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Abstract

Objects like road networks, CAD/CAM components, elec-
trical or electronic circuits, molecules, can be represented
as graphs, in many modern applications. In this paper, we
propose an efficient and effective graph manipulation tech-
nique that can be used in graph-based similarity search.
Given a query graphGq(V;E), we would like to determine
fast which are the graphs in the database that are similar
toGq(V;E), with respect to a similarity measure. First, we
study the similarity measure between two graphs. Then, we
discuss graph representation techniques by means of multi-
dimensional vectors. It is shown that no false dismissals are
introduced by using the vector representation. Finally we il-
lustrate some representative queries that can be handled by
our approach, and present experimental results, based on
the proposed graph similarity algorithm. The results show
that considerable savings are obtained with respect to com-
putational effort and I/O operations, in comparison to con-
ventional searching techniques.

1 Introduction

Many modern applications handle objects that can be rep-
resented as graphs. Transportation applications need to ma-
nipulate road networks, CAD/CAM applications require the
organization of electrical or electronic components, pat-
tern recognition and computer vision applications require
the classification of an unknown object, chemistry and
molecular biology applications require the manipulation of
molecules. In the aforementioned applications, as well as in
much more, the objects are structural in nature and therefore
can be considered as graphs. A graphG(V;E) is composed
of a setV of vertices or nodes and a setE of edges or lines.
An edge connects two vertices. An example is illustrated in
Figure 1.
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Figure 1. (a) Road network, (b) The graph rep-
resentation.

In graph databases, two similarity search operations can
be applied: whole-graph search, and sub-graph search. In
the former, given a query graphGq(V;E) we require all
similar graphs, assuming that each graph is an atomic object
in the database. On the other hand, in sub-graph searching,
given a query graphGq(V;E) we are interested also in iden-
tifying graphs that have sub-graphs similar toGq(V;E). In
this paper, we focus on whole-graph search, since it is sim-
pler than sub-graph search, and leads to more elegant solu-
tions.

A number of graph classes have been identified and stud-
ied thoroughly in the literature [4]. Among them there are
simple graphs, pseudo-graphs(with loops), multi-graphs
(two or more edges connecting a pair of vertices),directed
graphs (the edges have an orientation),weighted graphs
(there is a weight associated with each edge). We assume
that the underlying graph database consists of a number
of simple graphs, pseudo-graphsandmulti-graphs. Each
graph may beconnectedor composed of a number ofcon-
nected components.
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The rest of the work is organized as follows: Section 2
presents related work and the motivation behind this work.
Section 3 illustrates some graph similarity concepts. In Sec-
tion 4, the vector representation of graphs is discussed and
explained in detail. Section 5 presents similarity queries and
experimental results. Finally, Section 6 concludes the paper
and motivates for further research.

2 Related Research and Motivation

The problem of similarity between structured objects has
been studied in the domain of structural pattern recognition
and pattern analysis. In [10] the graph distance measures
are grouped into two categories:

� Feature-Based Distances:a set of features is extracted
from the structural representation, and these features
are used as ann-d vector where the Euclidean distance
can be applied.

� Cost-Based Distances:the distance between two ob-
jects measures the number of modifications required
in order to transform the first object to the second.

Tsai and Fu worked on exploiting error-correcting codes
of attributed relational graphs to express similarities [11,
12], in order to perform pattern analysis and syntactic pat-
tern recognition. The concept of inexact graph matching has
been also used by Bunke and Allermann in [3] and applied
to structural pattern recognition. Sanfeliu and Fu [10] de-
fine a distance between attributed relational graphs (ARGs),
based on a descriptive graph grammar. A recent discussion
on discovering structural similarities can be found in [5].

The common characteristic of the aforementioned re-
search efforts is that the emphasis is given in how fast the
distance of two structured objects can be determined. Al-
though this is extremely useful when the distance calcula-
tion is executed often, our viewpoint is database-oriented.
We are interested in efficient algorithms and access methods
exploitation, towards similarity search in large databases of
structural objects.

The approach followed here is general and can be applied
to every application that manipulates structural objects and
requires structure-based similarity retrieval. Our primary
objectives are:

� The extraction of representative features from the
graph objects, which have a clear meaning to the user.

� The definition of a meaningful cost-based distance be-
tween graphs (which satisfies the metric space proper-
ties) and the calculation of this distance by means of
the feature vectors.

� The study of structure-based similarity query process-
ing algorithms by means of an experimental evaluation
procedure.

The capability of searching the database by means of
similarity-based algorithms is very advantageous. From one
viewpoint, allows the retrieval of objects that are similar to a
given query object. From another viewpoint, offers flexibil-
ity in query processing, since some objects may be subject
to distortion and therefore the exact-match query is not suf-
ficient for users’ needs. Moreover, some data mining tech-
niques are based on structural similarity concepts [5]. In
conclusion, the efficient processing of structure-based sim-
ilarity queries in large databases is very important towards
satisfying the demands of modern applications.

3 Similarity Concepts

In some application domains, the concept of similarity is
intuitive. For example, two color images are similar if they
have a resemblance with respect to the color distributions,
or two persons are similar if the share some common char-
acteristics and differ in some others but not significantly.
On the other hand, two entities are the same, if we can not
distinguish between them. For example, we can not distin-
guish between two copies of the same image, or among a
collection of identical pieces of paper.

The concept of similarity or dissimilarity is expressed
by means of a distance function. IfD is a domain,dist :
D � D ! R+ is a mapping function, andx 2 D, y 2 D
are two objects, then the similarity between them can be
expressed bydist(x; y). Very often, the functiondist is a
metric, satisfying the three fundamental properties (metric
space properties), non-negativity, symmetry and triangular
inequality.

3.1 Graph Distance

Assume now that we are given two graph objectsG1 2 G
andG2 2 G, whereG is the graph domain. The problem
is to define a similarity measure, in order to distinguish be-
tween them. A similar issue is to determine if the graphs are
identical or not. In order to continue, we need to introduce
the concept ofgraph isomorphism.

Definition 1
Two graphsG1(V1; E1) 2 G andG2(V2; E2) 2 G areiso-
morphic if there is a one-to-one correspondence between
the nodes such that adjacency is preserved. More formally,
G1 andG2 are isomorphic if there is a one-to-one func-
tion � from V1 ontoV2 such thatvivj 2 E1 if and only if
�(vi)�(vj ) 2 E2.



Although graph isomorphism is a concept that helps in
graph comparison, it can be used only to determine if two
graphs are isomorphic or not. However, we would like to
have a distance functiondistG(G1; G2), G1; G2 2 G, ex-
pressing the degree of similarity betweenG1 andG2. The
similarity betweenG1 andG2 can be expressed as the min-
imum number of primitive operations (structural modifica-
tions) that need to be applied toG1, in order to be as close
toG2 as possible.

In Figure 2 three graphsG1, G2 andG3 are illustrated.
It is evident, thatG1 is “closer” toG2 than toG3. This is
because we need to add just one edge toG1 in order to get
G2, whereas we need one extra edge and one extra vertex in
order to getG3.
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Figure 2. Similarity among graphs: G1 is more
similar to G2 than G3.

The primitive operations that we propose to perform on
a graph are: vertex insertion, vertex deletion and vertex up-
date. During vertex insertion, a new vertexv is added to the
set ofV of vertices. Vertex deletion signals the removal of
a vertex from the setV of vertices. Finally, vertex update
is the operation performed on a vertexv in order to insert
(remove) an incident edge to (from)v. Using these prim-
itive operations on the graphs of Figure 2, two primitive
operations are required onG1 to be matched withG2 (two
vertex updates), whereas we need three operations onG1

to be matched withG3 (one vertex insertion and two vertex
updates). Therefore, under this similarity framework, we
conclude thatG1 is more similar toG2 than toG3.

3.2 Distance Calculation

The problem arising is how can we calculate the value
distG(G1; G2), which expresses the similarity between the
two graph objectsG1, G2. In this respect, we introduce the
concept ofgraph histogram. Given a graphG(V;E), its
histogram is constructed by calculating the degree of each
vertex of the graph. Then, each vertex corresponds to a dif-
ferent histogram bin. If we sort the histogram bins in de-
creasing order, we obtain thesorted graph histogram. Also,
we increment the histogram values by one (this will be jus-
tified later).

Lemma 1
Given a graphG(V;E) and a vertexv 2 V with deg(v) =
0, the corresponding graph histogram bin has a value of 1.

Lemma 2
Given two graphsG1 2 G andG2 2 G with histo(G1)
andhisto(G2) two graph histograms, thenL1(histo(G1),
histo(G2)) gives the number of primitive operations (not
necessarily the minimum) required to transformG1 in order
to have the same order, size and degree sequence withG2.
More formally:

L1(histo(G1); histo(G2)) � distG(G1; G2) (1)

Lemma 2 suggests that determining the number of primitive
operations that need to be applied toG1 in order to have the
same order, size and degree sequence withG2, corresponds
to the Manhattan distance of two arbitrary graph histograms
of G1 andG2. However, this does not guarantee that the
number of primitive operations is the minimum.

Theorem 1
Given two graphsG1 2 G andG2 2 G with histos(G1)
andhistos(G2) the corresponding sorted graph histograms,
thenL1(histos(G1); histos(G2)) gives the minimum num-
ber of primitive operations required to transformG1, in or-
der to have the same order, size and degree sequence with
G2. More formally:

L1(histos(G1); histos(G2)) = distG(G1; G2) (2)

4 The Vector Representation of Graphs

If the size of the database is relatively small, then sequen-
tial search can be applied directly to the sorted graph his-
tograms in order to determine similar objects. However,
this technique causes performance degradation for large or
very large databases. Therefore, additional auxiliary mech-
anisms need to be exploited. In this respect, the focus is
to apply efficient indexing techniques towards fast similar-
ity search in large graph databases. One possible solution
is to use the sorted histograms to build a multi-dimensional
index structure. Although the tools are available, there are
two main disadvantages with this approach:

1. The order of the graphs is not constant. This means
that very small graphs (5-10 vertices) as well as
larger graphs (100-200 vertices) may be stored in the
database. This causes a major problem in selecting the
dimensionality of the index.

2. By selecting a sufficiently large dimensionality (e.g.
256 dimensions) thedimensionality curseis intro-
duced, deteriorating the performance of similarity
search [6].



In order to overcome the aforementioned difficulties, we
propose to apply a transformation to the histograms and
map each graph object to a vector, with reduced dimension-
ality. The maximum number of vertices is assumed to be
known. Henceforth, we assume that a graph can have at
mostv vertices. Therefore, each graph can be considered
as a vector in thev-d space. As stated previously, our goal
is to reduce this dimensionality, in order to provide efficient
query processing techniques.

Let SH1 = (x1; x2; :::xv) andSH2 = (y1; y2; :::; yv)
be two sorted graph histograms. If a graph has less thanv

vertices, then zeros are padded to the end of the correspond-
ing sorted histogram. As the following theorem states, if we
combine neighboring histogram bins together, the distance
is lower-bounded.

Theorem 2
If SH1 andSH2 are two sorted histograms withn bins
each, andf is a positive integer number, such thatn is di-
visible byf , then the following holds:

L1(SH1; SH2) � L1(V1; V2) (3)

where:

V1 =

0
@

fX
j=1

xj ;

2fX
j=f+1

xj ; :::;

nX
j=n�f

xj

1
A

V2 =

0
@

fX
j=1

yj ;

2fX
j=f+1

yj ; :::;

nX
j=n�f

yj

1
A

Theorem 2 guarantees that during search in the feature
space, there will be no false dismissals, and therefore no an-
swer will be missed. However, false alarms are introduced
which can be eliminated during the refinement step.

5 Performance Evaluation

After the transformation process from the histogram space
to the feature space is completed, a multidimensional access
method (e.g. R-tree) can be exploited in order to speed-
up searching. The motivation behind the exploitation of an
access method lies in the queries we like to perform against
the underlying data. We focus on the following queries, that
are characterized asgraph similarity queries:

� Range Query: given a query graphGq(Vq ; Eq) and
a tolerance� � 0, we ask for all graph objects
Gx(Vx; Ex) in the database such that the distance from
Gq toGx is less than or equal to�.

� Nearest-Neighbor Query: given a query graph
Gq(Vq ; Eq) and an integerk, we ask for thek graph
objectsGx(Vx; Ex) which are closer toGq than the
other database objects.

� Isomorphic Query: given a query graphGq(Vq ; Eq)
we ask for all graphs in the database which are iso-
morphic toGq .

We illustrate experimental results for the similarity range
query only, due to lack of available space, and study the per-
formance of similarity range queries with different parame-
ter values. The results presented are average values of 100
queries, and each point query is selected from the database.
The database is composed of 50000 random graphs. Each
graph has between 10 and 256 vertices, and between 50 and
2000 edges. The disk page size is set to 4KBytes and the
disk cluster size is set to 4 pages.

We assume that an R�-tree [1] is used to index the de-
rived graph vectors. Other access methods could be used as
well (e.g. X-tree [2]).
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Figure 3 illustrates the number of disk accesses vs. the

value of the distance�. We observe that by increasing the
dimensionality of the histograms, more disk accesses are
introduced. Using 1-D histograms, is more efficient than
using 16-D histograms. This was anticipated, because more
space is needed by the index, and more dead space is in-
troduced increasing the number of disk accesses. Figure
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4 shows the number of candidate objects retrieved during
processing. For 1-D histograms we obtain a large num-
ber of candidates, whereas using 16-D histograms the num-
ber of candidates is considerably smaller. These candidates
are the objects that satisfy the query, plus the false drops
that are introduced. By increasing the number of dimen-
sions, the number of objects is decreasing because there are
less false drops. Figure 5 depicts the total elapsed time for
similarity range queries, for dimensions 1 to 16. The cost
of sequential search is also included. We observe that for
small query ranges (� < 16), using 1-D histograms is suffi-
cient. However, as the� value increases, more dimensions
are needed in order to guarantee efficiency. Using 2-D or
4-D histograms we obtain satisfactory results, for a realistic
range of� values. Recall that for very large values of� the
concept of similarity is degenerated, since many of the out-
put graphs may not be so similar with respect to the input
graph. The reason is that the� value represents the number
of structural modifications that need to be applied.

6 Concluding Remarks
In this paper, we studied similarity query processing in
structural databases, where a large collection of graph ob-
jects is manipulated. The results of the experiment series
have shown that the improvement in the search is con-
siderable, in comparison to the sequential search of the
database. Moreover, the similarity measures defined have
a clear meaning to the user and therefore can be used for
similarity search introducing only false alarms and never
false dismissals. Future research may include: (a) the con-
sideration of other graph classes, like weighted, directed
and attributed relational graphs, (b) the investigation of sub-
graph similarity searching, which is a very challenging and
interesting problem for large databases, and (c) he appli-
cation and support of user-defined transformation mecha-

nisms, where for example an edge insertion may be consid-
ered more costly than a vertex insertion.

References
[1] N. Beckmann, H.P. Kriegel and B. Seeger: “The R�-

tree: an Efficient and Robust Method for Points and
Rectangles”,Proceedings of the 1990 ACM SIGMOD
Conference, pp.322-331, Atlantic City, NJ, 1990.

[2] S. Berchtold, D. Keim and H.-P. Kriegel: “The X-tree:
An Index Structure for High-Dimensional Data”,Pro-
ceedings of the 22nd VLDB Conference, Bombay, In-
dia, 1996.

[3] H. Bunke and G. Allermann: “Inexact Graph Match-
ing for Structural Pattern Recognition”,Pattern
Recognition Letters, vol.1, no.4, pp.245-253, 1983.

[4] G. Chartrand and O. Oellermann:“Applied and Algo-
rithmic Graph Theory”, McGraw-Hill, 1993.

[5] S. Djoko, D.J. Cook and L.B. Holder: “An Empiri-
cal Study of Domain Knowledge and its Benefits to
Structural Discovery”,IEEE Transactions on Knowl-
edge and Data Engineering, vol.9, no.4, July/August,
1997.

[6] C. Faloutsos:“Searching Multimedia Databases by
Content”, Kluwer Academic Publishers, 1997

[7] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q.
Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D.
Petkovic, D. Steele and P. Yanker: “Query by Image
and Video Content: the QBIC System”,IEEE Com-
puter, vol.28, no.9, pp.23-32, September 1995.

[8] A. Guttman: “R-trees: a Dynamic Index Structure
for Spatial Searching”,Proceedings of the 1984 ACM
SIGMOD Conference, pp.47-57, Boston, MA, 1984.

[9] N. Roussopoulos, S. Kelley and F. Vincent: “Near-
est Neighbor Queries”,Proceedings of the 1995 ACM
SIGMOD Conference, pp.71-79, San Jose, CA, 1995.

[10] A. Sanfeliu and K.-S. Fu: “A Distance Measure be-
tween Attributed Relational Graphs for Pattern Recog-
nition”, IEEE Transactions on Systems, Man and Cy-
bernetics, vol.13, pp.353-362, 1983.

[11] W.H. Tsai and K.-S. Fu: “Error-Correcting Isomor-
phism of Attributed Relational Graphs for Pattern
Analysis”, IEEE Transactions on Systems, Man and
Cybernetics, vol.9, pp.757-768, 1979.

[12] W.H. Tsai and K.-S. Fu: “Subgraph Error-Correcting
Isomorphism for Syntactic Pattern Recognition”,
IEEE Transactions on Systems, Man and Cybernetics,
vol.13, pp.48-62, 1983.


