
Overlapping quadtrees for
the representation of similar

images

M Vassilak~p~ul~s~ Y ~an~i~p~u~os and K Economou

Overlapping has been proposed for several tree struc-
tures. The adaptation of this technique to region quad-
trees, along with the necessary algorithms, are presented.
The resulting str~ture is a form of a partial persistent
quadtree and can be used to represent sequences of
similar binary raster images emerging in various appiica-
tions such as computer graphics, image processing,
geographic information systems, or even satellite pic-
tures. Our motive is to save considerable space, while
access time of any of the similar images remains
unaffected. Experimentation on random image forms
exhibits very promising results in the space reduction
achieved.

Keywords: Quadtrees, overlapping data structures,
representation of images

The idea of using the same memory region for different
purposes to keep space requirements as low as possible
is fundamental in the design of efficient algorithms.
Overlapping in trees (and generally in linked struc-
tures) is a further refinement, where a node is a
member of more than one structure: consider a
sequence of tree structures representing a gradually
changing data set (each tree corresponds to an instance
of the set). If we discover common substructures
between each tree and its predecessor in the sequence,
then we may keep these substructures only once in
memory even though they belong to paths of both
trees In case there are no such substructures we have
two completely isolated trees. If the two data set
instances are identical, so are the trees (the two
pointers to the roots of the trees remain distinct,
although they point to the same node). The saving of
space through common substructures may involve more
than two consecutive trees, A substructure may be

Division of Electronics and Computer Engineering, Department of
Electrical Engineering, Aristotelian University of Thessaloniki,
Thessaloniki 54006, Greece

Paper received: 13 May 1992: revised paper received: 28 October 1992

pointed to by the next tree, the tree after next and so
forth, resuhing in high space requirement reduction.

It should be clear that this sharing of substructures is
transparent to the algorithms accessing each tree. This
means that the access time of any node has no time
overhead because of overlapping. One might argue that
another technique might reduce space requirements
even more. However, overlapping succeeds in giving
substantial a reduction while keeping access time
unaffected.

Mullin’ suggested using two B-trees, the first storing
the initial information and remaining unmodified,
while the second is used for storing changes. Extending
the above idea, overlapping tree substructures have
been proposed”, as an organization for storing similar
text files used by an editing system. The technique has
been adapted in B-trees’, where the necessary algor-
ithms for the manipulation of the overlapped B-trees
are presented, as the basis for the representation of a
collection of similar files. Moreover, it has been
adapted to B + trees4 to efficiently store temporal data.
In the latter work experimentation and analysis of over-
lapped B+ trees, concerning extra space during
updates, was done. Use of common substructures in
quadtrees has been proposed5 as one of the advantages
that functional. languages (and especially Miranda)
provide over procedural languages for graphics
programmers.

The structure of the paper is as follows, In the
foollowing section we present the structure of quadtrees
and introduce the technique of overlapping. The next
section gives the necessary Pascal-type definitions and
the function performing quadtree overlapping. In the
‘experimentation’ section the results of a simulation on
binary random images are reported. The discussion
summarizes our conclusions on the achieved space
reduction.

OVERLAPPING QUADTREES

There are numerous versions of quadtrees structures
applied in various instances”. The region quadtree is a

vol II no 5 june 1993
~)262-g856/93/~502~7-~6 IQ 1993 ~utterworth-Heinemann Ltd

257

hierarchical data structure that represents binary raster
images with 2” x 2” pixels, for some integer it. Such a
quadtree is a degree four tree of height 6rr. Each node
corresponds to a square array of pixels. If all of them
have the same colour (black or white), the node is a leaf
of that colour. Otherwise, the square array is divided in
four quadrants (square subarrays), the node is grey and
has four children, one for each quadrant, that are
labelled rrzw (northwest), ne (northeast), SW (south-
west), and se (southeast).

We present this intuitive definition in more formal
terms:

Definition Consider the numbers n, k, x, y E N, such that
k s n and x, y < 2”, where x, y are proportional to 2k.
Consider also the binary array ZIO . . , 2” - 1, 0 . . .
2”-11. As Q,<Z, x, Y, k) we denote the tree that
r_erresents the subarray Z[x . . . x + 2k - 1, y . . . y+

- 11 and consists of

one external node, called a black (white) node, if
every element of its subarray equals 1 (0), or
otherwise of
one root node, called a grey node, and its 4 children,
the trees
-Qe,V, x, y, k- 11,
-Qe,(Z, _~+2~-‘, y, k-l),
--&,(I, X, ~+2~-‘, k-l) and
-Q,(Z, ,~+2~-‘, ~+2~-‘, k-l)

The quadtreefor Z is the tree Q,(Z, 0, 0, n).

The similarity of consecutive image data in many
applications such as computer graphics, image proces-
sing, geographic information systems (GIS) of satellite
pictures, along with the large amount of space needed
for representing each image, even by using the popular
space saving quadtrees, make an excellent candidate
for overlapping. For a good treatment of the above and

b

Figure 1. (a), (b) two similar 8 x 8 images; (c), (d)
corresponding quadtrees; (e) the overlapped stucture

related issues, see Samet7*s. Note that some of these
applications involve colour images. The technique
presented can be easily transformed to handle colours.

Consider the similar images of Figures la and b and
the respective quadtrees of Figures lc and d. If
overlapping is applied the resulting structure appears in
Figure le. Note that when there is a different substruc-
ture (which might even be a different pixel for a certain
pair of coordinates), the total path to this substructure
is stored. This guarantees that the access time for any
tree node remains unaffected.

As has already been mentioned, overlapping may be
extended to a sequence of similar images. We will be
calling this sequence of overlapped quadtrees an over-
lapped family. There, each tree is overlapped with the
previous one in the sequence. Under the assumption
that consecutive images of this sequence differ slightly
to each other, we get high space reduction. Note that
there may be overlapped structures that are shared
among a large number of consecutive trees.

Recall that a persistent data structure is one that
retains its past versions. (A new version is created
every time a group of changes is applied to the
structure.) There is access ability for any of these
versions. Update ability is limited to the latest version if
we have partial persistence, or exists for all versions, if
we have full persistence. This idea, along with general
techniques, has been studied by Driscoll et aL9. We
may view an overlapped family of quadtrees, along
with the quadtree of the latest image not yet inserted in
the family, a5 a form of a persistent quadtree, where
there is access to any older version of the tree and
update ability to its latest version. When a new tree (a
new version) appears, this latest version is inserted in
the family and may no longer be updated. The
difference between this form of persistence and that
described by Driscoll et aZ9 is that at the expense of
some space overhead the access times remain
unaffected. The family method could be characterized
as partial persistence with time benefit.

ALGORITHM

In this section an algorithm that performs overlapping
of the latest quadtree of an overlapped family and a
quadtree representing the latest image instance is
described. A similar algorithm that performs map
overlaying is described by Burton et al. lo.

The type of the quadtree node is defined as a self-
referenced Pascal record in Figure 2. Each quadtree
node has a field which contains the number of pointers
currently referencing the node. All nodes with a
reference counter greater than 1, together with all

QUADTREE = - QUADREC;
DIR = (nw,ne,sw,se);
COL = (GREY,BLACK,WHITE);
CHILDREN = array [DIR] of QUADTREE;
QUADREC = record

colour: COL;

end;

ch: CHILDREN;
ref: integer;

Figure 2. Quadtree node definition

258 image and vision computing

descendants of such nodes, constitute shared informa-
tion. This counter enables us to perform deletion of a
particular quadtree from the overlapped family. We
dispose of the node only if it has a zero reference
counter. Note that this data structure seems inefficient,
since each leaf (black or white node) would have four
unused (nil) pointers and a reference counter. It is used
here for the sake of simplicity. A minor improvement
would be to have only one universal black leaf and one
universal white leaf. Every node pointing to black or
white leaves would point to the respective universal
node. Of course, the universal leaves should never be
deleted. Using this improvement, the space overhead
induced will only be two leaf nodes. Even more
efficient and sophisticated variants are possible,
according to the possibilities offered by the program-
ming language used.

We assume that the transformation of the latest
raster image to the respective quadtree has already
been done. Nevertheless, we must note that an algor-
ithm could be devised that would accept a quadtree and
a raster image as input, and produce the overlapped

function OverlapQuadtree (var a,b:
QUADTREE):Boolean;

begin
if (a”.colour <> GREY) and
(b-.colour < > GREY) then
(* if a ̂ and b * are leaves l)
begin

if a^.colour= b^.colour then
(* and of the same co/our *)
begin

Dispose(b);
b :=a;
a^.ref :=a^.ref+l;
OverlapQuadtree : = true

end
else

OverlapQuadtree : = false;
end
else

if ((a- .colour = b^ .colour) and
(b^.colour = GREY)) then
(* if both are not /eaves *)
begin

if (OverlapQuadtree(a* .ch[nw], b” .ch[nw])
and
OverlapQuadtree(a ^ .ch[ne], b^ .ch[ne])
and
OverlapQuadtree(a ^ .ch[sw], b^ .ch[sw])
and
OverlapQuadtree(a^ .ch[se], b^ .ch[se]))
then
begin

Dispose(b);
b :=a;
a^.ref := a^.ref+l;
OverlapQuadtree : = true;

end
else

OverlapQuadtree : = false;
end
else

OverlapQuadtree : = false;
end;

Figure 3. Routine that performs overlapping

vol I I no 5 june 1993

structure as output (without creating an intermediate
quadtree for the raster image).

The routine that performs overlapping of two con-
secutive quadtrees is given in Figure 3. It is called with
two node-pointers as parameters, one to each tree. If
both the referenced nodes are leaves of the same
colour, the second one is disposed (its pointer then
points to the first node) and the function returns a true
value. If both the referenced nodes are grey, the
function recursively calls itself. The call takes place
once for every corresponding child pair of the two grey
nodes. If all the four return-values are true, the second
node is disposed and its pointer is changed to point to
the first node. Note also that if the one tree has a leaf
node in a position where the other tree has a grey node,
no further descending in the latter tree is performed.
This means that the algorithm executes in time which is
asymptotically bounded upwards by the minimum
number of nodes between the number of nodes each
tree has.

EXPERIMENTATION

We denote a class-k image to be a square array of size
2k x 2k. This image is said to be x% black if it has been
created by an algorithm that sets each pixel to black
with probability x/100, and to white with probability
1 -x/100. Figures 4a-c demonstrate three class-4
images, which are SO%, 25% and 6% black, respec-
tively. Moreover, we denote a class-k image B (for
some integer k) to be y% different to a class-k image A
if B has been created by an algorithm that takes as
input image A and produces image B by flipping A’s
pixel values with probability y/100 and by copying A’s
pixel values with probability 1 -y/100. The new image,
as can be easily seen, is x+y -2xy% black and l-
x-y + 2xy% white. Figure S demonstrates a sequence
of 9 class-3 images where each one is 10% different to
its predecessor (the starting image is 25% black). Note
that the resulting images tend to reach SO% black. Such
a sequence of images might, for example, model an
expanding colony of bacteria. Suppose we are given a
sequence of n overlapped quadtrees (n is a large
positive integer). We define the overlapping percen-
tage, Ov%, as the rate:

I;?==2 number of overlapped nodes of tree i and tree i - 1

X,:=, number of all nodes of tree i (overlapped or not)

The denominator contains the number of nodes of the
first tree in the sequence. Although we cannot talk
about space reduction for this tree (it is not overlapped,
since there is not a previous tree in the sequence), the
overlapping percentage converges to the space reduc-

Eim

a b C

Figure 4. Class-4 images with (a) 50%, (b) 25%, (c) 6%
black

259

Figure 5. Nine class-3 images differing from each other
by 10%. The first one is 25% black

tion percentage, for a large enough n (then, the number
of nodes of the first tree is not important).

We performed two experiments. The first concerned
random images of the same class and black percentage
that we created statistically independent to each other.
Each test was performed 100 times for a family of n =
100 random trees. Every overlapping percentage is the
mean value of the 100 executions. We performed tests
for the classes 2, 3, 4, 5 and 6, and the black
percentages 5% to 50% in steps of 5%. We neglected
the rest black percentages because the results are
expected to be identical to the results of their com-
plementary percentages (e.g. black 60% would be
identical to black 40%).

The aim of this experiment was to investigate the
connection of the overlapping percentage to different
black-white analogies of statistically independent
images. The results of this experiment appear in Table
1 and Figure 6. It is evident that space reduction gets
higher for black-white analogies closer to half-by-half.
For every class, we reach the maximum overlapping
percentage value when black percentage equals 50%.
However, it should be noted that we get close to this
maximum for images within black range 50 + 15 %.

OverlapplnQ %
35 I

30

25

20

15

10

5

0

50 45 40 35 30 25 20 15 10 5

Black %

I Level 2 Km Level 3 0 Level 4 Lew3 5 m,e”el 6

Figure 6. Histogram created from the first experiment

The second experiment concerned class-3, class-5
and class-6 images that are different to each other by 1,
2, 3, 5, 7, 10, 15 and 20%. Each class-3 and class-5 test
was performed 100 times for a family of n = 100
random trees, while each class-6 test was performed 10
times for a family of n = 100 random trees. The class-6
repetitions were fewer because of the extra processing
time required. We performed tests for images that were
10, 20, 30,40 and 50% black. The aim of this test is to
investigate the space reduction in a realistic environ-
ment of quadtrees overlapping. The results of this
experiment appear in Tables 2,3 and 4 and in Figure 7
and 8 (we do not present a bar chart for class-6 images
since this would be alike the one for class-5 images). It
seems that the overlapping percentage is linearly
related to the image difference percentage and that it is
independent of the black-white analogy.

Note that in both experiments performed the result-
ing space savings do not change significantly as the class
of the images gets higher. This is because overlapping
takes place mainly between small image parts (small
subtrees), even when our images are very large. We
claim that even for higher classes space reduction
would be at similar rates.

DISCUSSION AND CONCLUSION

We have seen that overlapping, when applied to
quadtrees that represent a gradually changing image,
produces high space reduction while retaining the
access times of any image instance unaffected. The
whole technique is based on a rather simple and
computationally efficient recursive algorithm.

The experimentation performed justifies use of

Table 1. Results of the first
experiment Black

percentage

50
45
40
35
30
25
20
15
10
5

(Class = 2)

32.30
32.11
31.58
30.67
28.94
26.16
24.37
22.54
20.33
16.13

Overlapping percentage

(Class = 3) (Class = 4) (Class = 5) (Class = 6)

32.52 32.23 31.49 31.77
32.28 32.12 31.30 31.05
31.56 31.57 30.81 31.00
30.40 30.69 29.80 28.85
29.04 29.49 28.92 29.01
27.14 27.70 26.98 26.73
25.25 26.06 24.77 25.10
22.89 23.74 23.14 23.05
20.06 20.92 19.86 19.30
16.43 16.56 15.99 16.22

260 image and vision computing

Table 2. Results of the second experiment where class = 3

Difference

percentage

1
2
3
5
7

10
15
20

(Black = 50%) (Black = 40%)

95.84 95.76
93.07 93.07
90.52 90.44
86.01 86.11
82.08 82.13
76.73 76.72
68.89 68.81
60.08 62.18

Overlapping percentage

(Black = 30%) (Black = 20%)

95.74 95.67
93.04 92.77
90.40 90.41
86.12 86.12
82.21 81.84
76.62 76.50
69.35 68.92
62.32 61.85

(Black = 10%)

95.50
92.70
90.25
85.97
81.79
76.72
68.60
62.15

Table 3. Results of the second experiment where class = 5

Difference Overlapping percentage

percentage (Black = 50%) (Black = 40%) (Black = 30%) (Black = 20%)

1 91.54 91.48 91.27 90.70
2 88.84 88.80 88.53 87.91
3 86.49 86.39 86.09 85.54
5 82.22 82.19 81.92 81.47
7 78.44 78.39 78.20 77.79

10 73.30 73.26 73.08 72.79
15 65.85 65.79 65.80 65.43
20 59.40 59.31 59.20 59.06

(Black = loo/,)

89.71
86.82
84.68
80.86
77.30
72.43
65.29
58.79

Table 4. Results of the second experiment where class = 6

Difference Overlapping percentage

percentage (Black = 50%) (Black = 40%) (Black = 30%) (Black = 2OYb)

I 90.74 91.17 91.44 90.27
2 89.12 88.33 87.95 88.00
3 86.09 85.88 86.26 86.10
; 82.20 79.00 82.09 78.03 78.02 81.60 77.97 81.14

I 0 74.02 73.24 73.32 72.27
15 65.35 65.91 66.08 66.00
20 59.46 59.01 59.02 58.57

(Black = 10%)

90.06
86.43
85.34
77.20 79.89

73.22
65.01
59.21

OverlaPP~nQ %
Ini?.

60

40

20

n
v

50 40 30 20 10

Black %

= dlff 1% kttt8 dill 2% 0 dill 3% dtlf 5%

p?J d,,, 7% 0 dlff 10% dlff 15% dtff 20%

Figure 7. Histogram created from the second experiment
(class = 3)

50 40 30 20 10

Black %

= d,ff ld tm d,lf 2% dIlf 3% dtff 5%

m d,,, 7% 0 d,ff 10% dI'f 15% UIUIU dIif 20%

Figure 8. Histogram created from the second experiment
(class = 5)

overlapping quadtrees to a broad scope of applications,
where a sequence of very similar image data has to be
stored and processed. Our experimental conclusion is
twofold:

ratio, is higher when the two colours are almost
equiprobable and is over 30%

l space reduction of consecutive independent random
images, each one having a constant black-white

space reduction of consecutive gradually changing
images depends linearly on the difference percen-
tage. More specifically, when this ratio lies in the
range O-10%, this reduction is as high as 80-90%.

vol II no 5 june 1993 261

Overlapping %
100,

Another useful technique for storing gradually
changing class-n images would be to temporarily store a
sequence of 2” such images in raster form, creating a
2” x 2” x 2” pixel cube, and then to build a region
octree (the extension of the region quadtree in space),
such that one of its three dimensions would be used to
discriminate between different images (i.e. one of its
three axes would be a time axis).

This method is expected to achieve singnificant
compression. Besides, the whole structure is build once
for all the represented images, while the technique of
overlapping builds a separate quadtree and performs
the overlapping algorithm once for every image.

Nevertheless, there are a number of points against
the octree method. First, this method works for exactly
2” images. For a large enough it, even under substantial
compression, it is not possible to keep the whole tree in
main memory. Besides, there must be enough main
memory to hold the 2” raster images before the tree is
built, or complicated operations and time consuming
disc accesses must be used. Moreover, single images
can not be added or deleted to the sequence, and last
but not least, the quadtree access algorithms can not be
applied unchanged; then, we cannot guarantee that the
access times remain unaffected.

We believe that further experimentation on over-
lapping quadtrees, concerning a gradually changing
contour (found in applications such as animation),
might prove at least as promising. This is because we
would then deal with large unicolour regions which are
slightly shifted. Although the contour would change
significantly, most of the unicolour quadrant blocks
would remain unchanged. An analysis of the storage
efficiency of overlapping, quadtrees is presented by
Vassilakopoulos et al. . ’ Besides, by extendin

B methods presented by Burton et al. ‘* and Faloutsos’ ,
further analytical insight to the method could be
achieved.

ACKNOWLEDGEMENTS

The first author, who is a postgraduate scholar
of the State Scholarship Foundation of Greece,
wishes to thank this foundation for its financial
assistance.

1

2

3

4

5

6

7

8

9

10

11

12

13

Mullin, J K ‘Change area B-trees: a technique to
aid error recovery’, Computer J., Vol 24 No 4
(1981) pp 367-373
Burton, F W, Huntbach, M M and Kollias, J G
‘Multiple generation text files using overlapping
tree structures’, Computer J., Vol 28 No 4 (1985)
pp 414-416
Burton, F W, Kollias, J G, Kollias, V G and
Matsakis, D G ‘Implementation of overlapping
B-trees for time and space efficient representation
of collections of similar files’, Computer J., Vol
33 No 3 (1990) pp 279-280
Manolopoulos, Y and Kapetanakis, G ‘Over-
lapping B+ trees for temporal data’, Proc. 5th
JUT Conf., Jerusalem, Israel (1990) pp 491-498
Burton, F W and Kollias, J G ‘Functional program-
ming with Quadtrees’, IEEE Softw., Vol 6 No 1
(1989) pp 90-97
Samet, H ‘The Quadtree and related hierarchical
data structures’, A CM Comput. Surv., Vol 16 No 2
(1984) pp 187-260
Samet, H The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA (1990)
Samet, H Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS,
Addison-Wesley, Reading, MA (1990)
Driscoll, J R, Sarnak, N, Sleator, D D and Tarjan,
R E ‘Making Data structures persistent’, J.
Comput. Syst. Sci., Vol 38 No 1 (1989) pp 86-124
Burton, F W, Kollias, J G and Kollias, V G ‘A
general PASCAL program for map overlay of
Quadtrees and related problems’, Computer J.,
Vol 30 No 4 (1987) pp 355-361
Vassilakopoulos, M and Manolopoulos, Y
‘Efficiency analysis of overlapped Quadtrees’,
submitted to CVGZP: Image Understanding
Burton, F W, Kollias, J G and Kollias, V G
‘Expected and worst-case requirements for Quad-
y-;T’;3’att. Recogn. Lett., Vol 3 No 2 (1985) pp

Faloutsos, C ‘Analytical result on the Quadtree
decomposition of arbitrary rectangles’, Putt.
Recogn. Lett., Vol 13 No 1 (1992) pp 31-40

262 image and vision computing

