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Overlapping has been proposed for several tree struc- 
tures. The adaptation of this technique to region quad- 
trees, along with the necessary algorithms, are presented. 
The resulting str~ture is a form of a partial persistent 
quadtree and can be used to represent sequences of 
similar binary raster images emerging in various appiica- 
tions such as computer graphics, image processing, 
geographic information systems, or even satellite pic- 
tures. Our motive is to save considerable space, while 
access time of any of the similar images remains 
unaffected. Experimentation on random image forms 
exhibits very promising results in the space reduction 
achieved. 
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The idea of using the same memory region for different 
purposes to keep space requirements as low as possible 
is fundamental in the design of efficient algorithms. 
Overlapping in trees (and generally in linked struc- 
tures) is a further refinement, where a node is a 
member of more than one structure: consider a 
sequence of tree structures representing a gradually 
changing data set (each tree corresponds to an instance 
of the set). If we discover common substructures 
between each tree and its predecessor in the sequence, 
then we may keep these substructures only once in 
memory even though they belong to paths of both 
trees In case there are no such substructures we have 
two completely isolated trees. If the two data set 
instances are identical, so are the trees (the two 
pointers to the roots of the trees remain distinct, 
although they point to the same node). The saving of 
space through common substructures may involve more 
than two consecutive trees, A substructure may be 
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pointed to by the next tree, the tree after next and so 
forth, resuhing in high space requirement reduction. 

It should be clear that this sharing of substructures is 
transparent to the algorithms accessing each tree. This 
means that the access time of any node has no time 
overhead because of overlapping. One might argue that 
another technique might reduce space requirements 
even more. However, overlapping succeeds in giving 
substantial a reduction while keeping access time 
unaffected. 

Mullin’ suggested using two B-trees, the first storing 
the initial information and remaining unmodified, 
while the second is used for storing changes. Extending 
the above idea, overlapping tree substructures have 
been proposed”, as an organization for storing similar 
text files used by an editing system. The technique has 
been adapted in B-trees’, where the necessary algor- 
ithms for the manipulation of the overlapped B-trees 
are presented, as the basis for the representation of a 
collection of similar files. Moreover, it has been 
adapted to B + trees4 to efficiently store temporal data. 
In the latter work experimentation and analysis of over- 
lapped B+ trees, concerning extra space during 
updates, was done. Use of common substructures in 
quadtrees has been proposed5 as one of the advantages 
that functional. languages (and especially Miranda) 
provide over procedural languages for graphics 
programmers. 

The structure of the paper is as follows, In the 
foollowing section we present the structure of quadtrees 
and introduce the technique of overlapping. The next 
section gives the necessary Pascal-type definitions and 
the function performing quadtree overlapping. In the 
‘experimentation’ section the results of a simulation on 
binary random images are reported. The discussion 
summarizes our conclusions on the achieved space 
reduction. 

OVERLAPPING QUADTREES 

There are numerous versions of quadtrees structures 
applied in various instances”. The region quadtree is a 
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hierarchical data structure that represents binary raster 
images with 2” x 2” pixels, for some integer it. Such a 
quadtree is a degree four tree of height 6rr. Each node 
corresponds to a square array of pixels. If all of them 
have the same colour (black or white), the node is a leaf 
of that colour. Otherwise, the square array is divided in 
four quadrants (square subarrays), the node is grey and 
has four children, one for each quadrant, that are 
labelled rrzw (northwest), ne (northeast), SW (south- 
west), and se (southeast). 

We present this intuitive definition in more formal 
terms: 

Definition Consider the numbers n, k, x, y E N, such that 
k s n and x, y < 2”, where x, y are proportional to 2k. 
Consider also the binary array ZIO . . , 2” - 1, 0 . . . 
2”-11. As Q,<Z, x, Y, k) we denote the tree that 
r_erresents the subarray Z[x . . . x + 2k - 1, y . . . y+ 

- 11 and consists of 

one external node, called a black (white) node, if 
every element of its subarray equals 1 (0), or 
otherwise of 
one root node, called a grey node, and its 4 children, 
the trees 
-Qe,V, x, y, k- 11, 
-Qe,(Z, _~+2~-‘, y, k-l), 
--&,(I, X, ~+2~-‘, k-l) and 
-Q,(Z, ,~+2~-‘, ~+2~-‘, k-l) 

The quadtreefor Z is the tree Q,(Z, 0, 0, n). 

The similarity of consecutive image data in many 
applications such as computer graphics, image proces- 
sing, geographic information systems (GIS) of satellite 
pictures, along with the large amount of space needed 
for representing each image, even by using the popular 
space saving quadtrees, make an excellent candidate 
for overlapping. For a good treatment of the above and 

b 

Figure 1. (a), (b) two similar 8 x 8 images; (c), (d) 
corresponding quadtrees; (e) the overlapped stucture 

related issues, see Samet7*s. Note that some of these 
applications involve colour images. The technique 
presented can be easily transformed to handle colours. 

Consider the similar images of Figures la and b and 
the respective quadtrees of Figures lc and d. If 
overlapping is applied the resulting structure appears in 
Figure le. Note that when there is a different substruc- 
ture (which might even be a different pixel for a certain 
pair of coordinates), the total path to this substructure 
is stored. This guarantees that the access time for any 
tree node remains unaffected. 

As has already been mentioned, overlapping may be 
extended to a sequence of similar images. We will be 
calling this sequence of overlapped quadtrees an over- 
lapped family. There, each tree is overlapped with the 
previous one in the sequence. Under the assumption 
that consecutive images of this sequence differ slightly 
to each other, we get high space reduction. Note that 
there may be overlapped structures that are shared 
among a large number of consecutive trees. 

Recall that a persistent data structure is one that 
retains its past versions. (A new version is created 
every time a group of changes is applied to the 
structure.) There is access ability for any of these 
versions. Update ability is limited to the latest version if 
we have partial persistence, or exists for all versions, if 
we have full persistence. This idea, along with general 
techniques, has been studied by Driscoll et aL9. We 
may view an overlapped family of quadtrees, along 
with the quadtree of the latest image not yet inserted in 
the family, a5 a form of a persistent quadtree, where 
there is access to any older version of the tree and 
update ability to its latest version. When a new tree (a 
new version) appears, this latest version is inserted in 
the family and may no longer be updated. The 
difference between this form of persistence and that 
described by Driscoll et aZ9 is that at the expense of 
some space overhead the access times remain 
unaffected. The family method could be characterized 
as partial persistence with time benefit. 

ALGORITHM 

In this section an algorithm that performs overlapping 
of the latest quadtree of an overlapped family and a 
quadtree representing the latest image instance is 
described. A similar algorithm that performs map 
overlaying is described by Burton et al. lo. 

The type of the quadtree node is defined as a self- 
referenced Pascal record in Figure 2. Each quadtree 
node has a field which contains the number of pointers 
currently referencing the node. All nodes with a 
reference counter greater than 1, together with all 

QUADTREE = - QUADREC; 
DIR = (nw,ne,sw,se); 
COL = (GREY,BLACK,WHITE); 
CHILDREN = array [DIR] of QUADTREE; 
QUADREC = record 

colour: COL; 

end; 

ch: CHILDREN; 
ref: integer; 

Figure 2. Quadtree node definition 
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descendants of such nodes, constitute shared informa- 
tion. This counter enables us to perform deletion of a 
particular quadtree from the overlapped family. We 
dispose of the node only if it has a zero reference 
counter. Note that this data structure seems inefficient, 
since each leaf (black or white node) would have four 
unused (nil) pointers and a reference counter. It is used 
here for the sake of simplicity. A minor improvement 
would be to have only one universal black leaf and one 
universal white leaf. Every node pointing to black or 
white leaves would point to the respective universal 
node. Of course, the universal leaves should never be 
deleted. Using this improvement, the space overhead 
induced will only be two leaf nodes. Even more 
efficient and sophisticated variants are possible, 
according to the possibilities offered by the program- 
ming language used. 

We assume that the transformation of the latest 
raster image to the respective quadtree has already 
been done. Nevertheless, we must note that an algor- 
ithm could be devised that would accept a quadtree and 
a raster image as input, and produce the overlapped 

function OverlapQuadtree (var a,b: 
QUADTREE):Boolean; 

begin 
if (a”.colour <> GREY) and 
(b-.colour < > GREY) then 
(* if a ̂  and b * are leaves l ) 
begin 

if a^.colour= b^.colour then 
(* and of the same co/our *) 
begin 

Dispose(b); 
b :=a; 
a^.ref :=a^.ref+l; 
OverlapQuadtree : = true 

end 
else 

OverlapQuadtree : = false; 
end 
else 

if ((a- .colour = b^ .colour) and 
(b^.colour = GREY)) then 
(* if both are not /eaves *) 
begin 

if (OverlapQuadtree(a* .ch[nw], b” .ch[nw]) 
and 
OverlapQuadtree(a ^ .ch[ne], b^ .ch[ne]) 
and 
OverlapQuadtree(a ^ .ch[sw], b^ .ch[sw]) 
and 
OverlapQuadtree(a^ .ch[se], b^ .ch[se])) 
then 
begin 

Dispose(b); 
b :=a; 
a^.ref := a^.ref+l; 
OverlapQuadtree : = true; 

end 
else 

OverlapQuadtree : = false; 
end 
else 

OverlapQuadtree : = false; 
end; 

Figure 3. Routine that performs overlapping 
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structure as output (without creating an intermediate 
quadtree for the raster image). 

The routine that performs overlapping of two con- 
secutive quadtrees is given in Figure 3. It is called with 
two node-pointers as parameters, one to each tree. If 
both the referenced nodes are leaves of the same 
colour, the second one is disposed (its pointer then 
points to the first node) and the function returns a true 
value. If both the referenced nodes are grey, the 
function recursively calls itself. The call takes place 
once for every corresponding child pair of the two grey 
nodes. If all the four return-values are true, the second 
node is disposed and its pointer is changed to point to 
the first node. Note also that if the one tree has a leaf 
node in a position where the other tree has a grey node, 
no further descending in the latter tree is performed. 
This means that the algorithm executes in time which is 
asymptotically bounded upwards by the minimum 
number of nodes between the number of nodes each 
tree has. 

EXPERIMENTATION 

We denote a class-k image to be a square array of size 
2k x 2k. This image is said to be x% black if it has been 
created by an algorithm that sets each pixel to black 
with probability x/100, and to white with probability 
1 -x/100. Figures 4a-c demonstrate three class-4 
images, which are SO%, 25% and 6% black, respec- 
tively. Moreover, we denote a class-k image B (for 
some integer k) to be y% different to a class-k image A 
if B has been created by an algorithm that takes as 
input image A and produces image B by flipping A’s 
pixel values with probability y/100 and by copying A’s 
pixel values with probability 1 -y/100. The new image, 
as can be easily seen, is x+y -2xy% black and l- 
x-y + 2xy% white. Figure S demonstrates a sequence 
of 9 class-3 images where each one is 10% different to 
its predecessor (the starting image is 25% black). Note 
that the resulting images tend to reach SO% black. Such 
a sequence of images might, for example, model an 
expanding colony of bacteria. Suppose we are given a 
sequence of n overlapped quadtrees (n is a large 
positive integer). We define the overlapping percen- 
tage, Ov%, as the rate: 

I;?==2 number of overlapped nodes of tree i and tree i - 1 

X,:=, number of all nodes of tree i (overlapped or not) 

The denominator contains the number of nodes of the 
first tree in the sequence. Although we cannot talk 
about space reduction for this tree (it is not overlapped, 
since there is not a previous tree in the sequence), the 
overlapping percentage converges to the space reduc- 

Eim 

a b C 

Figure 4. Class-4 images with (a) 50%, (b) 25%, (c) 6% 
black 
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Figure 5. Nine class-3 images differing from each other 
by 10%. The first one is 25% black 

tion percentage, for a large enough n (then, the number 
of nodes of the first tree is not important). 

We performed two experiments. The first concerned 
random images of the same class and black percentage 
that we created statistically independent to each other. 
Each test was performed 100 times for a family of n = 
100 random trees. Every overlapping percentage is the 
mean value of the 100 executions. We performed tests 
for the classes 2, 3, 4, 5 and 6, and the black 
percentages 5% to 50% in steps of 5%. We neglected 
the rest black percentages because the results are 
expected to be identical to the results of their com- 
plementary percentages (e.g. black 60% would be 
identical to black 40%). 

The aim of this experiment was to investigate the 
connection of the overlapping percentage to different 
black-white analogies of statistically independent 
images. The results of this experiment appear in Table 
1 and Figure 6. It is evident that space reduction gets 
higher for black-white analogies closer to half-by-half. 
For every class, we reach the maximum overlapping 
percentage value when black percentage equals 50%. 
However, it should be noted that we get close to this 
maximum for images within black range 50 + 15 %. 

OverlapplnQ % 
35 I 

30 

25 

20 

15 

10 

5 

0 

50 45 40 35 30 25 20 15 10 5 

Black % 

I Level 2 Km Level 3 0 Level 4 Lew3 5 m,e”el 6 

Figure 6. Histogram created from the first experiment 

The second experiment concerned class-3, class-5 
and class-6 images that are different to each other by 1, 
2, 3, 5, 7, 10, 15 and 20%. Each class-3 and class-5 test 
was performed 100 times for a family of n = 100 
random trees, while each class-6 test was performed 10 
times for a family of n = 100 random trees. The class-6 
repetitions were fewer because of the extra processing 
time required. We performed tests for images that were 
10, 20, 30,40 and 50% black. The aim of this test is to 
investigate the space reduction in a realistic environ- 
ment of quadtrees overlapping. The results of this 
experiment appear in Tables 2,3 and 4 and in Figure 7 
and 8 (we do not present a bar chart for class-6 images 
since this would be alike the one for class-5 images). It 
seems that the overlapping percentage is linearly 
related to the image difference percentage and that it is 
independent of the black-white analogy. 

Note that in both experiments performed the result- 
ing space savings do not change significantly as the class 
of the images gets higher. This is because overlapping 
takes place mainly between small image parts (small 
subtrees), even when our images are very large. We 
claim that even for higher classes space reduction 
would be at similar rates. 

DISCUSSION AND CONCLUSION 

We have seen that overlapping, when applied to 
quadtrees that represent a gradually changing image, 
produces high space reduction while retaining the 
access times of any image instance unaffected. The 
whole technique is based on a rather simple and 
computationally efficient recursive algorithm. 

The experimentation performed justifies use of 

Table 1. Results of the first 
experiment Black 

percentage 

50 
45 
40 
35 
30 
25 
20 
15 
10 
5 

(Class = 2) 

32.30 
32.11 
31.58 
30.67 
28.94 
26.16 
24.37 
22.54 
20.33 
16.13 

Overlapping percentage 

(Class = 3) (Class = 4) (Class = 5) (Class = 6) 

32.52 32.23 31.49 31.77 
32.28 32.12 31.30 31.05 
31.56 31.57 30.81 31.00 
30.40 30.69 29.80 28.85 
29.04 29.49 28.92 29.01 
27.14 27.70 26.98 26.73 
25.25 26.06 24.77 25.10 
22.89 23.74 23.14 23.05 
20.06 20.92 19.86 19.30 
16.43 16.56 15.99 16.22 
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Table 2. Results of the second experiment where class = 3 

Difference 

percentage 

1 
2 
3 
5 
7 

10 
15 
20 

(Black = 50%) (Black = 40%) 

95.84 95.76 
93.07 93.07 
90.52 90.44 
86.01 86.11 
82.08 82.13 
76.73 76.72 
68.89 68.81 
60.08 62.18 

Overlapping percentage 

(Black = 30%) (Black = 20%) 

95.74 95.67 
93.04 92.77 
90.40 90.41 
86.12 86.12 
82.21 81.84 
76.62 76.50 
69.35 68.92 
62.32 61.85 

(Black = 10%) 

95.50 
92.70 
90.25 
85.97 
81.79 
76.72 
68.60 
62.15 

Table 3. Results of the second experiment where class = 5 

Difference Overlapping percentage 

percentage (Black = 50%) (Black = 40%) (Black = 30%) (Black = 20%) 

1 91.54 91.48 91.27 90.70 
2 88.84 88.80 88.53 87.91 
3 86.49 86.39 86.09 85.54 
5 82.22 82.19 81.92 81.47 
7 78.44 78.39 78.20 77.79 

10 73.30 73.26 73.08 72.79 
15 65.85 65.79 65.80 65.43 
20 59.40 59.31 59.20 59.06 

(Black = loo/,) 

89.71 
86.82 
84.68 
80.86 
77.30 
72.43 
65.29 
58.79 

Table 4. Results of the second experiment where class = 6 

Difference Overlapping percentage 

percentage (Black = 50%) (Black = 40%) (Black = 30%) (Black = 2OYb) 

I 90.74 91.17 91.44 90.27 
2 89.12 88.33 87.95 88.00 
3 86.09 85.88 86.26 86.10 
; 82.20 79.00 82.09 78.03 78.02 81.60 77.97 81.14 

I 0 74.02 73.24 73.32 72.27 
15 65.35 65.91 66.08 66.00 
20 59.46 59.01 59.02 58.57 

(Black = 10%) 

90.06 
86.43 
85.34 
77.20 79.89 

73.22 
65.01 
59.21 

OverlaPP~nQ % 
Ini?. 
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Black % 

= dlff 1% kttt8 dill 2% 0 dill 3% dtlf 5% 

p?J d,,, 7% 0 dlff 10% dlff 15% dtff 20% 

Figure 7. Histogram created from the second experiment 
(class = 3) 

50 40 30 20 10 

Black % 

= d,ff ld tm d,lf 2% dIlf 3% dtff 5% 

m d,,, 7% 0 d,ff 10% dI'f 15% UIUIU dIif 20% 

Figure 8. Histogram created from the second experiment 
(class = 5) 

overlapping quadtrees to a broad scope of applications, 
where a sequence of very similar image data has to be 
stored and processed. Our experimental conclusion is 
twofold: 

ratio, is higher when the two colours are almost 
equiprobable and is over 30% 

l space reduction of consecutive independent random 
images, each one having a constant black-white 

space reduction of consecutive gradually changing 
images depends linearly on the difference percen- 
tage. More specifically, when this ratio lies in the 
range O-10%, this reduction is as high as 80-90%. 
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Another useful technique for storing gradually 
changing class-n images would be to temporarily store a 
sequence of 2” such images in raster form, creating a 
2” x 2” x 2” pixel cube, and then to build a region 
octree (the extension of the region quadtree in space), 
such that one of its three dimensions would be used to 
discriminate between different images (i.e. one of its 
three axes would be a time axis). 

This method is expected to achieve singnificant 
compression. Besides, the whole structure is build once 
for all the represented images, while the technique of 
overlapping builds a separate quadtree and performs 
the overlapping algorithm once for every image. 

Nevertheless, there are a number of points against 
the octree method. First, this method works for exactly 
2” images. For a large enough it, even under substantial 
compression, it is not possible to keep the whole tree in 
main memory. Besides, there must be enough main 
memory to hold the 2” raster images before the tree is 
built, or complicated operations and time consuming 
disc accesses must be used. Moreover, single images 
can not be added or deleted to the sequence, and last 
but not least, the quadtree access algorithms can not be 
applied unchanged; then, we cannot guarantee that the 
access times remain unaffected. 

We believe that further experimentation on over- 
lapping quadtrees, concerning a gradually changing 
contour (found in applications such as animation), 
might prove at least as promising. This is because we 
would then deal with large unicolour regions which are 
slightly shifted. Although the contour would change 
significantly, most of the unicolour quadrant blocks 
would remain unchanged. An analysis of the storage 
efficiency of overlapping, quadtrees is presented by 
Vassilakopoulos et al. . ’ Besides, by extendin 

B methods presented by Burton et al. ‘* and Faloutsos’ , 
further analytical insight to the method could be 
achieved. 
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