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A B S T R A C T

Cost models are broadly used in query processing to drive the query optimization process,

accurately predict the query execution time, schedule database query tasks, apply admis-

sion control and derive resource requirements to name a few applications. The main role

of cost models is to estimate the time needed to run the query on a specific machine. In a

multi-cloud environment, cost models should be easily calibrated for a wide range of differ-

ent physical machines, and time estimates need to be complemented with monetary cost

information, since both the economic cost and the performance are of primary importance.

This work aims to serve as the first proposal for a bi-objective query cost model suitable for

queries executed over resources provided by potentially multiple cloud providers. We lever-

age existing calibrating modeling techniques for time estimates and we couple such esti-

mates with monetary cost information covering the main charging options for using cloud

resources. Moreover, we explain how the cost model can become part of an optimizer. Our

approach is applicable to more generic data flow graphs, the execution plans of which do

not necessarily comprise relational operators. Finally, we give a concrete example about the

usage of our proposal and we validate its accuracy through real case studies.
c⃝ 2015 Qassim University. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

More and more companies and organizations consider
moving their infrastructures and applications on the cloud,
motivated by the promise of clouds to achieve economies of
scale. One of the most attractive features of cloud computing
is that it provides an alternative to the procurement and
management of expensive computing resources, which are
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associated with high upfront investments and considerable
human effort, respectively.

Cloud technology has evolved significantly and nowadays,
it is considered as robust and trustworthy. It leverages
several traditional notions of distributed computing, such as
the virtualization of resources and the provision of virtual
machines (VMs), typically at a certain monetary cost. Such
VMs come with several names depending on the provider;
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for example, Google calls them “machine types”, Amazon calls
them “instance types” whereas other names include “server
sizes” [1], but in all cases they refer to the provision of
specific hardware combination of compute, memory and I/O
resources. Cloud resources are not limited to emulations
of raw physical machines; they can also cover provision
of software middleware, databases and specialized tools.
The proliferation of cloud options has raised the following
problem faced by cloud users: which cloud providers should
be chosen to execute a specific task on the cloud? This issue is
not only important but also complex, especially when the
requested resources can be offered by multiple providers. A
key point to answer this question is to provide estimates of
both the running time and the monetary cost; this is exactly
the topic of our work.

We focus on database queries and more generic data-flow
tasks that can be executed over remote resources provided
by multiple providers [2,3]. For example, assume a database
query that joins data from cloud-enabled data stores, such
as anonymized population census data and commercial data
offered by a set of providers. Or, analyzing patient data using
a series of specialized cloud-enabled services, as described
in [4]. In such scenarios, to be in a position to take final
allocation decisions, we need to be able to accurately estimate
the running time of the tasks on cloud resources and the price
to use such resources.

Estimating query execution time plays an important role
in several applications and processes, including query opti-
mization, scheduling, admission control and allocation of re-
sources [5]. Typically, the query cost models are applied to
physical execution plans and assume that the physical re-
sources to be employed in query execution are predefined.
These cost models either encapsulate a component to esti-
mate the cardinalities of the data processed or accept such
cardinality statistics as input; in the output, they produce an
estimate of the query running time. Examples of such cost
models in a distributed environment are provided in [6,7]. In
a multi-cloud environment, providing information only about
the running time for specific processors is insufficient be-
cause: (i) the machines employed are not defined a-priori, and
(ii) time estimates need to be complemented with monetary
cost information. We directly address the second shortcom-
ing, while, for the first one, we leverage existing techniques
that provide practical solutions to calibrating generic cost
models for different physical machines.

The main contribution of this work is the proposal of a
database query cost model that provides estimates of both
the expected running time and the economic cost associated
with running a specific query over VMs provided by one
or more cloud providers. The cost model is modular and
can be applied to arbitrary DAG (directed acyclic graph) data
flows apart from simple query execution plans consisting
of relational operators. It supports the main modes of fee
charging to date, which leverage the pay-as-you-go approach.
Nevertheless, the modularity of our proposal allows for
easily plugging-in further models for running time and cost
estimates, while the model is not tailored to any specific
charging policy. In this work, we show how our proposal can
be used to derive running time and monetary cost estimates
through a detailed example and a validation case study on a
real cloud infrastructure. Last but not least, we explain how
the cost model can be fitted into a state-of-the-art optimizer,
which requires as its input pairs of time and money cost
estimates for different execution options.

The reason we focus on these two objectives is that time
and economic cost are basically anti-correlated in a way that
is not easy to bemodeled analytically. For example, we cannot
claim that the two metrics are inversely proportional due
to the wide range of factors involved, such as the types of
the machines and the charging policies. In general, using
multiple physical machines to execute queries is known that
can yield higher performance if employed judiciously [8,6] at
a higher energy cost [9], while using more machines incurs
extra money cost on the cloud. Our modeling proposal makes
such trade-offs explicit. Additional relevant criteria include
security, reliability, availability and so on, but we leave their
inclusion into a cost model as an interesting direction for
future research.

The remainder of this article is structured as follows. In the
next section, we discuss related work.We provide background
material in Section 3 regarding the most prominent pricing
policies adopted by modern cloud providers, the factors that
affect the cost associated with a cloud infrastructure, and
the multi-cloud optimizer that our proposal aims to directly
support. In Section 4, we give the details of our cost model.
Section 5 deals with the validation case studies. We conclude
in Section 6.

This article is a significantly extended and modified ver-
sion of the paper in [10]. The main parts of the new material
comprise the following items: (i) extensions to the evaluation
with additional real experiments to consider multi-cloud set-
tings (discussed in Section 5.3); (ii) extensions to the discus-
sion on how the cost model can be merged with optimizers
(discussed in Section 4.3); (iii) clarifications on the assump-
tions and extensions to the cost model to better consider
parallelism and overlaps in the time domain (discussed in
Sections 4.1 and 4.2.2, respectively); and (iv) elaboration on
the existing cost models for distributed queries (discussed in
Section 2).

2. Related work

Traditional cost models for distributed queries are single-
objective; they do not consider the economic cost associated
and are also limited to scenarios where the estimates are in
abstract time units rather than trying to predict the actual
running time. Note that it is adequate for single-objective
optimizers to be based on abstract time units because their
aim is to relatively compare the alternative plans in terms of
performance, and for this reason, the cost models employed
mostly focus on data statistics, histograms and so on [11].
However, this convenient simplification becomes a strong
limitation when predicting actual monetary cost, since the
latter is a function of actual running time.

A typical approach to predicting time estimates is pre-
sented in [6], where the query execution time is split into the
time needed to execute CPU tasks, retrieve and store data to
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the disk and send data across hosts. More specifically, the to-
tal cost is given by the following formula:

TotalCost = ccpu#instructions + cI/O#I/Os + cmsg#messages

+ ctr#bytes

where ccpu, cI/O, cmsg and ctr denote the cost in time units to
execute an instruction on the cpu, perform a disk I/O access,
initialize and receive a message and transmit a byte over the
network, respectively. Apparently, the last two components
correspond to the communication cost and differentiate this
cost model from its counterparts for centralized databases.
If we are interested in the wall-clock time, which will be re-
ferred to in this work as TotalTime, then time overlaps need to
be considered.

More detailed cost functions are provided in [7]; however,
this work follows the same approach as in [6]. The additional
details correspond to splitting each relational operator into
its more elementary operations, which is commonly done for
non-distributed database queries (e.g., [5]).

More sophisticated approaches to distributed cost model-
ing, such as [12,13], perform more efficient and dynamic cost
function calibration but still suffer from the main limitation
mentioned above, that is they do not combine time costs with
monetary costs. Nevertheless, for the time cost estimates, our
work can regard time estimate techniques as a black box,
and as such, can fully encapsulate them; later we show how
we do this with regards to [5] and [14]. The work in [5] is
a recent technique that provides actual time estimates for
non-distributed queries and can be easily calibrated for any
type of machines. This makes it attractive for cloud settings.
Other techniques that are capable of providing actual time es-
timates rely on statistical machine learning (e.g., [15,16]) and
cannot be easily calibrated for machines not specified a-priori.
Complementarily, [14] describes how we can model network
connections and data communication costs. Two other ap-
proaches to calibrating cost models appear in [17,18].

Another related research area is to develop query progress
indicators (e.g., [19,20]). However, such proposals aim to
dynamically report on the expected completion time of
a query at runtime based on continuous feedback, rather
than on providing accurate time estimates before the query
execution begins. Finally, the work in [21] defines the trade-off
between performance and cost, when running an application
over a different number of VMs of the same type in the same
data center under volatile load. Our problem is different, since
we consider cases where the applications consist of several
subtasks that can run on different types of VMs, which are
possibly provided by multiple providers.

3. Background

Before delving into cost model’s details, we provide a brief
overview of the main pricing policies currently adopted by
cloud providers and are meant to be supported by our cost
model. We also discuss the main factors involved in the
cost of developing and maintaining a cloud infrastructure.
In the last part of this section, we present the currently
established cost models for distributed queries, which do not
consider economic costs. Finally, we show how our proposal
complements bi-objective optimizers that are suitable for
multi-cloud database queries.
3.1. Cloud pricing policies and costs

Cloud providers offer VMs at a specific price. The price de-
pends on several factors including the computational char-
acteristics of the VM, the reservation time and mechanism,
and whether the VM comes with specific software installed
(e.g., as typically occurs in PaaS/SaaS settings) or not. The
price of VMs typically differs among providers, even when the
offered VMs share the same characteristics.

3.1.1. VM characteristics related to charging
A main characteristic that affects the charging fee is the
exact type and volume of computational resources that
each client requests. There is a significant deviation in the
price depending on CPU speed,1 memory and storage space.
Usually providers have some fixed combinations of the above
components, so that they offer complete pre-specified VM
options to users aiming to cover a broad range of needs. In
addition, some providers allow their customers to build their
own combination of resources, i.e., to customize their VMs.
Some examples are AmazonWeb Services2 and CloudSigma,3

respectively. Finally, some providers, like Amazon4 and
Rackspace5 follow a hybrid approach and offer additional
storage space with extra cost on top of pre-specified VM
instances.

Installed software is equally important. The software
that is used (e.g., databases, operating systems, and so
on) may be open-source or commercial. Generally, VMs
with pre-installed open source software are less expensive
than those with commercial software due to licensing fees.
The built-in support for providing programming frameworks
(e.g., Apache Hadoop) increases the cost. The same holds
for non-functional features, such as monitoring services,
security features, ease of migration, and so on. Other price
factors are the data transfer and geographical position
of VMs. Some providers have additional charges for data
transfer either from or to their servers and also apply different
rates depending on the geographical location of the servers
running the VMs (e.g., Amazon’s EC2 policy6).

A cost model needs to be VM-independent to be usable
in a multi-cloud environment. Our cost model is not tailored
to any specific hardware characteristics. Rather, it provides
generic formulas that can be calibrated according to the
specific VM types at the disposal of a consumer of cloud
resources.

3.1.2. Cloud costs
The development and maintenance of cloud infrastructure
requires the investment of a big amount of money that is
amortized over a long time period. Except from the initial
purchase costs, a cloud data center is expensive to maintain
and run. The major development cost is the acquisition of

1 CPU power is often abstracted through the use of the so-called
ECU units.

2 http://aws.amazon.com/ec2/instance-types/.
3 http://www.cloudsigma.com/#features.
4 http://aws.amazon.com/ebs/.
5 http://www.rackspace.com/cloud/block-storage.
6 http://aws.amazon.com/ec2/pricing/.

http://aws.amazon.com/ec2/instance-types/
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Fig. 1 – An analysis DAG (left) and example user and provider cost-delay functions (right) [25].
the raw servers and network infrastructure. In addition, cloud
data centers have high energy needs and require special
power and cooling infrastructure, which incurs extra cost [22].
Licenses for software, such as OS and virtualization software,
constitute an additional expense. Finally, there is the cost for
the real estate, where the data center physically resides [23].
The most important economic cost related to maintenance
cost is due to the significant power consumption. It is
usually the 15%–20% of the total budget [22,24]. Other costs
include the network expenses, which are the costs for
communicating with the end users, and the salaries of the
data center technicians and the rest of employees.

The cost of running a cloud infrastructure directly impacts
on the charges requested by the end users for its usage.
However, in our cost model, we do not deal with the issue
of configuring the price of the VM options offered by the
cloud providers taking into account their actual cost. Rather,
we assume that the charges are fixed and provided as input
parameters to our model.

3.1.3. Charging models
The charging models are orthogonal to the VM characteristics
and the costs for developing and running cloud infrastruc-
tures. Here, we review the most important charging models,
which are all supported by our cost model.

The most common charging model is the “Pay-as-you-go”
one, where the customer is charged for the actual period she
uses the infrastructure. The usage periods are monitored in
different granularities though; i.e., providers may have dif-
ferent minimum time unit for charging. For example, one
provider’s minimum time unit may be 1 h and another’s
5 min. So, if someone uses the former infrastructure for 1 h
and 23 min, she will be charged as if she used the infrastruc-
ture for 2 h, whereas, in the latter case the price will be for 1 h
and 25 min. The trend is the time granularity to further de-
crease and charge per minute or even per seconds of resource
usage [1].

The “Pay-as-you-go” charging model is encountered in
three main forms in Amazon EC2, but those forms are
essentially generic to any cloud provider:

• On-demand Instance, where the payment is done after the
use of the infrastructure charging for as long as the
customer used it, without any other commitment, as
explained above.

• Reserved Instance, where the customer pays a small fee
upfront for a specific time (e.g., amonth or a year) and after
that, she is charged like the on-demand policy for the time
using the infrastructure, but with a great discount on the
fee.

• Spot Instance, which is like an auction. The customer bids
whatever price is willing to pay for the infrastructure and,
if the bid is above the current spot price, she gets the VM
and is charged for the actual usage period but with a lower
price than that of the on-demand policy. The drawback is
that, if the spot price goes above the customers bid price,
her VM will be shut down.

An additional charging model is the “Committed VM”. In
this model, the client rents the infrastructure for a predefined
time. This predefined time can be from one month to a year,
or even more in some cases. During this time, the customer
can use the infrastructure whenever she wants without any
extra cost (except maybe network traffic). Usually, it is less
expensive than “Pay-as-you-go” when the usage is high. An
example of this model is GoGrid.7

3.2. How can the cost model be used?

Our setting is depicted in Fig. 1. We assume that there
exists a centralized optimizer that builds an execution plan
in the form of a query tree, that is, vertices correspond
to operators and data flows from bottom to top; the root
node produces the final query results. At this stage, there
is no locality information about which VM each operator is
executed on. After that, the execution plan is decomposed
into smaller sub-queries, where each subquery corresponds
to an execution stage. Those stages will be referred to as
strides. Before a stride begins its execution, all the lower
strides must have been completed. In the figure, we provide
an example of a query plan decomposed in four strides.

Assume now that for each stride, each cloud provider is
capable of providing a bid as shown in the bottom right of the
figure. Each cloud provider can offer multiple combinations

7 http://www.gogrid.com/products/cloud-servers##pricing.

http://www.gogrid.com/products/cloud-servers%23%23pricing
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of type and number of VMs at a different cost, and each such
combination may result in different expected execution time.
In the generic case, the complete offer per provider per stride
is described by a continuous function. In addition, we assume
that each user specifies her own function that represents the
worst acceptable trade-off. We further assume that the total
monetary cost of the query plan is the sum of the cost of each
stride; similarly, the total time delay is the sum of the delays
in each stride. The aim of a multi-cloud optimizer is to derive
an optimal assignment of strides to VMs. This is equivalent
of determining exactly one bid point from the set of all bids
for each stride, so that the total monetary cost maximizes the
difference from the user-supplied function. We are interested
in this difference, which is termed as user satisfaction, because
it captures the savings from the worst acceptable payment.

The problem above involves the computation of the
pareto frontier and is NP-hard [26]. A simpler version of
this problem has been investigated in the context of the
Mariposa distributed query processing system [2,26], where
the bid of each provider for each stride is a single point rather
than a continuous function. The proposal in [25] generalizes
the initial solutions allowing arbitrary non-increasing cloud
provider functions and guarantees optimal solutions with
bounded relative error in pseudo-polynomial time.

The main problem with the above multi-cloud optimizers
is that to date, there is no mechanism to provide the cloud
provider bids, which serve as their input. This work aims to
complement the proposals in [2,26,25] and provide such a
mechanism. So, apart from the fact that a bi-objective cost
model is significant in its own right, our proposal serves
a secondary purpose, namely to assist in rendering the
existing approaches to multi-cloud optimization applicable in
practice. Amore complete example is provided in Section 4.3.

4. Our cost model

The model we are presenting is used for estimating the time
and the economic cost of a query plan executed on cloud-
based VMs. To achieve this, we have built on top of the
single-objective cost models described in [5,14], although we
can encapsulate additional single-objective models. Also, our
model can be applied to more generic data flows that are still
expressed as DAGs. For simplicity, we start assuming that our
process is a traditional query plan, and at the end of this
section, we generalize.

4.1. Assumptions

Before we describe the cost model’s rationale and functions,
we need to state the assumptions we make:

• The shape of the query plan and the operator ordering
have already been chosen by a centralized optimizer.

• There exists amechanism that decomposes the query plan
into strides in place. The strides can be produced either
manually, or in an automatedmanner, e.g., using the same
partitioning approach as in [27]. Each stride comprises
vertices that can refer to sub-queries in the original query
plan that is groups of simple database operations, or
stand-alone operations. Our model does not distinguish
between these two cases and treats each stride vertex as a
non splittable operator.

Initially, we examine a specific case where all operators
within the same stride can be executed in parallel. Also, we
assume that every operator can be executed only on one pro-
cessing node. The number of VMs that will be used in every
stride can be up to the number of the query plan vertices that
the stride comprises. As such, there is no intra-operator paral-
lelism, where an operator runs on several processors.8 Later,
we show how those assumptions can be relaxed.

4.2. The cost model

Our cost model is modular and consists of components
that model the charging policies, the computational and
the communication execution time, respectively. Based on
those components, the economic price is derived as explained
below.

4.2.1. Modeling the charging policies and fees

In the first part, we model the charging policies described
in Section 3 and we map them to specific VM offers. The
notation is as follows:

• Pa
t : Denotes the charging policies of the providers, where:

– a: identifies the type of charging policy; the following list
is extensible:

∗ a = 1: corresponds to On demand Instance;

∗ a = 2: corresponds to Reserved Instance;

∗ a = 3: corresponds to Committed VM;

∗ a = 4: corresponds to Spot Instance;

– t: denotes the charging time unit of charging in minutes;
for example, if providersmay charge either perminute of
usage or 5 min or per hour, then t ∈ {1,5,60}. In policies
where the actual usage is not monitored, as may happen
in the Committed VM one, t is set to its minimum value,
i.e, typically 1 min, to allow for more detailed model
estimates.

• VMk: denotes the specific VM instance, where 1 ≤ k ≤

|Available VMs|.

• Fpr(Pa
t , VMk) = (fa, fu): denotes the price offer from cloud

provider pr for the VM instance VMk according to the
pricing policy Pa

t . It consists of two parts: fa corresponds
to the amortized price per time unit for the policies that
involve an upfront fee payment (e.g., Reserved Instance),
whereas it is normally 0 for the On demand Instance policy;
fu corresponds to the fee related to the actual VM usage,
which is set to 0 for the Committed VM policy.

4.2.2. Estimation of execution time

To estimate the time that a query takes to be executed on a
specific VM, we use the following formula:

TotalTime =

n
s=1

max(S
VMk→k′

s,1→i , . . . , S
VMk→k′

s,ms→j ) (1)

8 We use the terms node, processor and VM interchangeably.
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where:

• n = the number of strides.
• ms = the number of operators in the sth stride.

• S
VMk→k′

s,i→j = O
VMk
s,i + T

VMk→k′

s,i→j , where:

– O
VMk
s,i = time to execute ith operator of s stride on VMk.

– T
VMk→k′

s,i→j = time to transfer the data produced by operator

i of the sth stride, which runs on VMk, to node j, which
runs on VMk′ . Typically, j belongs to the (s + 1)th stride,
but this is not necessary to allow for arbitrary complex
execution tree plans. The following conditions hold:
∗ 1 ≤ s ≤ n,
∗ 1 ≤ i ≤ ms,
∗ 1 ≤ j ≤ ms+1,
∗ 1 ≤ k ≤ |Available VMs|.

The rationale behind the TotalTime formula is that: (i) all
strides are executed sequentially in a bottom-up fashion, and
(ii) all operators belonging to the same stride are executed
in parallel. In general, we expect these conditions to hold.
Moreover, by taking the maximum in Eq. (1), we silently
assume that the execution of one operator does not interfere
with the execution of the other operators in the same
stride. Unfortunately, this is not always the case. One notable
exception is when the network forms a kind of bottleneck
in a way that, when several upstream operators send data
to a specific operator in another stride, the total amount of
elapsed time is the sum of the individual sending times. In
general, we can alternatively use the following formula:

TotalTime =

n
s=1

ms
i=1

S
VMk→k′

s,i→j . (2)

Eqs. (1) and (2) can be further elaborated in a straightfor-
ward manner, if only a subset of operators interfere with each
other. In that case, the execution time of those operators is
summed and then we treat them as a single meta-operator,
the execution of which fully overlaps in the time domain with
the remainder of operators on the same stride. Then we can
apply Eq. (1).

The rationale of S
VMk→k′

s,i→j , defined as the sum of the local

computation cost and the data transmission cost of each op-
erator, is that each operator first completes its local execution
and then starts transmitting data to its consumer. If pipelin-
ing is supported, then data transmission starts as soon as the
first results are ready. When the data to be processed is large,
as expected in cloud settings, the local computation and data
transmission operations overlap almost fully, and the time

cost of an operator becomes S
VMk→k′

s,i→j = max(O
VMk
s,i , T

VMk→k′

s,i→j ).

Overall, any combination of TotalTime and S
VMk→k′

s,i→j types of

estimation is valid, and it rests with the query optimizer to
choose the most appropriate one in each setting.

To calculate O
VMk
s,i , we can employ the technique described

in [5] although our approach is orthogonal to the way O
VMk
s,i is

estimated. According to [5], the equation for calculating the
cost of an operator given a specific VMk is:

O
VMk
s,i = nTcVMk

= nsc
VMk
s + nrc

VMk
r + ntc

VMk
t + nic

VMk
i + noc

VMk
o (3)
cVMk
is a vector of statistical metadata for the instance VMk.

The values of c depend only on the underlying hardware and
can be found through a simple calibration procedure. This
also means that the calibration of c has to be done only once
for every VM that we want to test, since it is independent of
specific queries.

n is a vector of statistics of the data processed by the
operator in the form of cardinalities. For estimating the
cardinalities n, Wu et al. in [5] propose a sampling-based
approach. These values depend only on the query plan and
not on the hardware that will be used to execute the query.
Since the query plan is only one and is known, it is possible to
calculate the cardinalities with this method without incurring
big overhead.

To calculate T
VMk→k′

s,i→j we use, as our basis, the model de-

scribed in [14], along with the results of cardinality estima-
tion used for estimating the execution time of the operator
on the ith node. With the cardinality estimation results, we
can calculate the size of produced data X, that will be trans-
ferred over the network. We can employ different cost esti-
mation formulas depending on the physical position of the
nodes. The nodes i and j of the stride s and s + 1 respectively,
can belong either to the same cluster or to a different one. In
the first case we have intra-cluster communication, while in
the second we have inter-cluster communication. These cases
are examined as follows.

• Intra-cluster communication, where we have two sub-
cases:
– Same VM instance (k = k′): the jth operator is executed on
the same node as the ith operator executed. This means
that the produced data are already in the same VM. So
we have:
T

VMk→k
s,i→j = 0.

– Different VM instance (k ≠ k′): the jth operator is executed
on a different VM instance than the ith operator, but in
the same cluster u. This means that data (X) has to be
transferred from node i to node j. In this case:

T
VMk→k′

s,i→j = Cu
k→k′ (X) = αk,k′X + βk

where αk,k′ is the communication cost to transfer one
unit of data from node k to node k′ and βk is the
communication startup cost.

• Inter-cluster communication. In this case, operator i is
executed on a node in cluster u, while operator j is
executed on a node in cluster v. So the transfer time is
estimated by the following formula:

T
VMk→k′

s,i→j = Cu
k→gu

(X) + Cgu,gv (X) + Cv
gv→k′ (X) (4)

where:
– Cgu,gv (X) is the communication cost for X amount of

data between cluster u and v through their gateways gu
and gv respectively.

– Cu
i→gu

(X) is the transmission cost between node k and

the gateway node (gu) in cluster u.
– Cv

gv→j(X) is the transmission cost between gateway node

(gv) and node k′ in cluster v.

Typically, the second of the components above dominates,
so Eq. (4) is approximated as:

T
VMk→k′

s,i→j ≃ Cgu,gv (X).
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4.2.3. Monetary cost estimation
The third part of our model is the estimation of the cost
of a query in monetary units. To estimate this, we need to
combine the pricing offers of the different providers with the
time estimation of our model. The total price depends on the
execution time of each operator and the associated fee:

n
s=1

ms
i=1

Price(S
VMk→k′

s,i→j , Fpr(Pa
t , VMk), Fpr(Pa

t′ , VMk′ )), (5)

where Price, computes the fee for using a VMk for S time based
on the Pa

t charging policy and transferring data to VMk′ .
Assume that Fpr(Pa

t , VMk) = (fa, fu) and Fpr(Pa
t′ , VMk′ ) =

(f ′
a, f ′

u). Then Price is estimated as follows:

Price = (fa + fu)


S

VMk→k′

s,i→j

t

 + (f ′
a + f ′

u)


T

VMk→k′

s,i→j

t′


capturing the fact that data transfer results in concurrent
usage of both the sender and the receiver VMs.

It is worth noting that there are several alternatives
when defining fa, depending on the expected usage of
the model. For example, if the user is not interested in
the pre-paid amount, then fa can be set to zero for any
charging policy. Also, if the cost estimation is used to decide
whether to request further VMs in addition to those already
reserved, then fa for the on-demand instances may include the
amortized cost of the reserved instances instead of being 0.
The formulas presented above are generic enough to support
such scenarios. Finally, it is straightforward to extend them to
support charges based on the volume of the data transferred
across the network.

4.3. An example

To give a better view of our model, we will present a simple
example. Suppose we have query q that is executed in two
strides executed sequentially so that we can employ Eq. (1)
for time cost estimates. The query consists of two operators,
one in each stride. For simplicity we will assume that:

• The time to transfer the intermediate data from Stride 2 to
Stride 1 is 1 h (60min) if the VMs of each stride are different,
or 0 if it is the same VM. The data transfer takes place after
the completion of local execution.

• There is no charge for data transfer between the nodes
that execute the query. Usually this only happens when
the nodes are of the same provider.

• All the data that the query needs, including the initial data
and the intermediate data, fit completely in the storage
space provided by the specific instance. This implies that
we do not have any extra cost for storage space.

We have two IaaS providers, A and B, with their provided
VMs presented in Table 1. The charging policies are in Table 2.
The pricing offers based on those charging policies can be
seen in Table 3 along with their respective fa and fu values.
Finally, the estimated time to execute each operator on the

provided VMs (O
VMk
s,i ) can be seen in Table 4.

In Fig. 2, we present a diagram of the estimated execution
times along with the estimated monetary costs for the
query q for every combination of VMs with On demand and
Table 1 – Example of VM instances taken from AWS.

VM Providers ECU Memory Storage

VM1 A, B 3 3.75 GiB 1 × 4 SSD
VM2 A 6.5 7.5 GiB 1 × 32 SSD
VM3 B 6.5 15 GiB 1 × 32 SSD
VM4 B 13 15 GiB 2 × 40 SSD
VM5 A 14 7.5 GiB 2 × 40 SSD

Table 2 – Pricing policies.

Pricing policy Charging time unit

P160 Hour

P15 5 min

P260 Hour

P31 Month

P31 3 Month

Table 3 – Pricing offers in the example.

Pricing policy fa fu Description

On-demand
FA(P160, VM1) 0 5 5$/h

FA(P160, VM2) 0 17 17$/h
FB(P15, VM3) 0 1.70 1.70$/5 min

FB(P15, VM4) 0 4.80 4.80$/5 min

FA(P160, VM5) 0 60 60$/h

Reserved Instance
FA(P260, VM2) 0.685 15 15$/h +500$/Month

FA(P25, VM3) 0.057 1.5 1.50$/5min+500$/Month

FA(P25, VM4) 0.057 4.3 4.30$/5min+500$/Month

FA(P260, VM5) 0.685 53 53$/h +500$/Month

Committed VM
FA(P31, VM1) 0.1667 0 7300$/Month

FB(P31, VM1) 0.1826 0 8000$/Month

Table 4 – Example of estimated execution times.

VM1
(min)

VM2
(min)

VM3
(min)

VM4
(min)

VM5
(min)

O
VMk
2,1 2000 1200 1150 650 610

O
VMk
1,1 500 310 300 150 130

Reserved charging policies in Table 3. Black bullets represent
the On-demand model, while the white ones correspond to
the Reserved Instance model. In general, the monetary cost
is inversely proportional to the execution time and Reserved
Instance pricing is less expensive than On demand. In Fig. 2,
the rightmost combination (A) is to allocate both operators
to VM1, which is the less expensive albeit the slowest VM,
while combination C corresponds to the mapping of the two
query strides to VM5 → VM4, which are the faster and most
expensive VMs.

It can be seen that some VM combinations dominate some
others, i.e., they are both more efficient in terms of execution
time and less expensive. This is attributed to the different
charging policies (e.g., charges for each hour or for each 5 min
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Fig. 2 – Time and monetary cost combinations for the
example query.

period of usage). One other factor is the fact that, in some
combinations, both operators are executed on the same VM,
and as such, there is no data transfer across the network,
which leads to reduced execution time and monetary cost.
For instance, for combination D on the diagram, VM5 is used
for both operators. Due to the absence of intermediate data
transfer, this combination has both lower cost (by 60$) and
running time (by 60 min) under the On demand policy than
combination B for example, where data has to be transferred
from VM4 to VM5.

In this example, we do not have any extra cost for the
transfer of intermediate data between strides. If we had such
a cost, we could use the cardinality estimation to determine
the size of data transferred. Since we know the data that to be
transferred and the charging policies of the IaaS providers, we
are able to determine the cost for transferring data between
strides. Also, in the example, we have assumed that all the
data, including initial and intermediate data, fit completely in
the storage space. If this is not the case, we can estimate the
data volume that needs to be stored based on the cardinality
estimates, and then estimate the monetary cost for using
extra storage space.

4.3.1. Fitting the cost model into an optimizer
The role of the optimizer is to choose the most appropriate
combination of VMs, considering both time and monetary
cost. The example discussed above is simple but adequate
to provide insights into the complexity of the problem when
every VM combination is examined. More specifically, the
average time complexity of estimates for each stride is pro-
portional to the number of pricing offers, the number of avail-
able VMs and the number of stride vertices. The estimates of
the complete query plan are exponential in the number of
strides. As such, an optimizer that relies on examining ex-
plicitly each combination is not practically feasible. Never-
theless, not every combination needs to be examined, since
a big portion of such combinations are dominated by others,
i.e., for both criteria there exists at least one combination that
is equal or better.

Producing non dominated combinations is the same as
producing the pareto curve. An optimizer can build an exact
pareto curve with the help of a simple pseudopolynomial
dynamic programming algorithm. The sketch of such an
algorithm is given in [26], and here we present a more
complete description. The algorithm computes for each
operator in each stride, the minimum monetary cost C to
compute the query plan up to that operator provided that the
time does not exceed a delay threshold d. This is repeated for
all possible d values, which range from the minimum time
granularity tmin (typically 1 min) to the maximum possible
total time dmax in steps of size equal to tmin. Detecting
an upper bound for dmax is trivial, since we can sum the

maximum S
VMk→k′

s,i→j values over all operators in the plan.

The algorithm builds a 2-dimensional array Ci
s(k, d) for

each operator i = 1 . . . ms for each stride s = 1 . . . n, where
1 ≤ k ≤ |Available VMs| and tmin ≤ d ≤ dmax. It starts from
the bottom strides and proceeds to the top ones. The C arrays
are completed column-by-column. A specific cell keeps the
minimum economic cost of computing the query plan up
to the corresponding operator in time no more than d and
having the results of that operator residing at VMk.

Let x = O
VMk
s,i . For simplicity of notation, we can assume

that each VM comes with a single pricing policy, so that
each k can be mapped to a single (fa, fu) pair. The recursive
function used to drive the dynamic programming approach is
as follows:

Ci
s(k, d) =


∞ when x > d

mincostis(k, d) otherwise

mincostis(k, d) = min



(fa + fu)
x

t


+


v∈Children(i)

Cv
s−1(k, d − x)

min

Ci
s(j, d − T

VMj→k
s,i→∗

) + (fa + fu + f⋆
a + f⋆

u)

×


T

VMj→k
s,i→∗

t


 ∀j ≠ k.

The rationale of mincost is to check the following two
cases for each combination of VM and acceptable total time:
either to perform the computation of the ith operator of the
sth stride directly on VMk or to compute that operator at
another place and transfer the results to VMk. For the latter,
we examine the (already computed) optimal solutions for all
VMj, j ≠ k (corresponding to the (f⋆

a + f⋆
u) pair) and we take

their minimum.
The global solution is in the array of the root operator

(typically Cn
1). Taking the minimum of each column provides

the less expensive cost for a given time threshold thus
yielding only the pareto curve instead of all combinations.
The optimizer can choose the exact allocation either with
the help of user-defined functions (as mentioned earlier) or
through conversion of the bi-objective optimization problem
to a single-objective one with a constraint on the other
optimization criterion. For example, it can choose the
solution with the lowest total time that has economic cost
below a supplied threshold.

4.4. Generalizations

The cost model described in this section can be generalized
in two main ways not covered previously: to support arbitrary
data analysis flows and intra-operator parallelism.

Data analysis flows are typically represented as directed
acyclic graphs (DAGs), which can be naturally split in multiple
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stages, exactly as the query plans we consider do. The
main difference between arbitrary data flows and query
plans is that query execution plans consist of operators
from the extended relational algebra, whereas data flows
also encompass data and text analytics, machine learning
operations, and so on [3]. The implication in our cost model

is in the way O
VMk
s,i is estimated. The approach in [5] cannot

apply because it is specific to atomic query operators; so
we need to resort to micro-benchmarking solutions, e.g., as
described in [18,28]. The rest of the cost model details remain
the same.

Regarding intra-operator parallelism, the extensions are
straightforward as well. We can assume that, if we fix the
degree of intra-operator parallelism, then we can modify the
query execution plan, so that each instance of a partitioned
operator appears as a separate query plan vertex. Then, we
can apply the cost model without any modification.

Finally, a shortcoming of the monetary cost estimation in
Section 4.2.3 is that a VM that receives data from a remote
host is activated and, if it does not start processing its
results immediately, it may not be de-activated. The formula
presented does not capture this, but it is straightforward to
devisemore sophisticated formulas that keep track of the first
time a VM is activated until it finishes the execution of all the
tasks allocated to it.

5. Validation case study

In this section, we demonstrate how exactly the cost model
is used in a real multi-cloud environment. The first part
shows how the cost model is calibrated in a single cloud
infrastructure and how we derive time estimates. Monetary
cost estimates are covered by the example in Section 4.3. We
then present more complex settings that employ multiple
cloud infrastructures and depart from relational database
queries.

5.1. Simple experimental setting and model calibration

For our experiments we used okeanos. okeanos is a IaaS
platform for the Greek Academic and Research Community
[29]. More specifically, we used 3 VMs with the following
hardware configurations:

• 2 VMs (VM1 and VM3) : 60 GB Disk, 4 GB Ram, 1-core ×

2.1 GHz.
• 1 VM (VM2): 40 GB Disk, 2 GB Ram, 1-core × 2.1 GHz.

Our software setup includes the installation of PostgreSQL
9.1.11 on Linux Kernel 3.2.0-58-generic. The data we used
come from the TPC-H decision support benchmark and the
database size is 26 GB.

To use the cost model, we need to parameterize the time
estimates for data transfer, writing (resp. reading) raw data
to (resp. from) disk and for the relational operators. For the
calculation of the network speed, our case is that the VMs
belong to the same cluster. So the network formula is given
by:

T
VMk→k′

s,i→j = Cu
k→k′ (X) = αk,k′X + βk
Table 5 – Network α and β parameters.

αk,k′ (ms/bytes) βk (ms)

k′
= 1 k′

= 2 k′
= 3

k = 1 – 6.29e−05 5.54e−05 8.61e02
k = 2 6.60e-05 – 6.39e−05 9.05e02
k = 3 5.67e−05 6.09e−05 – 1.08e03

Table 6 – Disk performance in MB/s.

VM1 VM2 VM3

Read speed (MB/s) 291.60 255.30 43.88
Write speed (MB/s) 100.83 106.20 96.39

where αk,k′ is the communication cost to transfer one unit of
data from node k to node k′ and βk is the startup cost.

To find α and β, we conducted two experiments with
different X for every combination of VMs. We used the
command dd of unix to produce two files and the command
scp to transfer these files between servers and measure the
network performance. We repeated this experiment 10 times
for each X value and then calculated the mean time. Since we
have a linear function, we can calculate α and β with simple
maths. The results are presented in Table 5.

Next, to estimate the query time correctly, we need to
know the read and write speed of the disk of every VM. We
measure the sequential speed using the dd unix tool while
we set the block size to 4096 bytes. Again, we repeated the
measurements 10 times and we calculated the mean values.
The results are presented in Table 6.

Finally, to estimate the execution time O
VMk
s,i of relational

operators executed by PostgreSQL, we need both cost units
c and cardinalities n. For cardinalities n, we assume that
they can be calculated with the method described in [5] and
thus are accurately known. To calculate c, we have used the
calibration queries from [5]. We have calculated only the cost
units that are involved in the experiments in the next part;
the results are in Table 7. The queries are:

• SELECT * FROM R

R is memory resident. This query is used to find
cpu_tuple_cost.

• SELECT COUNT(*) FROM R

R is memory resident. This query along with the
previous one is used to find cpu_operator_cost.

• SELECT * FROM R

R does not fit in memory. With the help of the first
query, this query is used to find seq_page_cost.

where seq_page_cost gives the time cost to sequentially
perform an I/O operation accessing a disk page. cpu_tuple_cost
is the time to retrieve and process a tuple. cpu_operator_cost
captures the extra cost of applying a hash or an aggregate
function to a tuple (that cost is not covered by cpu_tuple_cost).

5.2. Running time estimates

In our experiments, we tried to validate whether our cost
model can predict with adequate precision the execution time
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Fig. 3 – Plans of the experiments.
Table 7 – Cost units of our VMs.

Optimizer parameter (ms) VM1 VM2

seq_page_cost 2.16e−02 3.21e−02
cpu_tuple_cost 3.76e−04 3.48e−04
cpu_operator_cost 2.17e−04 2.48e−04

of a query. We used the PostgreSQL database only for the
operators of the bottom strides. All the other operators are
implemented with unix scripts. The cost units c were used
only to predict the running time of the PostgreSQL operators.
To calculate the time of operators implemented with scripts,
we treated them as black boxes, we executed them with
different inputs and measured their performance.

Experiment 1
The query of the first experiment is:

SELECT c_nationkey, count(*)

FROM customer

GROUP BY c_nationkey

The corresponding plan is presented in Fig. 3 on the left.
For the execution of the above query, we use two VMs (VM1

and VM2). VM1 is used for stride 1, while VM2 runs stride 2.
The execution is split in three steps as follows:

1. SCAN, PROJECT and SAVE1 are executed on VM1 as a single
SQL sub-query submitted to the PostgreSQL database.

2. TRANSFER is performed using the unix scp command.
3. LOAD1, GROUP BY and SAVE2 is implemented as a single

unix script running on VM2.

We sum the execution time of each of the above steps to
calculate the total actual execution time of the query. Our
experiments were repeated 10 times, and their mean value
is in the Actual Values column of Table 8.

To find the estimated execution time, we used the actual
cardinality. For the calibration of the execution time of the
Table 8 – Results of actual execution time and estimated
time.

Estimated values (ms) Actual values (ms)

Exp. 1 15531 16172
Exp. 2 3131 3285

GroupBy operator, we first applied this operator on a set of
1 million random numbers for 10 different times. Again, the
total time is given by the sum of the times of the three steps
and the results are in Table 8 (see the Estimated Times column).
From the table, we can observe that the deviation between the
actual and the estimated times in that experiment is less than
4%.

Experiment 2
The query of the second experiment is:

SELECT nation.n_name, count(*)

FROM customer, nation

WHERE customer.c_nationkey = nation.n_nationkey

GROUP BY nation.n_nationkey

The detailed execution plan can be seen in Fig. 3 on
the right. We can observe that the database optimizer has
performed an optimization, which pushes the group-by under
the join yielding significantly lower execution times.

For the execution of this query, we use three VMs. VM1
and VM2, which have both PostgreSQL database installed, are
used for the bottom stride, while VM3 executes the top stride.
The execution consists of three sequential steps:

1. SubQuery1 and SubQuery2 are executed in parallel on VM1
and VM2, respectively.

2. The intermediate data is transferred with the help of scp
as previously.

3. SubQuery3 is implemented as unix script (using join
command) that runs on VM3.
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Fig. 4 – Our experimental topology.
The total time is estimated by adding the maximum
estimated time of subqueries 1 and 2 in Stride 2 along with
the data transfer from the first stride to the second one. Then
we add the estimated time of subquery3. The average results
of the 10 runs are in Table 8. Again, the deviation of the
estimates from the actual running times is low (4.69%). It is
important to clarify that the VMs used were not installed on
dedicatedmachines. On the contrary, the cloud infrastructure
in our experiments is heavily used by a big community that
shares the physical resources provided.

5.3. Validation using multi-cloud NoSQL databases

The previous experiments showed the accuracy of the model
in a single cloud setting. We now move to a multi-cloud
environment and we focus on queries that access HBase, a
widespread NoSQL system. We employ three HBase clusters.
The version of HBase in each cluster is 0.94.20 on top of
Hadoop 1.2.1. To produce the data, we have modified the
YCSB’s v0.1.3 table loading module to create records/rows of
100 kB each (10 fields of 10 Kb each in every row). The rows are
distributed according to pre-specified (i.e., pre-split) regions.
All the region data fit into the main memory so that there are
no disk accesses due to caching.

The three clusters consist of 12 VM in total and run on
three distinct cloud infrastructures. In each cluster, 1 VM
plays the role of the master HBase server, and the rest are
region server VMs. Fig. 4 depicts the actual set up, which
comprises:

• Our own private cloud infrastructure, which is supported
by the ganeti v2.11 cluster virtual server management
software. It physically resides at the premises of
the Aristotle University of Thessaloniki, Greece. Our
infrastructure consists of 2 physical host machines (host 1,
host 2) where we create the first 8 VMs. The hostmachines,
and thus every created VM, are inter-connected through a
local network with 1 Gbps (100 MB/s) network speed. The
connection speed to the internet is 100 Mbps (11 MB/s).
Every VM has 2 VCPUs (at 2.0 GHz), 7 GB RAM (5.8 GB
dedicated to HBase) and 100 GB of storage. The database
created consists of 70K rows and the total database size is
7 GB, that is 1 GB per region server.

• The okeanos cloud infrastructure, which was introduced
earlier and on which we have spawned 2 VMs to create a
2-node HBase cluster (1 region server VM9, 1 master server
VM10). The VM characteristics are 2 VCPUs (at 2.1 GHz),
6 GB RAM (4.8 GB dedicated to HBase) with 100 GB and
40 GB of storage for the two VMs, respectively. We have
created a database with 7K rows and total size of 700 MB.
The database is pre-split into two equi-sized regions. The
VMs physically reside in Athens, Greece.

• The profitbricks9 cloud infrastructure, where we have
created a 2-node HBase cluster hosting a database of
700 MB of size with 7K rows placed in one region.
The corresponding VMs are VM11 and VM12. The VM
characteristics are 2 VCPUs (at 2.8 GHz), 5 GB RAM (3 GB
dedicated to HBase) and 50 GB of storage.

In the experiments we use a client machine that either
collects or joins the data from multiple VMs. The client
VM is running in our private cloud infrastructure but on a
different host machine, in order not to interfere with the
HBase cluster’s resources. The characteristics of the client VM
are: 8 VCPUs (4.7 GHz), 20 GB RAM, and 500 GB of storage.

5.3.1. Model calibration
To use our model, we need to find the parameters for
data transfer and local reads from the HBase servers. To
avoid interference to the data transfer speed due to disk
accesses, we employed the iperf tool,10 which can measure

9 https://www.profitbricks.com/.
10 https://iperf.fr/.

https://www.profitbricks.com/
https://iperf.fr/
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Fig. 5 – SCAN to a single HBase cluster at a time.
Fig. 6 – SCAN to region servers from separate HBase clusters.
Table 9 – Network α and β parameters.

HBase cluster α (s/bytes) β (s)

private 8.507e−09 0.02989
okeanos 8.603e−08 −0.03273
profitbrick 8.62e−08 0.3137

Table 10 – SCAN local call execution times (in seconds)
as a function of the data region size requested.

1 GB (s) 700 MB (s) 350 MB (s)

VM1–VM7 2.9995 – –
VM9 – 5.2305 2.9995
VM11 – 4.8164 1.6004

the maximum TCP bandwidth. We have used the same
formula as in Section 5.1 (corresponding to the approximate
version of Eq. (4)). To compute the α and β values, we have
collected measurements for different time intervals (i.e. 1, 2,
5, 10, 20 s) with 10 iterations for each setting and then applied
linear regression. The calls were made by the client to the
master of every HBase cluster (i.e., VM8, VM10, and VM12,
respectively). The results are presented in Table 9.

To compute the data retrieval operator’s cost we have
applied local calls (termed as SCANs) to the region servers,
which hold the regions with the requested data. The results
are presented in Table 10.

5.3.2. Running time estimates
In the first set of NoSQL experiments we apply scan queries,
where the client retrieves data from the HBase clusters. The
details of the experiments are as follows:

1. SCAN-Experiment-1 (SE1):We have requested data from one
region server from each of the cloud databases, as shown
in Fig. 5(left). The region sizes are 1 GB for the private
Table 11 – Results of actual execution time and
estimated time for distributed scans.

Exp. ID Estimated
values (s)

Actual
values (s)

Deviation of
estimates

SE1-private 12.16 10.79 +12.97%
SE1-okeanos 68.34 65.28 +4.69%
SE1-profitbricks 33.55 45.12 −25.88%
SE2 21.29 20.95 +1.62%
SE3 101.89 99.19 +2.72%
SE4 101.89 101.78 +0.1%

cloud infrastructure, 700 MB for okeanos and 350 MB for
profitbreaks.

2. SCAN-Experiment-2 (SE2): We have requested 2 GB of data
from the HBase cluster running on our private cloud
infrastructure, which corresponds to reading data from
two region servers, as shown in Fig. 5(right).

3. SCAN-Experiment-3 (SE3):Wehave requested 700MB of data
(i.e., data from one region server) from the HBase cluster
running on the okeanos cloud infrastructure and 350 MB
of data from the HBase cluster running on the profitbricks
cloud infrastructure; see Fig. 6(left).

4. SCAN-Experiment-4 (SE4): We have requested data from
one region server from each of the HBase databases
concurrently; see Fig. 6(right).

In all experiments, the collection process on the client
(Stride 2) takes negligible time. The estimated and the actual
times are shown in Table 11, where it is shown that the ac-
curacy is reasonably high apart from simply reading the data
from profitbricks. Interestingly, the accuracy is much higher for
the more complex settings of SE2, SE3 and SE4 rather than for
SE1. As previously, we report the averages of 10 runs. For SE1
and SE2, the estimated values were produced through sim-
ple application of Eq. (1) and summing the data transfer and
local processing costs for each operator. The relatively high
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Fig. 7 – JOIN from region servers in separate HBase clusters.
inaccuracy of SE1-profitbricks is mainly attributed to the high
geographical distance between the participating physical ma-
chines. For SE2, local experiments show that the scans in the
bottom stride in Fig. 5(right) do not fully overlap so that is ab-
solutely correct to take their maximum, but despite this fact,
the inaccuracy of the estimate is only 1.62%. The estimates for
the next experiments make use of Eq. (2), since the internet
connection forms the main bottleneck. We can observe that
we give the same estimate for SE3 and SE4. This is because
the client machine resides on the same local network as our
private cloud infrastructure, therefore the bottleneck is only
at the connection with the other two clouds. Therefore the
estimate of the time cost of the bottom stride in Fig. 6(right)
is the maximum between (i) the scan at the private cloud and
(ii) the sum of the two other scans. According to the profiling
metadata, the sum of the two other scans dominates, and the
estimate is the same as if only these two cloud databases had
been contacted.

In the second set of experiments we focus on more
complex tasks that join data from multiple cloud providers.
We conduct two further experiments, as shown in Fig. 7.
These experiments replace the simple data collection task in
SE3 and SE4 with a JOIN one.

To compute the join operator’s cost we have previously
applied local join calls on the client machine for 2-way and
3-way main memory nested loop joins [11]. The details of the
experiments are as follows:

1. JOIN-Experiment-1 (JE1): We have requested 700 MB of data
(7000 rows) (i.e., data from one region server) from the
HBase cluster running on the okeanos cloud infrastructure
and 350 MB of data (3500 rows) from the HBase cluster
running on the profitbricks cloud infrastructure; see
Fig. 7(left).

2. JOIN-Experiment-2 (JE2): We have requested 100 MB of
data (1000 rows) from the private cloud infrastructure,
700 MB of data (7000 rows) (i.e., data from one region
server) from the HBase cluster running on the okeanos
cloud infrastructure and 350 MB of data (3500 rows)
from the HBase cluster running on the profitbricks cloud
infrastructure; see Fig. 7(right). Before the join, we filter
25% of the rows.

The results are presented in Table 12. As for SE3 and SE4,
the accuracy is remarkably high, and the average deviation
does not exceed 1.57% of the actual value.
Table 12 – Results of actual execution time and
estimated time for distributed joins.

Exp. ID Estimated
values (s)

Actual
values (s)

Deviation of
estimates

JE1 105.69 104.06 +1.57%
JE2 153.4 153.7 −0.2%

6. Conclusions

In this work, we present a bi-objective cost model that
provides time and monetary cost estimates of query plans
running on VMs from multiple cloud providers. Our cost
model extends existing approaches that solely focus on
time estimates when tasks run on predefined machines and
is tailored to a multi-cloud environment, where resources
are used at a price. More specifically, we leverage existing
proposals for providing time estimates, and we provide a
model for coupling time and monetary cost estimates while
supporting the main charging policies of cloud providers to
date. The cost model is also applicable to generic data flow
tasks, and through a detailed example and validation case
studies, we show how it can be employed in practice. In
addition, we explain how the model can become part of
and render applicable a state-of-the-art multi-objective query
optimizer, which requires as inputs the pairs of time and
money cost estimated produced by our model.

Our proposal is the first bi-objective cost model for cloud
queries. However, it suffers from several limitations that can
be addressed in the future, since providing time and cost
estimates is a complex issue. Two of the most important
directions are to devise cost models that map tasks to the
amortized cost of using the infrastructure (rather than the
price charged) and to perform more thorough validation
after having developed and established suitable benchmarks.
Finally, given that several other objectives are relevant to
cloud databases including security, reliability and QoS, it
would be interesting to extend our model in order to cover
them.
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