0.025 0.025 0 0.167 0
U5 0 0.146 0.146 0.025 0 0.286 0 0.144 0.015
U6 0 0.146 0.146 0.025 0.286 0 0 0.144 0.015
U7 0.286 0.024 0.024 0 0 0 0 0.024 0
U8 0 0.156 0.156 0.167 0.144 0.144 0.024 0 0
U9 0.167 0.156 0.156 0 0.015 0.015 0 0 0

Figure 5: Node Similarity Matrix. It presents the possibility of two users being friends.

5.2. The FriendLink Algorithm

In this section, we describe our FriendLink algorithm in detail. Our
Friendlink algorithm computes node similarity between any two nodes in a
graph G. The initial input of Friendlink is the number n of nodes of G, the
adjacency matrix A, and the length ℓ of paths that will be explored in G.
To enumerate all simple paths in G, Rubin’s algorithm [20] can be employed.
However, Rubin’s algorithm uses O(n3) matrix operations to find all paths of
different length between any pair of nodes, where n is the number of nodes
in G. In the following, we customize Rubin’s algorithm to create only paths
of length up to ℓ for our purpose.
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As shown in Figure 6, our FriendLink algorithm consists of a main pro-
gram and two functions. In the main program, we modify the adjacency
matrix so instead of holding 0/1 values, the (i, j) entry of the matrix A is
a list of paths from i to j. Then, in the function Combine Paths(), we per-
form the matrix multiplication algorithm. However, instead of multiplying
and adding entries, we concatenate pairs of paths together. Notice that, for
simplicity reasons, we do not include the code for loop removals in Figure 6.
Finally, in the function Compute Similarity(), we update the similarity be-
tween nodes i and j, for each length-ℓ path we find, where i is the start node
and j is the destination node (i.e all paths of length [2..ℓ]). For the update of
the similarity value between nodes i and j we use Equation 1. Notice that,
we do not take into account cyclic paths in our similarity measure.

5.3. Complexity Analysis

Social networks are large and contain a significant amount of informa-
tion. Global based algorithms that can be used for link prediction and friend
recommendation, such as Random Walk with Restart(RWR) [21, 13], Katz
index [12], the Markov Diffusion (MD) kernel [14] and the Regularized Com-
mute Time (RCT) [15, 16] are computationally prohibitive for large graphs,
because they require the inversion of a matrix. For instance, the time com-
plexity of Katz index is mainly determined by the matrix inversion operator,
which is O(n3). There is also a faster version [22] of Katz status index that
reduces computational complexity from time O(n3) to O(n+m), where m is
the number of edges. RWR algorithm also requires a matrix inversion, which
can be pre-computed and stored for faster on-line operations. This choice is
fast on query time, but requires additional storage cost (i.e. quadratic space
on the number of nodes on the graph). A solution to this is that, the matrix
inversion can be computed on the fly, through power iteration. However,
its on-line response time is linear to the iteration number and the number
of edges. Notice that Tong et al. [21] proposed a faster version of RWR.
However, it is less accurate than the original RWR, which is not an adequate
solution to the friend recommendation problem, where accuracy is one of the
most important parameters.

Friend of a Friend algorithm (FOAF), as a representative of the local-
based methods, considers very small paths (only paths of length 2) between
any pair of nodes in G. In particular, for each vx node, FOAF traverses all
its neighbors and then traverses the neighbors of each of vx’s neighbor. Since
the time complexity to traverse the neighborhood of a node is simply h (h is
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Algorithm FriendLink (G, A, n, ℓ )
Input

G: an undirected and unweighted graph
A: adjacency matrix of graph G,
n: number of nodes of graph G,
ℓ: maximum length of paths explored in G,
i: the length of a path

Output
sim(vi, vj): similarity between node vi and node vj in G

1. Main Program
2. for vi = 1 to n
3. for vj = 1 to n
4. if A(vi, vj) = 1 then
5. A(vi, vj) = vj
6. else
7. A(vi, vj)= 0
8. end if
9. end for vj
10. end for vi
11. for i = 2 to ℓ
12. Combine Paths()
13. Compute Similarity(i)
14. end for i
15. End Main Program

16. Function Combine Paths()
17. for vi = 1 to n
18. for vj = 1 to n
19. for k = 1 to n
20. if A(vi, k) <> 0 and A(k, vj) <> 0 then
21. A(vi, vj) = concatenate(A(vi, k), A(k, vj))
22. end if
23. end for k
24. end for vj
25. end for vi
26. return A(vi, vj)
27. End Function

28. Function Compute Similarity()
29. for vi = 1 to n
30. for vj = 1 to n
31. denominator = 1
32. for k = 2 to i
33. denominator = denominator * (n - k)
34. end for k

35. sim(vi, vj) = sim(vi, vj) + 1

i−1
·

∣

∣

∣

∣

pathsivi,vj

∣

∣

∣

∣

denominator
36. end for vj
37. end for vi
38. return sim(vi, vj)
39. End Function

Figure 6: The FriendLink algorithm.

the average nodes degree in a network) and our graph G is sparse, it holds
that h << n. Thus, the time complexity of FOAF is O(n× h2). The space
complexity for FOAF is O(n× h).

Our FriendLink algorithm considers also paths with higher length (l-
length paths). Based on Milgram’s [3] “small-world hypothesis”, l can take
integer values in the interval [2,6], where for l=2 our FriendLink equals to
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the FOAF algorithm. Thus, FriendLink’s time complexity is O(n× hl). The
space complexity for FriendLink is also O(n × h). Notice that in our code
we store adjacent nodes using adjacency lists and not a matrix structure.
However, for simplicity reasons, in Figure 6 we present our algorithm using
a matrix structure.

5.4. Extending FriendLink for different types of Networks

Until this point in our paper analysis, we dealt with un-weighted and
undirected networks. However, our algorithm can be easily extended to dif-
ferent types of networks. In this section, we derive variants of FriendLink
that apply to directed networks and networks with weighted edges, includ-
ing the case of edges with negative weights (signed networks). Applying
FriendLink to directed graphs can be achieved (i) by simply disregarding the
edge directions [23], (ii) or by replacing the original adjacency matrix A with
an asymmetric one.

For weighted networks, if edges weights are all positive, FriendLink ap-
plies trivially. In some networks, however, edges have positive as well as
negative weights. Such signed graphs arise for instance in social networks
(i.e. Epinions.com, Shashdot Zoo, etc.) where negative edges denote enmity
instead of friendship. In such signed graphs, FriendLink’s Equation 1, which
is based on the adjacency matrix, can be interpreted as weighted sums of pow-
ers of the adjacency matrix which denote path count in the network. Thus,
if some edges have negative weight, the total weight of a path is counted as
the product of the edges’s weights, based on the assumption of multiplica-
tive transitivity of the structural balance theory [24, 25], as formulated in
the graph-theoretic language by Hage and Harary (1983).

Structural balance theory considers the possible ways in which triangles
on three individuals can be signed. Triangles with three positive signs exem-
plify the principle that “the friend of my friend is my friend”, whereas those
with one positive and two negative edges capture the notions “the enemy of
my friend is my enemy”, “the friend of my enemy is my enemy”, and the
“enemy of my enemy is my friend”.

6. Experimental Evaluation

In this section, we compare experimentally our FriendLink algorithm with
8 other link prediction algorithms. In particular, we use in the comparison
the Markov diffusion kernel [14], the Regularized commute-time kernel [16],
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the Random Walk with Restart [13] algorithm, the Katz [12] status index,
the Adamic and Adar [11], the Preferential Attachment [26], the Friend of
a Friend [10] and the Shortest Path [27] algorithm. Our experiments were
performed on a 3 GHz Pentium IV, with 2 GB of memory, running Windows
XP. All algorithms were implemented in Matlab.

6.1. Algorithms Settings

In this following, we present basic information of the algorithms that will
be compared experimentally with our proposed method:

The Markov Diffusion kernel: The Markov Diffusion kernel [14] is a
distance measure between nodes of a graph. It is based on a discrete-time
diffusion Markov model, where an initial state starts from a node vx and
reaches a node vy after t time steps. The similarity matrix (i.e. Kernel)
between nodes of a graph, can be computed by Equation 2:

KernelMD(t) = (evx − evy )
T · Zt · Z

T
t · (evx − evy) (2)

with Zt =
1
t
· (I − P )−1 · (I − P t) · P , where I is the identity matrix and

P is the transition-probability matrix. Notice that P = D−1A, where D is
a diagonal matrix containing the outdegrees of the graph nodes. Moreover,
evx and evy are the column vectors of nodes vx and vy, respectively.

The Regularized Commute-Time kernel: The Regularized Commute-
Time kernel [16] performs a regularization on the commute-time kernel [15].
Thus, instead of taking the pseudoinverse of the Laplacian matrix (i.e. L+),
which is not invertible, a simple regularization framework is applied that re-
places L+ with D − αA. The similarity matrix (i.e. Kernel) between nodes
of a graph, can be computed by Equation 3:

KernelRCT = (D − αA)−1 (3)

where D is a diagonal matrix containing the outdegrees of the graph
nodes, A is the adjacency matrix with α ∈ [0,1].

Random Walk with Restart Algorithm: RandomWalk with Restart
algorithm [21, 13] considers a random walker that starts from node vx, and
chooses randomly among the available edges every time, except that, before
he makes a choice, with probability α, he goes back to node vx (restart). The
similarity matrix (i.e. Kernel) between nodes of a graph, can be computed
by Equation 4:
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KernelRWR = (I − αP )−1 (4)

where I is the identity matrix and P is the transition-probability matrix.
Katz status index algorithm: Katz [12] defines a measure that directly

sums over all paths between any pair of nodes in graph G, exponentially
damped by length to count short paths more heavily. The similarity between
nodes vx and vy, can be computed by Equation 5:

score(vx, vy) =

∞
∑

ℓ=1

βℓ ·
∣

∣

∣
pathsℓvx,vy

∣

∣

∣
, (5)

where
∣

∣

∣
pathsℓvx,vy

∣

∣

∣
is the number of all length-ℓ paths from vx to vy.

Adamic/Adar algorithm: Adamic and Adar [11] proposed a distance
measure to decide when two personal home pages are strongly “related”. In
particular, they computed features of the pages and defined the similarity
between two pages x, y as follows:

∑

z
1

log(frequency(z))
, where z is a feature

shared by pages x, y. This refines the simple counting of common features
by weighting rarer features more heavily. The similarity between nodes vx
and vy, can be computed by Equation 6:

score(vx, vy) =
∑

z∈Γ(vx)∩Γ(vy)

1

log |Γ(z)|
(6)

where Γ(vx),Γ(vy) are the sets of neighbors of vx and vy.
Preferential Attachment: The basic premise of Preferential Attach-

ment is that the probability a new edge involves node vx is proportional to its
degree. Barabasi et al. [28] and Newman [26] have further proposed on the
basis of empirical evidence, that the probability of that a new edge involves
vx and vy is correlated with the product of the number of connections of vx
and vy, corresponding to the measure shown by Equation 7,

score(vx, vy) := |Γ(vx) · Γ(vy)| (7)

where Γ(vx),Γ(vy) are the sets of neighbors of vx and vy.
Friend of a Friend algorithm: The Friend of a Friend (FOAF) algo-

rithm [10] relies on the number of friends that two nodes vx and vy have in
common, as shown by Equation 8
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score(vx, vy) := |Γ(vx) ∩ Γ(vy)| (8)

where score(vx, vy) is the number of common friends of vx and vy, and
Γ(vx),Γ(vy) are the sets of their neighbors. The candidates are recommended
to vx in decreasing order of their score.

Shortest Path algorithm: Shortest Path calculates the shortest dis-
tance between any pair of users in the social network. Therefore, users can
be recommended to a target user vx according to their shortest distance in
the social network. We use the Frendman-Tarjan algorithm [27] to calculate
the shortest paths between any pair of nodes.

Table 1 summarizes the algorithms used in the experimental evaluation.
The second column of Table 1 provides an abbreviation of each algorithm
name. Most algorithms require the tuning of a parameter, which is shown in
the last two columns of Table 1.

Table 1: The algorithms used in the comparison with their parameters and test values.

Algorithm Abbreviation Equation Parameter Test Values

FriendLink FriendLink (1) i 2,3,4,5
Markov Diffusion [14] MD (2) t 1,2,...,10,50,100

Regularized Commute Time [16] RCT (3) α 10−6, 10−5, ...,0.99
Random Walk with Restart [21, 13] RWR (4) α 10−6, 10−5, ...,0.99

Katz Status Index [12] Katz (5) β 0.05,0.005,0.0005
Adamic/Adar [11] AA (6) - -

Preferential Attachment [28, 26] PA (7) - -
Friend of a Friend [10] FOAF (8) - -
Shortest Path [27] SP - - -

6.2. Real and Synthetic Evaluation Data Sets

To evaluate the examined algorithms, we have used a synthetic and three
real data sets from Facebook, Hi5 and the Epinions web sites.

We crawled the graph data from the Facebook and Hi5 web sites at two
different time periods. In particular, we crawled the Facebook web site on
the 30th of October 2009 and on the 15th of December 2010. Our data
crawling method was the following: For each user u, we traverse all his
friends and then traverse the friends of each of u’s friends etc. From the first
crawl of Facebook web site we created a training data set with 3694 users
(network size N = 3.694, number of edges E=13692), denoted as Facebook
3.7K, where the initial starting node of our crawling was a random user in
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Germany. From the second crawl of Facebook web site we created the probe
data set with the same users by only preserving 3912 new emerged edges
among them and dismissing the 1150 new users that appeared in the second
crawl data set. Notice that, we had 120 deletions of previous existed edges
and 135 deletions of users in the second crawl data set. We followed the
same crawling procedure from the Hi5 web site. From the first crawl of Hi5
web site we created a training data set with 63329 users and 88261 edges
among them, denoted as Hi5 63K2, where the initial starting node of our
crawling was a random user in the US. From the second crawl of Hi5 web
site we created the probe data set with the same users by only preserving
16512 new emerged edges connecting them and dismissing the 9150 new users
that appeared in the data set. Moreover, 1480 edges and 1250 vertices were
deleted in the second crawl data set. Based on the above graph statistics the
general provision is that edges and vertices are mostly added to the graph
and that the graph is expanded steadily. The graph data from the first crawl
are used to predict the new links emerging in the second crawl.

We also use in our experiments the Epinions3 data set, which is a who-
trusts-whom social network. In particular, users of Epinions.com express
their Web of Trust, i.e. reviewers whose reviews and ratings they have found
to be valuable. The Epinions data set is a directed network and, thus, we
treat it by simply disregarding the directions of links [23]. It contains 49K
users and 487K edges among pairs of users. Moreover, we include in our
experiments the extended Epinions data set4 which is a directed and signed
network. In particular, the extended Epinions data set contains 131828 nodes
and 841372 edges, each labeled either trust (positive) or distrust (negative).
Of these labeled edges, 85% are positive and 15% are negative. We interpret
the weight of a positive edge to be the real value +1 and the negative to be
-1.

We calculated several topological properties of the real data sets which
are presented in Figure 7.

As shown in Figure 7, Epinions 49K, Extended Epinions 132K and Face-
book 3.7K present (i) a large clustering coefficient (LCC) equal to 0.26, 0.24
and 0.111 respectively, and (ii) a small average shortest path length (ASD)

2http://delab.csd.auth.gr/∼symeon
3http://www.trustlet.org/wiki/
4http://snap.stanford.edu/data/soc-sign-epinions.html
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equal to 4.01, 4.1 and 4.233 respectively. These topological features can
be mainly discovered in small-worlds networks. Small-world networks have
sub-networks that are characterized by the presence of connections between
almost any two nodes within them (i.e.high LLC). Moreover, most pairs of
nodes are connected by at least one short path (i.e. small ASD).

In contrast, as also shown in Figure 7, Hi5 63K has a very small LLC
(0.02) and a quite big ASD (7.18). In other words, Hi5 data set can not be
considered as a small-world network, since (i) most of its nodes can not be
reached from every other by a small number of hops or steps and (ii) does
not have sub-networks that are a few edges shy of being cliques.

Figure 7: Topological properties of the real data sets.

The size of real online social networks is huge. For instance, Facebook
has over 500 million users with an average of roughly 100 friends each. This
means that our data sample collected is extremely small relative to the over-
all graph. To study the algorithms’ efficiency (i.e. time complexity) and
effectiveness (i.e. accuracy with controllable sparsity), we also used syn-
thetic network models of different sizes. Although real networks have many
complex structural properties [29], such as degree heterogeneity, the rich-club
phenomenon, etc., as a start point for generating synthetic data sets, we con-
sider a very simple model. In contrast to purely random (i.e., Erdos-Renyi)
graphs, where the connections among nodes are completely independent ran-
dom events, our synthetic model ensures dependency among the connections
of nodes, by characterizing each node with a ten-dimensional vector with
each element a randomly selected real number in the interval [−1, 1]. This
vector represents the node’s intrinsic features such as the profile of a per-
son. Two nodes are considered to be similar and thus of high probability
to connect to each other if they share many close attributes. The synthetic
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data set was created by the same generator used in [1, 30] .Given a network
size N and a mean degree k of all nodes, we start with an empty network
with N nodes. At each time step, a node with the smallest degree is ran-
domly selected (there is more than one node having the smallest degree).
Among all other nodes whose degrees are smaller than k, this selected node
will connect to the most similar node with probability 1 − p, while a ran-
domly chosen one with probability p. The parameter p ∈ [0, 1] represents
the strength of randomness in generating links, which can be understood as
noise or irrationality that exists in almost every real system. Based on the
above procedure, we have created 3 synthetic data sets based on different
network sizes N (1000, 10000, 100000), where the degree distribution of the
network decreases slowly, closely following a power-law. The average node
degree has been calculated to be around 20. We also calculated several topo-
logical properties of the derived synthetic data sets which are presented in
Figure 8.

Data-Set N E ASD ADEG LCC GD 

Synthetic-(N=1000, k=20) 1000 10000 4.818 ≈ 20 0.014 10 

Synthetic-(N=10000, k=20) 10000 100000 8.585 ≈ 20 0.007 14 

Synthetic-(N=100000,k=20) 100000 1000000 12.899 ≈ 20 0.001 18 

 

Figure 8: Topological properties of the synthetic data sets.

6.3. Experimental Protocol and Evaluation Metrics

As already described in Section 6.2, in our evaluation we consider the
division of Facebook 3.7K and Hi5 63K data sets into two sets, according
to the exact time stamp of the links downloaded: (i) the training set ET is
treated as known information and, (ii) the probe set EP is used for testing.
No information in the probe set is allowed to be used for prediction. It is
obvious that ET ∩ EP = ⊘. For each user that has at least one new friend in
EP we generate friend recommendations based on his friends in ET . Then,
we average the results for each user and compute the final performance of
each algorithm.

Epinions and Synthetic data sets do not have time stamps of the edges.
The performance of the algorithms is evaluated by applying double cross-
validation (internal and external). Each data set was divided into 10 sub-
sets. Each subset (EP ) was in turn used for performance estimation in the
external cross-validation. The 9 remaining subsets (ET ) were used for the
internal cross-validation. In particular, we performed an internal 9-fold cross-
validation to determine the best values of the algorithms’ needed parameters.
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We chose as values for the parameters those providing the best performance
on the internal 9-fold cross-validation. Then, their performance is averaged
on the external 10-fold cross-validation. The presented results, based on
two-tailed t-test, are statistically significant at the 0.05 level.

In our evaluation we consider the following evaluation metrics:
We use the classic precision/recall metric as performance measure for

friend recommendations. For a test user receiving a list of k recommended
friends (top-k list), precision and recall are defined as follows:

Precision is the ratio of the number of relevant users in the top-k list
(i.e., those in the top-k list that belong in the probe set EP of friends of the
target user) to k.

Recall is the ratio of the number of relevant users in the top-k list to the
total number of relevant users (all friends in the probe set EP of the target
user).

Moreover, since we provide to a test user u a top-k list of friends, it is
important to consider the order of the presented friends in this list. That is,
it is better to have a correct guess in the first places of the recommendation
list. Thus, we use the Mean Average Precision (MAP) to emphasize
ranking of relevant users higher. We define MAP by Equation 9:

MAP =
1

|N |

|N |
∑

u=1

1

ru

ru
∑

k=1

Precisionu@k (9)

where N is the number of users in the probe data set, ru is the number
of relevant users to a user u and Precisionu@k is the precision value at the
k-th position in the recommendation list for u. Notice that MAP takes into
account both precision and recall and is geometrically referred as the area
under the Precision-Recall curve.

Furthermore, we use the AUC statistic to quantify the accuracy of pre-
diction algorithms and test how much better they are than pure chance,
similarly to the experimental protocol followed by Clauset hierarchical struc-
ture [19]. AUC is equivalent to the area under the receiver-operating char-
acteristic (ROC) curve [19]. It is the probability that a randomly chosen
missing link (a link in EP ) is given a higher similarity value than a randomly
chosen non-existent link (a link in U − ET , where U denotes the universal
set). In the implementation, among n times of independent comparisons,
if there are n′ times the missing link having higher similarity value and n′′

times the missing link and nonexistent link having the same similarity value,
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we define AUC by Equation 10:

AUC =
n′ + 0.5× n′′

n
(10)

If all similarity values are generated from an independent and identical
distribution, the accuracy should be about 0.5. Therefore, the degree to
which the accuracy exceeds 0.5 indicates how much better the algorithm
performs than chance. This is also explained thoroughly at the end of Sec-
tion 6.5.

6.4. Sensitivity Analysis for the FriendLink Algorithm

In this section, we study the sensitivity of FriendLink accuracy perfor-
mance in synthetic and real networks (i) with different attenuation factors,
(ii) with different controllable sparsity, (iii) with different controllable ran-
domness/noise in generating links, (iv) with different ℓ values for path traver-
sal and (v) the relations between the basic parameters (i.e. attenuation fac-
tors, path lengths, and graph densities) if one parameter is fixed and the
other two parameters change.

In Section 4, we presented the definition of our similarity measure (see
Equation 1). The attenuation factor that was mentioned, weights paths
according to their length ℓ. In this section, we test other possible attenuation
factors in order to discover the best MAP value that we can attain. In
particular, we have tested the following possible attenuation factors: (i) 1

m−1

(ii) 1
2·m

(iii) 1
m2 (iv) 1

log(m)
and (v) the Katz’s index attenuation factor βm,

where m is the path length. The attenuation factors performance can be
seen in Table 2 for all data sets. As shown, the best performance in all data
sets is attained by 1

m−1
. In the following, we keep the 1

m−1
as the default

attenuation factor of the FriendLink algorithm.

Table 2: MAP for 5 attenuation factors on both synthetic and real data sets.
Attenuation Synthetic Synthetic Synthetic Epinions Facebook Hi5

Factor 1K 10K 100K 49K 3.7K 63K

1/(m − 1) 0.305 0.131 0.089 0.445 0.385 0.154

1/(2m) 0.244 0.108 0.062 0.390 0.341 0.139
1/(m2) 0.183 0.094 0.041 0.322 0.302 0.099
1/log(m) 0.149 0.081 0.027 0.287 0.257 0.045

bm 0.122 0.043 0.020 0.235 0.211 0.012
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Next, we measure the MAP performance that FriendLink attains, with
different controllable sparsity. To examine the MAP performance of FriendLink
in terms of different network sparsity, we have created for each of the 3 syn-
thetic data sets (1K, 10K and 100K) 5 different sparsity cases, by changing
the fraction of observed edges, as shown in Figures 9a. As expected, as the
fraction of edges observed increases, MAP increases too. This is reasonable,
since every prediction algorithm is expected to give higher accuracy for a
denser network.

In our synthetic model, the parameter p ∈ [0, 1] represents the strength of
randomness/noise in generating links. Next, we test FriendLink’s sensitivity
with different graph model randomness. As shown in Figure 9b, when the
strength of randomness is weak, FriendLink performs quite well for all three
data sets. However, as the strength of randomeness becomes high in all data
sets FriendLink cannot perform better than pure chance.

The experimental results shown in Figure 9 basically prove the following
two points. Firstly, that the increase in the number of edges observed, will
result in an increase in precision attained by Friendlink. We are able to de-
crease/increase the number of edges observed, and therefore the information
available to Friendlink, by taking into account a smaller/bigger part of our
training set. Secondly, the noise level plays an important part in Friendlink’s
sensitivity. This is to be expected, since random edges in our training set
will result in Friendlink having a greater difficulty making accurate recom-
mendations.
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Figure 9: For 3 synthetic data sets (a) MAP vs. Fraction of Edges observed (b) MAP vs.
p randomness/noise graph.

In Section 5.2, one of the required input values for the FriendLink al-
gorithm is the length ℓ of paths considered in a graph. To improve our
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recommendations, it is important to fine-tune the ℓ variable. Based on Mil-
gram’s [3] “small-world hypothesis”, ℓ should take integer values in the in-
terval [2,6]. Figures 10a, 10b and 10c illustrate precision for varying ℓ values
for the Epinions 49K, Facebook 3.7K and Hi5 63K data sets, respectively.
As expected, precision decreases as the number of recommended friends is
increased. The best precision is attained for ℓ = 3.
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Figure 10: Precision diagrams for data sets (a) Epinions 49K, (b) Facebook 3.7K and (c)
Hi5 63K.

Next, we examine the performance of recall metric vs. different values of
ℓ. Figures 11a, 11b, 11c illustrate recall for varying ℓ values for the Epinions
49K, Facebook 3.7K and Hi5 63K data sets, respectively. As expected, recall
increases as the number of recommended friends is increased. Once again,
the best recall performance is attained for ℓ = 3. The main reason is that
ASD for all data sets is relative small and paths of length 3 can exploit
simultaneously local and global characteristics of a graph. In the following,
we keep the path equal to ℓ = 3, as the default value of the FriendLink
algorithm.

Finally, we conduct experiments on our Facebook 3.7K data set to in-
vestigate possible relations between the basic parameters (i.e. attenuation
factors, path lengths, and graph densities) that influence FriendLink’s per-
formance. As shown in Figure 12, if one parameter is fixed, the MAP value
of FriendLink varies as the other two parameters change. In particular, Fig-
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Figure 11: Recall diagrams for data sets (a) Epinions 49K, (b) Facebook 3.7K and (c) Hi5
63K.

ure 12(a) shows that the highest MAP value is obtained for path length ℓ = 3
and graph density of edges observed fixed at 80%. Figure 12(b), shows that
attenuation factor 1

m−1
attains the highest MAP value when ℓ = 3. Lastly,

Figure 12(c) depicts the relationship between attenuation factors and graph
densities.
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Figure 12: MAP performance of attenuation factors, length ℓ and density on the Facebook
3.7K data set.

6.5. Comparison of FriendLink with other methods

In this section, we compare FriendLink against MD, RCT, RWR, Katz,
AA, PA, FOAF and SP algorithms. Table 3 presents the MAP values of the
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tested algorithms for the Epinions 49K, Facebook 3.7K and Hi5 63K data
sets, respectively. As shown, FriendLink outperforms the other algorithms
in all three real data sets. The reason is that FriendLink exploits local and
global characteristics of the graph. In contrast, MD, RCT, RWR, Katz and
SP traverse globally the social network, missing to capture adequately the lo-
cal characteristics of the graph. Moreover, AA, PA, and FOAF fail to provide
accurate recommendations because they exploit only local characteristics of
the graph. Notice that MAP values are impressive for the Epinions 49K and
Facebook 3.7 data sets. The main reason is the topological characteristics of
both graphs (i.e. high LCC and small ASD). Both data sets can be consid-
ered as small-world networks. That is both networks are strongly localized
with most of paths being of short geographical lengths. Thus, all algorithms
can more easily find a short path that connects a pair of nodes, and recom-
mend friends that are near the target’s user neighborhood. In contrast, the
overall performance of tested algorithms is significantly decreased with the
Hi5 63K data set. The main reason is that the Hi5 63K data set has a small
LCC and a high ASD. Therefore, in contrast to both Epinions and Facebook
data sets, it cannot be considered as a small world network.

Table 3: MAP values of all algorithms for the real data sets.
Algorithm Epinions 49K Facebook 3.7K Hi5 63K

FriendLink 0.445 0.385 0.154

MD 0.392 0.336 0.132
RCT 0.362 0.315 0.121
RWR 0.285 0.225 0.085
Katz 0.265 0.205 0.075
AA 0.140 0.125 0.054
PA 0.132 0.115 0.035

FOAF 0.125 0.105 0.021
SP 0.111 0.096 0.014

6.6. Comparison to Randomness

To more meaningfully represent the algorithms’ quality, we use as a base-
line algorithm a random predictor which simply randomly selects pairs of
users as friends. This random friendship guess is denoted as random predic-
tor. Notice that in terms precision the performance of all tested algorithms
should be at least better than the case, where the friend recommendations
would be performed randomly. For the synthetic 10K data set, if each user
was connected with all others, we would have 49,995,000 [(10000*10000-
10000)/2] graph edges. However, in the synthetic 10K test data set, we
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counted the number of the actual graph edges that exist, which amount to
199,980 edges. Thus, if we randomly proposed a new friend to a target user
u, we would get a precision of 0.004 ( 199,980

49,995,000
). Following the same procedure

for the Epinions 49K and Facebook 3.7K data sets, we get their precision of
0.0004 and 0.002 respectively. The corresponding precision for the Hi5 data
set is 0.00004. This value is obtained by dividing the actual graph edges
that appear in the 63K data set, which are counted to be 88261 by the total
number of edges that appear in the 63K data set, which is 2,005,249,456
[63329∗63329−63329

2
].

Table 4 shows the performance of the algorithms on each data set, in
terms of factor improvement over random predictor in terms of precision,
when we recommend a top-1 friend to a target user u. Bold entries represent
the best factor improvement attained for each data set. We can see that all
9 methods outperform the random predictor, suggesting that there is indeed
useful information contained in the network topology.

Table 4: Algorithm Performance measured by the factor improvement of precision over
random prediction.

Algorithm Epinions 49K Facebook 3.7K Hi5 63K

FriendLink 650 280 5502

MD 593 261 4902
RCT 580 250 4639
RWR 525 235 4013
Katz 451 210 3250
AA 360 151 2601
PA 331 140 2420

FOAF 302 130 2501
SP 250 110 2502

Notice that the factor of improvement –in terms of precision for all methods–
over randomness is increased as the data sparsity of a data set is increased.
For instance, the factor of improvement is enormous for the Hi5 data set, be-
cause it presents the larger data sparsity among all real data sets. We note,
however, that using this ratio to judge prediction algorithms has an impor-
tant disadvantage. Some missing connections are much easier to predict than
others: for instance, if a network has a heavy-tailed degree distribution and
we remove a randomly chosen subset of the edges, the chances are excellent
that two high-degree vertices will have a missing connection. Thus, such a
connection can be easily predicted by even simple heuristics such as PA or
FOAF algorithm.
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To overcome the aforementioned limitation and more meaningfully rep-
resent the friend recommendation algorithms’ accuracy performance, we also
use the AUC statistic, which looks at an algorithms overall ability to rank
all the missing connections over nonexistent ones, not just those that are
easiest to predict. As shown in Table 5, we measure the AUC values vs. the
fraction of observed links used in the training set for all real data sets. As
shown, as a greater fraction of the network is known, the accuracy becomes
even greater, for all methods. FriendLink does far better than pure chance,
indicating that it is a strong predictor of missing structure. The main reason
is that FriendLink captures effectively the local and global graph features.

Table 5: Comparison of tested algorithms algorithms for the AUC statistic at 25%, 50%
and 75% of edges observed.

Epinions 49K Facebook 3.7K Hi5 63K
Algorithm 25% 50% 75% 25% 50% 75% 25% 50% 75%

FriendLink 0.633 0.684 0.791 0.572 0.682 0.875 0.572 0.641 0.735

MD 0.581 0.664 0.769 0.562 0.662 0.857 0.562 0.619 0.723
RCT 0.572 0.656 0.752 0.553 0.656 0.853 0.553 0.605 0.719
RWR 0.562 0.626 0.741 0.545 0.644 0.843 0.532 0.601 0.710
Katz 0.546 0.603 0.731 0.539 0.625 0.821 0.524 0.585 0.686
AA 0.534 0.578 0.678 0.532 0.619 0.783 0.521 0.579 0.651
PA 0.533 0.574 0.665 0.528 0.610 0.772 0.519 0.562 0.621

FOAF 0.531 0.566 0.653 0.524 0.601 0.762 0.514 0.541 0.620
SP 0.527 0.537 0.594 0.521 0.533 0.610 0.510 0.535 0.591

6.7. FriendLink Accuracy Performance in Signed Networks

In this section, we present the accuracy performance of FriendLink when
we take into account positive and negative links of a signed network, i.e. ex-
tended Epinions 132K data set. We have two different variants of FriendLink:
The first variation considers only positive links and is denoted as FriendLink+.
The second variation considers both positive and negative links and is de-
noted as FriendLink+

−. Figure 13a presents the precision and recall di-
agram for both versions of FriendLink, whereas Figure 13b presents the
AUC accuracy statistic. Both Figures show that FriendLink+

− outperforms
FriendLink+. The reason is that FriendLink+

− exploits positive and nega-
tive links. This means that if we use information about negative edges for
predicting the presence of positive edges we get an accuracy improvement of
FriendLink predictions. These results clearly demonstrate that there is, in
some settings, a significant improvement to be gained by using information
about negative edges, even to predict the presence or absence of positive
edges.
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Figure 13: Accuracy performance of Friendlink in terms of (a) precision/recall and (b)
AUC statistic.

6.8. Time Comparison of FriendLink with other Methods

In this section, we compare FriendLink against MD, RCT, RWR, Katz,
AA, PA, FOAF and SP algorithms in terms of efficiency using 10K and
100K synthetic and 3 real data sets. We measured the clock time for the
off-line parts of all algorithms. The off-line part refers to the building of
the similarity matrix between any pair of nodes in a graph. The results are
presented in Table 6. As shown, FriendLink outperforms MD, RCT, RWR
and Katz, since they calculate the inverse of an n× n matrix. As expected,
AA, PA, and FOAF algorithms, outperform the other algorithms due to their
simpler complexity.

Table 6: Time comparison of all tested algorithms for the synthetic and real data sets.
Algorithm Synthetic Synthetic Epinions Facebook Hi5

10K 100K 49K 3.7K 63K

FriendLink 50 sec 450 sec 245 sec 26 sec 340 sec
RCT 81 sec 752 sec 420 sec 45 sec 692 sec
MD 74 sec 698 sec 351 sec 36 sec 480 sec
RWR 78 sec 702 sec 380 sec 40 sec 520 sec
Katz 90 sec 811 sec 460 sec 50 sec 617 sec
AA 40 sec 145 sec 69 sec 22 sec 265 sec
PA 39 sec 136 sec 65 sec 24 sec 242 sec

FOAF 37 sec 126 sec 55 sec 15 sec 221 sec

SP 62 sec 250 sec 125 sec 29 sec 360 sec

Notice that the results depict the time needed to compute the whole
similarity matrix. On the other hand, if we were to calculate the similarity
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matrix of only one user, then the computation would require only part of a
second to produce a recommendation.

7. Scalability

There are many difficulties in the study of the link prediction problem.
One of them is the huge size of real systems. For instance, Facebook has
over 500 million users with an average of roughly 100 friends each. To run
our algorithm for huge sized networks, it should be adjusted to support a
MapReduce [31] implementation. MapReduce is a distributed computing
model for processing large volumes of data. MapReduce is implemented
in three steps: (i) Splitting up the computing job into chunks that standard
machines can process in a short time, (ii) parallel processing on each sub-part
by an independent machine and, (iii) the collection of intermediate values,
produced by each machine, in order to calculate the final result. In our case,
the calculation of the similarity matrix could be assigned to many machines
in the following way. Each machine calculates one of the 2 . . . ℓ-length paths
for a specific pair of users and then sum up the paths to calculate the final
similarity value. An example is shown in Figure 14. As shown in Figure 14,
each Map function on every machine receives as input a pair of users and
produces the similarity value for a designated path length ℓ. All values for
each pair of users are collected into one final value in the reduce phase. In
our example, the similarity values produced by the Map function, which
are 0.03, 0.2, 0.14 and 0.07 for path length ℓ = 2, 3, 4, 5 respectively, will be
“reduced” to one final similarity value, which is 0.44, for the respective pair
of users.

Schema of map and reduce functions 

map: input         àlist(p, ℓ, s) 

reduce: list(p, ℓ, s)        àoutput 

 

Instantiation of the schema for similarity calculation 

map: user pair        àlist(user pair, length ℓ, similarity) 

reduce: (user pair, length ℓ, similarity)      à(user pair, total similarity) 

 

Example for similarity calculation 

map: (user1, user2) à(áuser1, user2, 2, 0.03ñ, áuser1, user2, 3, 0.2ñ ,  

áuser1, user2, 4, 0.14ñ , áuser1, user2, 5, 0.07ñ)  

 

reduce: (áuser1, user2, 2, 0.1ñ, áuser1, user2, 3, 0.4ñ ,   à(áuser1, user2 ñ, 0.44) 

              áuser1, user2, 4, 0.3ñ , áuser1, user2, 5, 0.2ñ)   

 

Figure 14: Map and Reduce functions in MapReduce.
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8. Discussion

Real networks have many complex structural properties [29], such as de-
gree heterogeneity, the rich-club phenomenon, the mixing pattern, etc. These
network properties are not considered by our synthetic network model, since
they are out of the scope of this paper. However, our synthetic network model
can be easily extended to better resemble real networks. For example, by ap-
plying the degree heterogeneity index [29] with a probability p, a synthetic
network with different level of degree heterogeneity can be composed.

Also, as it was shown in Section 6.4, the attenuation factor weight for
each path of given length plays an important role in the performance of
our FriendLink algorithm. One could suggest learning these optimal weights
instead of guessing them. One way would be through linear regression. Linear
regression analyzes the linear relationship between two variables, Y and X ,
where in our case Y is a vector that contains the similarities between a given
user and the other users in a graph, whereas X is a matrix that contains
the paths of different length between the given user and the others of the
graph (i.e. the training data of a user). Based on linear regression, it stands
that Y = AX , where A is a vector which contains the optimal coefficient
values of the attenuation factor. In order to find the best coefficient values of
the attenuation factor, A can be calculated by equation A = (X ′X)−1X ′Y .
Since the similarities Y between a given user and the other users of a graph
are not available from the beginning, we can instead consider Y to contain
values from the testing data of the user. The computed values of A can then
be used as attenuation optimal weights.

9. Conclusions

Online social networking systems have become popular because they allow
users to share content, such as videos and photos, and expand their social
circle, by making new friendships. In this paper, we introduced a framework
to provide friend recommendations in OSNs. Our framework’s advantages
are summarized as follows:

• We define a new node similarity measure that exploits local and global
characteristics of a network. Our FriendLink algorithm, takes into ac-
count all ℓ-length paths that connect a person to other persons in an
OSN, based on the “algorithmic small world hypothesis”.
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• We derive variants of our method that apply to different types of net-
works (directed/undirected and signed/unsigned). We show that a
significant accuracy improvement can be gained by using information
about both positive and negative edges.

• We performed extensive experimental comparison of the proposed method
against 8 existing link prediction algorithms, using synthetic and real
data sets (Epinions, Facebook and Hi5). We have shown that our
FriendLink algorithm provides more accurate and faster friend recom-
mendations compared to existing approaches.

• Our proposed algorithm also outperforms the existing global-based
friend recommendation algorithms in terms of time complexity, as shown
experimentally in Section 6.8.

• Finally, in Section 7 we discuss extensively a possible MAP implemen-
tation to address the scalability issue.

In the future, we indent to examine ways of improving friend recom-
mendations based on other features that OSNs offer. Except the friendship
network, users in OSNs can also form several implicit social networks through
their daily interactions like co-commenting on people’s post, co-rating simi-
larly products, and co-tagging people’s photos. The combination of similarity
matrices derived from heterogenous explicit or implicit social networks can
exploit information from multi-modal social networks and therefore yield to
more accurate friend recommendations.
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