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Abstract— An increasing number of observations support
the hypothesis that the vast majority of biological functions
involve interactions between proteins and that the complexity
of living systems arises as a result of such interactions. In this
paper we apply a multiway spectral clustering technique to
protein-protein interaction networks to perform accurate link
prediction between proteins. We provide experimental evidence
about the accuracy and the performance of the proposed
method in real datasets, compared to other known algorithms
such as k-means and RWR.

I. INTRODUCTION

Inspired from the recent surge of research on large, com-
plex networks and their properties, a considerable amount of
attention has been devoted to the computational analysis of
protein networks - structures whose nodes represent proteins
and whose edges represent interaction, or influence between
them. Interactions between proteins are important for nu-
merous - if not all - biological functions. Given a natural
example from the area of biology, signals from the exterior
of a cell are mediated to the inside of that cell by protein-
protein interactions of the signaling molecules. This process,
called signal transduction, plays a fundamental role in many
biological processes and in many diseases (e.g. cancers).

Understanding the mechanisms by which protein-protein
interactions work and evolve, is very important for decoding
every process in a living cell. This fundamental question, that
is still not clearly understood, forms the motivation for our
work in this paper. We study a basic computational problem
underlying protein networks, the link prediction problem.
Given a part of a protein network we seek to accurately
predict the rest of the network’s edges, by performing
multiway spectral clustering analysis, a technique that uses
information obtained from the top few eigenvectors and
eigenvalues of the normalized laplacian matrix. We compare
our method to approaches which are based on local features
of a network, such as FOAF [1], to global approaches,
such as RWR [2] and we also compare our method with
traditional clustering algorithms, such as k-means [3]. As will
be shown in the experimental section our proposed method
outperforms, having many fine properties that make it more
suitable for protein-protein interaction networks.

The contributions of our approach are summarized as
follows:
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• We provide more accurate predictions, as far as in-
teractions between proteins are concerned, than other
previously well-known algorithms such as k-means.

• Our approach, by performing dimensionality reduction
of the normalized laplacian matrix, results to a smaller
and more compact graph matrix than the original one,
as will be shown experimentally. Thus, our method
succeeds higher efficiency than the global approaches.

• We define two node similarity measures that exploit lo-
cal and global characteristics of a network. In particular,
we calculate the similarity between nodes that belong
in the same cluster and similarity between nodes that
belong in different clusters.

• Using a real human protein data set we perform exten-
sive experimental comparison of the proposed method
against existing link prediction algorithms and k-means
clustering algorithm.

The ultimate goal in our work is to use multiway spec-
tral clustering analysis to discover new information from a
protein-protein interaction network and to suggest new roles
for already known proteins.

The rest of the paper is organized as follows. Section
2 summarizes previous related work in this area. The next
section provides some preliminaries in graphs. The proposed
method is presented in section 4, while experiments and
results follow on to the next section. Finally, this paper
concludes in section 6.

II. RELATED WORK

Protein-protein interactions (PPIs) are the most intensely
analyzed networks in biology and there are a multitude of
biochemical and biophysical methods to detect them [4], [5].
But since molecular biology techniques are quite expensive
and costly and very often time-consuming, it is by far
preferable to apply graph theory techniques to study such
kind of problems.

This section presents previous related work about spectral
clustering techniques and about other algorithms that have
been used in the past to extract information from graphs that
represent protein networks.

There are two main categories of spectral clustering algo-
rithms based on the number of eigenvectors they use. The
first category [6] uses a matrix of affinities between nodes
in order to cluster these nodes based on the second smallest
eigenvector of the Laplacian matrix. Then, recursively uses
the second smallest eigenvector to further partition these
clusters. The second category, which is more similar to
our approach, directly computes a myltiway partition of the



data [7], [8]. In particular, it selects the largest k eigenvectors
and their corresponding eigenvalues. Then, it extracts the
clusters by finding the approximate equal elements in the
selected eigenvectors using any clustering algorithm e.g. k-
means.

Authors in [9] use sequence data to apply spectral clus-
tering techniques. They prove that their algorithm offers
competitive performance on the clustering of biological
sequence data. Authors in [10] also present a simple and
unified derivation of the spectral algorithms and they apply
it to microarray datasets. They illustrate the performance
of spectral algorithms by providing numerous experimental
results.

Stelzl et al. [11] also studied a human protein-protein in-
teraction network and they developed a tool for the identifica-
tion of PPIs, which can be used to detect interactions across
the entire proteome of an organism. Another tool, named
Local Protein Community Finder has also been developed
from the authors in [12]. This tool finds a community close
to a queried protein in any network specified by the user.

Generally, a variety of computational methods have been
investigated so far for the protein network inference prob-
lem [13] , [14]. Authors in [15] present a local path index to
estimate the likelihood of the existence of a link between two
nodes. Authors in [16] introduce a method based on a variant
of kernel canonical correlation analysis to predict the protein
network of a yeast. Other methods try to predict protein
interactions from evolutionary similarities [17], while others
combine different sources of data to infer the network [18].

In contrast to the above methods we develop a multiway
spectral clustering technique that focuses only on predictions
based on the link structure of a protein network and we
compare it to other well-known approaches which are based
on local features of a network, such as FOAF [1], to global
approaches, such as RWR [2] and also with traditional
clustering algorithms, such as k-means [3]. These algorithms
are described in the related experimental section.

III. PRELIMINARIES IN GRAPHS

A graph G = (V,E) is a set of vertices V and a set of
edges E. Vertices represent proteins and edges represent
interactions between proteins. In this paper, G will always
be an undirected and unweighed graph as shown in Figure 1.

The adjacency matrix A of an undirected graph G is a
square matrix with rows and columns labelled by graph
vertices. For undirected graphs, the adjacency matrix is
always symmetric. An element in the adjacency matrix has
value equal to 1 in position (vi,v j) if proteins vi and v j are
interacting with each other and 0 otherwise. For instance,
the element (v1,v2) of the adjacency matrix A derived from
the graph depicted in Figure 1 will have value 1, while the
element (v1,v6) will have value 0. Note that all elements
along the principal diagonal of A are zeros, indicating that a
node is not connected to its self.

The spectral algorithms are based on eigenvectors of
Laplacians, which are a combination of the adjacency and
the degree matrix. The normalized laplacian matrix of graph

G is computed by Equation L = I - D− 1
2 × (D - A) × D− 1

2 ,
where D and I is the degree and the identity matrix of graph
G, respectively. The normalized laplacian matrix L is positive
semi-definite and has n non-negative real-valued eigenvalues
0 = λ1 ≤ . . . ≤ λn. Moreover, the number of 0 eigenvalues
equals the number of the connected components in a graph.

Fig. 1. An example of undirected and unweighed graph.

IV. THE PROPOSED METHOD

Our proposed clustering approach, computes similarities
between nodes in an undirected graph, that represents an
already known protein network. Our clustering algorithm
uses as input the connections of a graph G and outputs a
similarity matrix between any two nodes in G. Therefore, two
proteins can be assumed that they interact with each other,
according to their values (weights) in the similarity matrix.
For reasons of convenience, our method will be denoted as
BioSpectral for the rest of this paper.

As illustrated in Figure 1, proteins are connected in a
graph. If we have to predict an interaction between a new
protein and a protein from the already known part of the
graph, then there is no direct indication for this task in the
adjacency matrix A. However, after applying the BioSpectral
algorithm, we can get a similarity matrix between any two
nodes of graph G and recommend connections between
proteins according to their weights.

Firstly, BioSpectral computes the first k eigenvectors
u1, . . . ,uk with the corresponding λ1, . . . ,λk eigenvalues of
the normalized laplacian matrix L based on Equation L×U =
λ ×U . The U matrix has columns the eigenvectors u1, . . . ,uk
and nodes vi ∈ R, with i = 1, . . . ,n, that correspond to the i-
row of U . We compute the first k eigenvectors and the first
λ eigenvalues of the normalized laplacian matrix L.

Secondly, we cluster nodes vi with the k-means algo-
rithm into clusters C1, . . . ,Ck, based on the aforementioned
eigenvectors uk. In our graph example (Figure 1), k is
equal to 2 and thus, we divide the nodes in two clus-
ters C1 and C2, where C1 ={v1,v2,v3,v4,v9,v11} and C2 =
{v5,v6,v7,v8,v10}. The node assignment information is kept
in a matrix that will be named IDX for the rest of the
paper. Having defined the clusters we can now compute the
centroids of each cluster and then compute the distances of
each node from each cluster centroid. Let matrix D be the
one that keeps the distances of each node from the centroid
of each cluster. We will use this information in the following
step.

In the third step, BioSpectral uses Equation 1 to quantify
the similarity between nodes that belong in the same clus-



ter. Moreover, BioSpectral uses Equation 2 to quantify the
similarity between nodes that belong to different clusters.

SimSC(i, j) = 1−|min(D(i))−min(D( j))| (1)

SimDC(i, j) =
1

D(i, IDX( j))+D( j, IDX(i))
(2)

Finally, for a test protein (node) vi we rank the calculated
similarities with other proteins and recommend to it the top
ranked nodes as its possible interacting proteins.

V. EXPERIMENTS AND RESULTS

In this section, we experimentally compare our approach
with other existing link prediction and clustering algorithms.
We use the k-means [3] algorithm, already described above,
the Random Walk with Restart [2] algorithm, and the Friend
of a Friend [1] algorithm, denoted as k-means, RWR, and
FOAF, respectively.

The FOAF algorithm is based on the notion that two nodes
are more likely to form a link in the future, if they have
many common neighbors. FOAF considers only pathways
of maximum length 2 between a protein and its possible
interactors, which obviously harms accuracy prediction. The
RWR algorithm starting from a node vi chooses randomly
among the available edges to transmit to another node v j.
At each step, RWR has some probability c to return to the
node vi. Thus, the relevance score of node vi with respect to
node v j is defined as the steady-state probability rvi,v j that
the random walker will finally stay at node v j, as shown by
Equation 3:

r⃗vi = c ·A · r⃗vi +(1− c) · e⃗vi , (3)

where e⃗vi is the n · 1 starting vector with the vth
i element

equal to 1 and 0 for the other elements of the vector, and A
is the adjacency matrix of graph G.

The data set1 used in our paper contains a total of 3269
unique interactions between 1925 different human proteins.
We formed the adjacency matrix of the data set based on the
interactions and we applied the four algorithms.

We use the classic precision/recall metric as performance
measure for protein link predictions. For a test protein re-
ceiving a list of n candidate interactors (top-n list), precision
and recall are defined as follows: Precision is the ratio of the
number of relevant proteins in the top-n list to n and recall
is the ratio of the number of relevant proteins in the top-n
list to the total number of relevant proteins.

To address the topological properties of our interaction
network we calculated the distribution of the shortest path
between pairs of proteins, depicted in Figure 2, as well
as the degree distribution of the protein data set, depicted
in Figure 3. The mean shortest path length between any
two proteins of the network was found to be equal with
5.34. This means that most proteins are very closely linked,
a phenomenon that has been described as small world
property of networks [19]. Also, as shown in Figure 3 the
degree distribution of the network decreases slowly, closely

1Downloaded from
http://www.cell.com/cgi/content/full/122/6/957/DC1/

Fig. 2. Distribution of the shortest path between pairs of proteins in the
network. On average, any two proteins in the network are connected via
5.34 links.

Fig. 3. Degree distribution of the network proteins. Number of proteins
with a given link k in the network approximates a power law (P(k) ∼ kγ ,
γ=3.4)

following a power-law. On average, we found that proteins
in the network have 3.4 interaction partners. However, we
detected 982 proteins with only one partner, as well as 22
hubs-proteins with more than 30 partners.

We also studied the sensitivity analysis of BioSpectral’s
accuracy performance. As mentioned before, a required input
of BioSpectral algorithm is the number k of clusters. To
improve our predictions in terms of effectiveness, it is
important to fine-tune the k variable. As shown in Figure 4
the best precision performance is obtained when k equals
1400 clusters. In the following we keep k=1400 as the default
initial value for the BioSpectral algorithm. Figure 5 shows
the precision diagram for the human protein data set and
presents the increase in precision when a larger amount of
protein-neighbours is known. As expected, with increasing
the percentage of observed links, the precision increases too.
Thus, BioSpectral can predict more effectively new links
between proteins for larger node degree values, since in such
cases the network density is increased.

We proceed with the comparison of BioSpectral with k-
means, RWR and FOAF algorithms in terms of precision and
recall. We examine the ranked list, which is recommended
to an examinee protein, starting from the top one. In this
situation, the recall and precision vary as we increase the
number of recommended proteins. For the human protein
data set a we plot a precision versus recall curve for all four



Fig. 4. Precision performance when tuning variable k (number of clusters).

Fig. 5. Precision diagram for the data set.

algorithms, as shown in Figure 6. BioSpectral’s precision
value is equal to 0.375 when recommending the top protein,
while the respective values for k-means, RWR and FOAF
are 0.2, 0.114 and 0.06.

This experiment shows that BioSpectral and k-means are
more robust in predicting relevant proteins and the reason is
that BioSpectral and k-means, identify clusters which present
high within-cluster nodes similarity and low between-cluster
similarity. Thus, the high within-cluster node similarity cap-
tures effectively the notion of the local characteristics of a
graph, whereas the low between-cluster dissimilarity captures
effectively the notion of the global characteristics of a graph.
In contrast, RWR traverses globally the protein network,
missing to capture adequately the local characteristics of
the graph. Moreover, FOAF fails to provide accurate pre-
dictions because it exploits only length-2 paths, missing to
capture the notion of the global characteristic of a graph.
BioSpectral outperforms k-means, because it is based on the
Normalized Laplacian matrix, whereas k-means is based on
the Adjacency matrix. This means, that BioSpectral takes
into consideration also the degree of connectivity of a graph.
Moreover, BioSpectral is more flexible than k-means, in
capturing a wider range of cluster geometries and shapes.

Fig. 6. Comparison of Algorithms.

VI. CONCLUSIONS
In this paper, we introduced a framework that uses mul-

tiway spectral clustering to provide protein link predictions
in a protein-protein interaction network. We performed ex-
tensive experimental comparison of the proposed method
against existing well-known link prediction algorithms and
k-means, using a real human protein data set. We have
shown that our proposed method provides more accurate and
competitive results.

In the future, this work can be extended by examining
and comparing the current results with another more dense
protein network with different topological properties.
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