
Canonical Polygon Queries on the Plane: A New
Approach

S. Sioutas, D. Sofotassios, K. Tsichlas, D. Sotiropoulos, P. Vlamos
Ionian University-Department of Informatics, Computer Technology Institute, Aristotle University of

Thessaloniki-Informatics Department, Greece
Email: sioutas@ionio.gr, sofos@cti.gr, tsichlas@csd.auth.gr, {dgs,vlamos}@ionio.gr

Abstract—The polygon retrieval problem on points is the
problem of preprocessing a set of n points on the plane,
so that given a polygon query, the subset of points lying
inside it can be reported efficiently. It is of great interest in
areas such as Computer Graphics, CAD applications, Spatial
Databases and GIS developing tasks. In this paper we study
the problem of canonical k-vertex polygon queries on the
plane. A canonical k-vertex polygon query always meets
the following specific property: a point retrieval query can
be transformed into a linear number (with respect to the
number of vertices) of point retrievals for orthogonal objects
such as rectangles and triangles (throughout this work we
call a triangle orthogonal iff two of its edges are axis-
parallel). We present two new algorithms for this problem.
The first one requires O(n log

2 n) space and O(k log3n
loglogn

+A)

query time. A simple modification scheme on first algorithm
lead us to a second solution, which consumes O(n2

) space
and O(k logn

loglogn
+ A) query time, where A denotes the size

of the answer and k is the number of vertices. The best
previous solution for the general polygon retrieval problem
uses O(n2

) space and answers a query in O(k log n + A)

time, where k is the number of vertices. It is also very
complicated and difficult to be implemented in a standard
imperative programming language such as C or C++.

Index Terms—Algorithms and Complexity, Data Struc-
tures, Computational Geometry, Spatial Databases.

I. INTRODUCTION

Given a set S of n points on the plane, the problem
of retrieving a subset S ′ ∈ S that lie in the interior of
a planar geometric object is of great interest in the areas
of Computational Geometry, Spatial Databases, Computer
Graphics, CAD and GIS applications. The efficiency of
the solutions presented so far depends on the existence
or not of orthogonality on the query object, which means
that not all the line segments forming the query figure are
vertical or horizontal.

A range tree [20] for a example, is powerful enough
to support windowing of points (i.e. the query object is
an arbitrary axis-parallel rectangle) in O(log n + A) time
using O(n log n) space. The problem becomes harder as
the complexity of the query object increases (i.e. triangle,
quadrilateral, arbitrary polygon), and there is no full
orthogonality.

It is important to notice that the point retrieval problem
for simple polygons is an interesting problem for many

This is the extended and correct version of that one presented in
proceedings of Australasian Workshop On Combinatorial Algorithms
2004(AWOCA 04).

application areas. In medicine for example, the term ROI,
which stands for Region Of Interest, is widely used by
physisians in order to indicate a polygonal region of
arbitrary complexity on their scene (i.e. Radiology Im-
age). Many information systems developed so far support
retrieval queries at such a region by first computing its
bounding rectangle. Then, they report all the points inside
the rectangle and finally these points are filtered so that
only the points inside the region remain.

Willard [15], was the first to present a solution for the
point retrieval problem for simple k-vertex polygons. It
uses O(n) space and the query time is O(n0.77 + A).
Edelsbruner and Welzl [10], reduced the query time
to O(n0.69 + A). A faster algorithm was presented
by Edelsbruner, Kirkpatrick and Maurer [9] that uses
O(k log n + A) query time and O(n7) space. Cole and
Yap [6], presented a method using O(n2/ log n) space
and O(k log n log log n + A) time. Finally, Paterson and
Yao [13] have presented the best known solution (for a
simple arbitrary polygon). This solution uses O(n2) space
and answers a query in O(k log n + A) time.

In this work we consider the polygon retrieval problem
on points in special case of canonical polygons which
always satisfy the following strict property: a retrieval
query on a set of points can be transformed to a linear
number (on the number of their vertices) of queries on
orthogonal objects such as rectangles and triangles. We
call a triangle orthogonal iff two of its edges are axis-
parallel. We present two solutions: The first one requires
O(n log2 n) space and O(k log3n

loglogn + A) query time. The

second one consumes O(n log n) space and O(k logn
loglogn +

A) query time, where A denotes the size of the answer
and k is the number of vertices.

The best previous solution for the general polygon
retrieval problem uses O(n2) space and answers a query
in O(k log n+A) time, where k is the number of vertices.

This paper is organized as follows. In Section II we
briefly introduce some preliminary data structures. In
Section III we give the details of our algorithms. In
Section IV we present some special extensions for the
general polygon retrieval problem based on algorithm
of Paterson and Yao for which we shortly introduce
the fundamental notions. Finally, some conclusions and
further extensions concerning this problem are considered
in Section V.

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 913

© 2009 ACADEMY PUBLISHER

II. PRELIMINARY DATA STRUCTURES

A. Fusion Trees

At ACM STOC 1990, Fredman and Willard [11] sur-
passed the comparison-based lower bounds for sorting and
searching using the features in a standard imperative pro-
gramming languages such as C. Their key result was an
O(logn/loglogn) time bound for deterministic searching
in linear space. The time bounds for dynamic searching
include both searching and updates. Since then much
effort has been spent on finding the inherent complexity
of fundamental searching problems.

B. Planar Point Location in Sublogarithmic Time

Timothy M. Chan [1] and Mihai Patrascou [18] ex-
tended the 1-dimensional fusion tree [11] to 2-dimensions,
in order to handle the point location problem in
O(logn/loglogn) time and linear O(n) space.

C. Half Plane Range Query

The half plane range query problem is the problem of
reporting all the points in a set S of n points on the plane
that lie on a given side of a query line L. This section
combines the method presented by Chazelle, Guibas, and
Lee [5] that achieves O(log n+A) query time and linear
space (using the notion of duality) with the best current
method for planar point location problem [1], [18]. The
main steps of algorithm [5] are the following:

• Preprocessing

1) Partition S into a set of convex layers:
(a) Define Si as the convex hull of all the
points currently in S
(b) Remove the vertices of Si from S
(c) Increment i, repeat the process

The time cost is O(n log n) while the space
complexity is O(n), using a technique that
computes convex hulls in a dynamic environ-
ment [2].

2) Augment the set of layers building vertical con-
nections as follows: for each vertex w of layer
Si, keep a pointer to the two edges immediately
above and below w. This clearly uses O(n)
extra space.

3) Using duality, the transformation of each vertex
w into its corresponding line maps each layer
into another convex polygon. The produced
mapping is organized into a point location
structure, occupying O(n) space.

• Query Processing

1) Given a query line L transform it into its
corresponding dual point PL.

2) Apply a planar point location algorithm for the
point PL in the properly organized structure.
This determines the innermost layer among the

layers containing the point PL. Thus, in the
dual mapping it determines the innermost layer
among the layers that L intersects. Call this
layer neighboring. Using the best current point
location algorithm, this costs O(logn/loglogn)
time.

3) Using the pointers mentioned at step 3 of the
preprocessing procedure, it is easy to report one
vertex lying at the query half plane for each
layer which encloses the neighboring one.

4) Traverse each layer from each of the vertices
reported across the part of the layer inside the
half plane. Report the vertices traversed.

Clearly, these steps lead to an algorithm for answer-
ing half plane range queries using O(n) space and
O(logn/loglogn + A) query time. We use this method
in order to answer orthogonal triangle range queries on
points.

D. Priority Search Tree

In this subsection, we briefly review the priority search
tree of McCreight [16]. Let S be a set of n points on the
plane. We want to store them in a data structure, so that
the points that lie inside a semi-infinite strip of the form
(−∞, b] × (−∞, c], can be found efficiently.

The priority search tree is a binary search tree over the
x-coordinates of the points. The root of the tree contains
the point p with the minimum y-coordinate. The left (resp.
right) subtree is recursively defined for the set of points
in S − {p}. The set S − {p} is partitioned equally into
the two subtrees of the root. As a result, it is easy to see,
that a point is stored in a node on the search path from
the root to the leaf containing its x-coordinate.

Queries with ranges that are half-infinite in both x and
y directions are also known as quadrant range search.
To answer a quadrant range query, we find the O(log n)
nodes in the search path Pb for point b. Let Lb be the
left children of these nodes that do not lie on the path
(see Figure 1). In O(log n) time, the points of the nodes
of Pb

⋃
Lb that lie in the query-range can be determined.

Then, for each node of Lb storing a point inside the range
query, its two children are visited and checked whether
their points lie in the range. This procedure continues
recursively, as long as points in the query-range are found.

The correctness of the query algorithm is proved as
follows. First, observe that nodes to the right of the search
path, have points with x-coordinate larger than b and
therefore lie outside the query-range. The points of P b

may have x-coordinate larger than b or they may have y-
coordinate larger than c. In any case, they are not reported.
The nodes of Lb and their descendants have points with x-
coordinate smaller than b, so that only their y-coordinates
need to be tested. The children of nodes of L b with y-
coordinate less than c must be considered. In particular,
the reporting procedure proceeds recursively, as long as
points inside the query range are found. If a point of a
node u does not lie inside the query-range, then this point
has y-coordinate larger than c. Therefore, all points in the

914 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

r

b

Fig. 1. Pb: the search path, Lb: the nodes that are left sons of nodes
on Pb and do not belong to the path.

subtree rooted at u lie outside the query-range and they
are not reported. We can easily bound the query time
by O(log n + t), since O(log n) time is needed to visit
the nodes in Pb

⋃
Lb and O(t) time is necessary for the

reporting procedure in their subtrees.

E. Persistent Modified Priority Search Tree

In this subsection, we briefly review the Modified
Priority Search Tree of sioutas et al. [21]. Let S be a set
of n points on the plane with coordinates (x, y), where
x ∈ {1, . . . , M} and y ∈ �. Without loss of generality we
assume that all points are distinct. We will show how to
store the points in a data structure T , so that the t points
in a query range of the form (−∞, b]× (−∞, c], can be
found in O(t) time. Our structure relies on the priority
search tree, which we augment with list-structures similar
to those in [17].

We denote by Tv the subtree of T with root v.
The tree structure T has the following properties:

• Each point of S is stored in a leaf of T and the points
are in sorted x-order from left to right.

• Each internal node v of T stores a point p(v) of S.
The point p(v) is the point with the minimum y-
coordinate amongst the points stored in the leaves
of Tv.

• Each node v is equipped with a secondary list S(v).
S(v) contains the points stored in the leaves of Tv

in increasing y-coordinate.

For convenience we will assume that the tree T is a
complete binary tree (i.e. all its leaves have depth log n).
Note that if n is not a power of 2, then we may add
some dummy leaves so that T becomes complete. We
also use an array A of size M , which stores pointers
to the leaves of T . Specifically, A[i] contains a pointer
to the leaf of T with maximum x-coordinate smaller
or equal to i. This array is used to determine in O(1)
time the leaf of the search path Pb for b. In each leaf
u of the tree with x-coordinate i we store the lists L(u)
and PL(u). The list L(u) stores the points of the nodes
of Li. The list PL(u) stores the points of the nodes of
Pi which have x-coordinate smaller or equal to i. Both
lists also contain pointers to the nodes of T that contain

these points. Each list L(u), PL(u), stores its nodes in
increasing y-coordinate of their points (see Figure 2).

r

L(u)
PL(u)

Fig. 2. L(u): it stores the points of the nodes of Li. PL(u): it stores
the points of the nodes of Pi which have x-coordinate smaller or equal
to i.

To answer a query of the form (−∞, b]× (−∞, c] we
find in O(1) time the leaf u of the search path Pb for
b. Then, we traverse the list PL(u) and report its points
until we find a point with y-coordinate greater than c.
We traverse the list L(u) in the same manner and find
the nodes v of Lb whose points have y-coordinate less
than or equal to c. For each such node v we traverse the
secondary list S(v) and report its points until we find a
point with y-coordinate greater than c.

The following theorem bounds the size and the query
time of our structure.

Theorem 1. Given a set of n points on the plane with
coordinates (x, y) such that x ∈ {1, . . . , M} and y ∈ �,
we can store them in a data structure with O(M+n log n)
space that supports quadrant range queries in O(t) time,
where t is the number of reported points.

Proof. The query algorithm finds the t ′ points of
nodes of Pb

⋃
Lb that lie inside the query-range in O(t ′)

time by simple traversals of the lists PL(u), L(u). The
search in the respective subtrees T (v) can be performed
by traversing the secondary lists S(v) and takes O(t)
additional time for reporting t points in total. Therefore,
the query algorithm needs O(t) time. Each list PL(u),
L(u) stores the respective points in the nodes of the path
from root to u, and points in the left children of nodes
of this path. So, the size of each list is O(log n) and the
space of T is O(n log n). The total space of secondary
lists S(v) is also O(n). Thus, the space of the whole
structure is O(M + n log n) because of the size of the
array A.

The O(n log n) term in the space bound is due to the
size of the lists PL(u) and L(u). We can reduce the total
space of these lists to O(n) by making them persistent.
Ordinary structures are ephemeral in the sense that update
operations make permanent changes to the structures.
Therefore in ordinary structures it is impossible to access
their old versions (before the updates). According to the
terminology of Driscoll et al. [7] a structure is persistent,
if it allows access to older versions of the structure. There
are two types of persistent data structures: partially and
fully persistent. A partially persistent data structure allows

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 915

© 2009 ACADEMY PUBLISHER

updates of its latest version only, while a fully persistent
one allows updates of any of its versions. In [7], a general
methodology is proposed for making data structures of
bounded in-degree persistent. With their method such
a structure can be made partially persistent with O(1)
amortized space cost per change in the structure. In our
case a list can be made partially persistent with a O(1)
amortized increase in space per insertion/deletion.

We show how to implement the lists PL(u) using a
partially persistent list. Let u be a leaf in T and let w be
its predecessor (the leaf on the left of u). We denote by
xu the x-coordinate of u and by xw, the x-coordinate
of w. The two root-to-leaf paths Pxu , Pxw , share the
nodes from the root of T to the nearest common ancestor
of u, w. As a result, we can create PL(u) by updating
PL(w) in the following way. First we delete from list
PL(w) the points that don’t lie on Pxu . Then we insert the
points of Pxu which have x-coordinate smaller or equal
to xu. In this way we can construct all lists as versions
of a persistent list: we begin from the leftmost leaf and
construct the list PL(u) of each leaf u by updating the
one of its predecessor (see Figure 3).

r

uw

Fig. 3. Lists PL(u) and L(u) are implemented as partially persistent
lists, by performing a sweep from left to right.

The total number of insertions and deletions is O(n)
because each point is inserted and deleted only once.
Therefore the space of all the lists is O(n). In the same
way, lists L(u) are constructed for all leaves in O(n)
space. Therefore:

Theorem 2. Given a set of n points on the plane with
coordinates in the range [1, M]×R we can store them in a
data structure with O(n + M) space that allows quadrant
range queries to be answered in O(t) time, where t is the
number of answers.

The preprocessing time is O(M + n logn) but with a
more careful implementation we can reduce this complex-
ity to O(M + n), by using the pruning technique as in
[12].

F. Geometric Transformation Of Duality

In homogeneous coordinates, there exists a duality
between the point (a, b, c) and the line (ax+by+cz = 0)
for all (a, b, c) �= (0, 0, 0). Furthermore, the following
pairs are dual:

• points on a line ←→ lines throught a point

• line segment ←→ ”double wedge” of lines
• set of lines intersecting a line segment ←→ set of

points in a double wedge (see Figure 4)
A more formal definition of this powerfull tool can be

found in [5].

Fig. 4. An example of Geometric Duality Transformation: Dual pairs

III. ALGORITHMS FOR ORTHOGONAL OBJECTS

A. Data Structures for Orthogonal Triangle Range
Queries

An orthogonal triangle range query is the problem of
determining all the points from a set S of n points on
the plane lying inside an orthogonal triangle. Recall, a
triangle is orthogonal iff two of its edges are axis-parallel.
Let T be an orthogonal triangle defined by the point
(xq, yq) and the line Lq that is not axis-parallel (see
Figure 5).

xq

yq

Lq

Fig. 5. An example of Orthogonal Triangle Range Query

A retrieval query for this problem can be supported
efficiently by the following data structures:

1) First Solution: A 3-layered Tree: To set up the
data structure, first sort the n points according
to their x-coordinates and then store the ordered
sequence in a leaf-oriented balanced binary search
tree of depth O(log n). This structure answers the
query: ”determine the points having x-coordinates
in the range [x1, x2]” by traversing the two paths
to the leaves corresponding to x1, x2. The points
stored as leaves at the subtrees of the nodes which
lie between the two paths are exactly these points
in the range [x1, x2]. For each subtree, the points
stored at its leaves are organized further to a second
level data structure according to their y-coordinates
in the same way. For each subtree of the second
level data structure, the points stored at its leaves
are organized further to a third level modified data
structure of Chazelle (presented in subsection 2.3)

916 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

for half-plane range query. So, each Orthogonal
Triangle Range Query is performed through the
following steps:

a) In the tree storing the pointset S according
to x-coordinates, traverse the path to xq . All
the points having x-coordinate in the range
[xq,∞) are stored at the subtrees on the nodes
that are right sons of a node of the search path
and do not belong to the path. There are at
most �log n� such disjoint subtrees.

b) For every such subtree traverse the path to yq.
By a similar argument as in the previous step,
at most �log n� disjoint subtrees are located,
storing points that have y-coordinate in the
range [yq,∞).

c) For each subtree in Step 2, apply the half-
plane range query algorithm presented in sub-
section 2.3 in order to retrieve the points that
lie on the side of line Lq towards the triangle.

The correctness of the above algorithm follows from
the data structure used. Since we have to visit
O(log n) subtrees in each of the two first layers
and the third layer requires O(logn

loglogn +A) time, the

overall query time becomes O(log3n
loglogn + A) while

the space complexity is O(n log2 n).
2) Second Solution: A two layered tree: The first

layer is a linear space Persistent Modified Priority
Search Tree. The second layer organizes each of
the O(log2 n) subsets of PL(u) and L(u) with the
modified structure of [5] presented in subsection 2.3
which returns a set of nodes v whose points lie
inside the triangle. Then, it organizes each of the
O(n2) subsets of S(v) with the same structure (see
figure 6).
More specifically, we find in O(1) time the leaf
u of the search path Pb for b. Each leaf u stores
two y-ordered Persistent lists PL(u) and L(u), both
of size O(log n). The total number of subsets,
which can be produced by taking all the possible y-
ordered permutations amongst the y-coordinates of
PL(u) and L(u), is O(log n), since each list PL(u)
or L(u) consumes O(log n) space in worst-case.
Each subset has minimum size 1 and maximum
O(log n), thus their total space is 1+2+ + logn =
O(log2 n). We can access the appropriate subset of
points (according to yq - coordinate of the query)
in O(log log n) time by applying a simple binary
searching. Then we apply in the subset above a half
plane range query (according to query line L q) in
order to find the nodes v whose points lie inside the
triangle. For each such node v we organize its sec-
ondary list S(v) again as the modified structure of
Chazelle presented in subsection 2.3. The total num-
ber of subsets, which can be produced by taking all
the possible y-ordered permutations amongst the y-
coordinates of S(v), is O(n), since each secondary
list S(v) consumes O(n) space in worst-case. Each

subset has minimum size 1 and maximum O(n),
thus their total space is 1+2++n = O(n2). We can
access the appropriate subset of points (according to
yq - coordinate of the query) in O(logn

loglogn) time by
using the fusion tree method [11]. Then we apply in
the subset above a half plane range query (according
to query line Lq). As a consequence the overall
query time becomes O(logn/loglogn+ A) and the
space consumption is O(n2).

xq

v1

vk

vi

u1

uk

S(u1)

S(uk)

ui

Pxq

Lxq

S(uz)

S(uz(g))

g O(n)

S(uz(n))

Pxq
r O(logn)

i

Pxq(logn)

Pxq(r)

Lxq
s

O(logn)

Lxq(s)

Lxq(logn)

Pxq(r) Lxq(s)

S(uz(g))

HP(Pxq(r))

HP(Lxq(s))

HP(S(uz(g)))

Fig. 6. The second solution. The lists P, L, S and its respective Half
Plane (HP) structures

B. The Results

Every canonical k-vertex polygon can be decomposed
into O(k) orthogonal triangles because of the strict sym-
metry in the topology of the vertices. In Figure 7 such a
decomposition is depicted.

Fig. 7. Orthogonal triangle decomposition of a canonical octagon

• Solution 1: Querying the 3-layered data struc-
ture O(k) times, the O(n log2 n) space and
O(klog3n/loglogn + A) time follows.

• Solution 2: Querying the two layered data
structure O(k) times, the O(n2) space and
O(klogn/loglogn + A) time follows.

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 917

© 2009 ACADEMY PUBLISHER

IV. SOME THOUGHTS ON THE GENERAL POLYGON

RETRIEVAL PROBLEM

A. The Algorithm of Paterson and Yao

This section sketches the basic ideas of the algorithm
for polygon retrieval on points that Paterson and Yao [13]
have presented.

This problem is to preprocess a set S of n points on
the plane, so that for any query polygon P the subset
of them lying inside it can be reported efficiently. We
assume that the given polygon is convex with k vertices. If
not, (P is non-convex) then a suitable decomposition into
convex parts can be carried out and the algorithm can be
applied to every such part. The key-idea of Paterson/Yao’s
algorithm is a further decomposition of every convex part
into O(k) simpler parts called quads. They solve the
problem for each such quad separately, using the well-
known geometric transformation of duality.

To set up the data structure, Paterson/Yao first sort the
n points according to their polar angles at the origin and
then store the ordered sequence in a leaf-oriented bal-
anced binary search tree of depth O(log n). This structure
answers the query: ”determine the points having polar
angle in the range [a1, a2] by traversing the two paths to
the leaves corresponding to a1, a2. The points stored as
leaves at the subtrees of the nodes which lie between the
two paths are exactly these points in the range [a1, a2]. For
each subtree, the points stored at its leaves are organized
further to a second level data structure as follows: by the
duality correspondence, these points are mapped to a set
of straight lines, and a point location structure is built
for this planar subdivision [8]. Using this data structure
a query of the form: ”Report the points lying in a double
wedge” is reduced to a query to the dual structure of the
form: ”report the lines that intersect a query line segment.”

At this point, we are ready to give a step by step
description of the polygon retrieval algorithm of Paterson
and Yao:

1) Let P be the k-vertex convex query polygon. Sepa-
rate P into simpler regions called quads by cutting
the plane into sectors. The sectors are obtained by
drawing semi-infinite lines from the origin to each
vertex of P . Each quad has a particularly simple
form (it is the intersection of a sector and a double
wedge). (see Figure 8)

P

O
Origin

sectorQuad

O
Origin

sector

Fig. 8. An example of Sectors and Quads

Every k-gon is the disjoint union of O(k) such
quads.

2) Using the two-level data structure do the following
for each quad with bounding rays �1, �2:

• Determine the (at most) 2 �logn� disjoint sub-
trees that descend from the two search paths
to the angles of �1, �2 and lie between them.
All the points between �1 and �2 are stored as
leaves in these subtrees.

• for each such subtree in turn report the points
inside the double wedge determining the quad
using the dual point location structure.

The space used is O(n2) because of the point location
structure and the query time is O(k log n + A) (there
exist O(k) quads and the time spent for every ”quad-
retrieval” is O(log2 n + Ai) which can be improved
using the fractional cascading technique [4] on the point
location structures). It is worthwile to note that the above
algorithm works even when P is unbounded. If P is
non-convex, then the preliminary decomposition step into
convex parts does not change the asymptotic space and
time bounds.

Unfortunately, the O(n2) space bound is the best pos-
sible if we directly use the dual point location structures.
This means that in order to reduce the space requirements
of the later algorithm, we have to find an algorithm
supporting ”quad retrieval” without using the duality
on arbitrary sets of O(n) points which lies to O(n2)
space subdivisions. The next section demonstrates such
an algorithm working efficiently when P is a canonical
k-vertex polygon.

B. An Extended Approach

In this section we present an extended approach for the
general polygon retrieval problem. The proposed solution
is based on the algorithm of Paterson/Yao for answering
”quad retrieval” queries, which was described in the
previous section. The key-idea is the reduction of a quad
retrieval query to a constant O(1) number of orthogonal
triangles retrieval queries. This is achieved by drawing
parallel lines (vertical or horizontal) from the vertices
of the quad so that the lines stay inside the quad and
intersect the rays from the origin. To do this, a suitable
decomposition of each quad is needed. In the general case
of an arbitrary (non canonical) k-vertex polygon, such
a decomposition is not always possible. For example,
the quad in Figure 9(a) can be decomposed into O(1)
orthogonal triangles while the quad in Figure 9(b) cannot
be decomposed.

O O
(a) (b)

Not part of
the quadVertical and horizontal

supporting lines

Fig. 9. An example of Quad Decomposition

This of course depends on various geometric character-
istics of the quad. If the polygon is k-vertex canonical, we

918 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

can always directly carried out a decomposition into O(k)
orthogonal triangles because of the strict symmetry in
the topology of the vertices. Arbitrary k-vertex polygons
satisfy such a decomposition only in special cases.

V. CONCLUSIONS

In this work we presented efficient algorithms for the
problem of canonical polygon retrieval queries on the
plane. One deficiency or our algorithms is that they
are static. It seems very interesting the dynamization
of presented algorithms. Furthermore, it still remains
an open problem whether an O(n logO(1) n) space and
O(logO(1) n + A) time algorithm exists for the general
problem of arbitrary polygon retrieval queries. Finally,
it would be of great importance the incorporation of
the proposed algorithms in meandric polygons [19], a
specific kind of planar polygons with many applications
in bioinformatics. The latter constitutes a real case study
in bioinformatics, which we plan to implement in the near
future.

REFERENCES

[1] Chan T.M., Point Location in o(log n) Time, Voronoi
Diagrams in o(n log n) Time, and Other Transdichotomous
Results in Computational Geometry, 47

th IEEE FOCS
2006, pp. 333-344.

[2] Chazelle B., Optimal algorithms for computing depths
and layers, Brown University, Technical Report, CS-83-13,
March 1983.

[3] Chazelle B., Dobkin D., Decomposing a polygon into
its convex parts, Proc. 11

th ACM Symp. on Theory on
Comp.,1979, pp.38-45.

[4] Chazelle B.,Guibas L., Fractional Cascading: a data struc-
turing technique with Geometric Applications, 12

th ICALP
1985, pp. 90-100.

[5] Chazelle B.,Guibas L., Lee D.L., The power of Geometric
Duality,Proc. of 24

th IEEE Annual Symposium on Foun-
dations of Computer Science, 1983, pp.217-225.

[6] Cole R., Yap C., Geometric Retrieval Problems, Proc. 24
th

IEEE Annual Symposium on Foundations of Computer
Science 1983, pp. 112-121.

[7] J. R. Driscoll, N. Sarnak, D. D. Sleator, R. E. Tarjan,
Making data structures persistent, J. Comp. Syst. Sci. 38
(1989) pp. 86-124.

[8] Edelsbruner H., Guibas L.,Stolfi J., Optimal point location
in a monotone subdivision, Technical Report 2, DEC sys-
tems Research Center, 1984.

[9] Edelsbruner H., Kirkpatrick D., Maurer H., Polygonal
Intersection Searching, Information Processing Letters, 14,
1982, pp. 74-79.

[10] Edelsbruner H., Welzl E., Halfplanar range search in
linear space and O(n0.695

) query time, Inform. Proc.
Letters 23, 1986, pp. 289-293.

[11] M.L. Fredman and D.E. Willard. Surpassing the informa-
tion theoretic bound with fusion trees. . Comput. Syst. Sci.,
47:424-436, 1993. Announced at STOC ’90.

[12] O. Fries, K. Mehlhorn, S. Naher and A. Tsakalidis, A
loglogn data structure for three sided range queries, Inform.
Process. Lett. 25 (1987), pp. 269-273.

[13] Paterson M.S., Yao F.F., Point Retrieval for Polygons,
journal of Algorithms, 1986, pp.441-447.

[14] Welzl E. Partition trees for counting and other range
searching problems, Proc. 4th ACM Symp. on Computa-
tional Geometry, 1988, pp. 23-33.

[15] Willard D., Polygon Rertieval, SIAM J. Computing,
14,1982,pp. 149-165.

[16] E. M. McCreight, Priority search trees, SIAM J. Comput.
14 (1985), pp. 257-276.

[17] H. Overmars, Efficient data structures for range searching
on a grid, J. Algorithms 9 (1988), pp. 254-275.

[18] M. Patrascu, Planar Point Location in Sublogarithmic Time, 47th

IEEE FOCS 2006, pp. 325 - 332.
[19] A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Com-

binatoria (to appear).
[20] H. Samet, The Design and Analysis of Spatial Data Structures,

Addison-Wesley, Reading, MA, 1990, pp 80-83. ISBN 0-201-
50255-0.

[21] S. Sioutas, Ch. Makris, N. Kitsios, G. Lagogiannis, J. Tsaknakis,
K. Tsichlas, B. Vassiliadis: ”Geometric Retrieval for Grid Points in
the RAM model”, Journal of Universal Computer Science, Volume
10, no.9(2004), pp 1325-1353, Springer Co. Pub.

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 919

© 2009 ACADEMY PUBLISHER

