
INFORMATION SCIENCES 63,229-243 (1992) 229

Algorithms for a Hashed File with Variable-Length Records

Y. MANOLOPOULOS and N. FISTAS

Division of Electronics and Computer Engineering, Department of Electrical
Engineering, Aristotelian University of Thessaloniki, Thessaloniki, Greece, 54006

ABSTRACT

Variable-length records are very frequent in database environments. This work gives a set
of algorithms for maintaining a new model of static hashed files designed to accommodate
variable-length records. Two special techniques for variable-length records are used. First,
records are ordered by length and not by key value, e.g., the shortest (longest) records are
stored in the main (overflow) blocks. Second, at the cost of a small directory for the
overflow records stored in the main file blocks, the successful and unsuccessful searches are
faster. The directory consists of the triplet key value, record length, and pointer to the
overfiow block. In addition, this work reports a simulation of the file structure. Numerical
results show the benefits of the model. These two techniques may be applied in any primary
key file organization that uses overflow chaining, including the recent versions of dynamic
hashing.

1. INTRODUCTION

Various file organizations utilize overflow areas. Examples of such files are
the late versions of hashing [lo] as well as the traditional indexed sequential

files [9]. Insertions and deletions hit file blocks under different frequencies.
Therefore, it is almost certain that at some time after loading a number of main
blocks will demand excess overtlow space. Overflowing means that the
performance will deteriorate owing to additional required accesses. Reorgani-
zation will take place either locally and dynamically or globally and periodi-
cally as in the cases of hashed and indexed sequential files, respectively.

A basic assumption of this work is that the file records length is not
constant. Although variable-length records are very common in database
environments owing to a number of reasons such as variable-length fields,
missing attribute values, multiple values of an attribute, and compression, little
has been reported in the literature about their effect on the file performance.
We note the works of Diehr and Faaland [5], Larmore and Hirchberg [8],

OElsevier Science Publishing Co., Inc. 1992
655 Avenue of the Americas, New York, NY 10010 0020-0255/92/$5.00

230 T. MANOLOPOULOS AND N. FISTAS

McCreight [121, and Szwarcflter [131 that concern the design of algorithms for
constructing an optimal B-tree with variable size keys, not records. On the
other hand, Hakola and Heiskanen [6], Hubbard [7], Manolopoulos and
Faloutsos [1 I], Teorey and Fry [14], and Wiederhold [161 provide analytic
results on the wasted block space at the end of block due to the variability of
the records. To our knowledge, only the work of Christodoulakis [2, 31
contains some formal analysis of the effects of variable-length records in file
search performance. Recently, in [4], a new technique especially designed for
files with variable-length records is proposed. This technique may be applied
in any primary key tile scheme using an overflow area.

This work is based on the model presented and analyzed in [4]. The results
of a simulation of a static hashed file designed to accommodate variable length
records are presented. Records are ordered by length and not by key value as
in [l]. The shortest (longest) records are stored in the main (overflow) blocks.
In addition, at the cost of a small directory for the overflow records stored in
the main blocks of the file, the successful and unsuccessful search is faster.
The directory consists of the triplet key value, record length, and pointer to the
overflow block. Overflow blocks may be shared by many main blocks as
proposed in [171.

The remainder of this paper is organized as follows. In Section 2 the file
structure is explained and the searching, insertion, and deletion algorithms are
presented. In Section 3 the simulation is described, and in Section 4 the
numerical results are given. In the final section conclusive discussion shows
the benefits of the model and some directions for future research are given.

2. TECHNIQUES FOR VARIABLE-LENGTH RECORDS

Suppose that a static hashed file consists of NB main blocks. By static we
mean that this number of NB main blocks may not change with time because
of successive insertions or deletions. In these cases overflow chaining will be
used or the space utilization factor will be very low. In the beginning the file is
loaded up to a certain load factor. According to the usual scheme the records
are placed in blocks ordered in ascending (or descending) key value order [l]
or on a first-come, first-stored basis. Record lengths are assumed to be
independent of the primary key values.

The usual statistical distributions describing the way that records are
directed to the blocks are the binomial or the Poisson ones. If the load factor is
low (high) then the probability that there are overflow records is negligible
(considerable). Here, two assumptions are made. First, there is an equilibrium
between insertions and deletions and, second, the space of the deleted records
is not actually freed for later use but is flagged instead. Under these assump-

ALGORITHMS FOR A HASHED FILE 231

tions it follows that the probability of overflowing is considerable. It is
reasonable, also, to accept that the deletion probability is independent of the
record length. If these conditions are met then the statistical distribution of the
record lengths will be the same for the main or the overtlow area.

According to the scheme proposed in [4] all the records directed to a
specific block are ordered by length. The shortest (longest) records are stored
in the main (overflow) blocks. Therefore, the distribution of the record lengths
differs from the main to the overflow area. It is evident that, under the
assumption of great block size with respect to the record lengths, the main
(overflow) area will contain a larger (smaller) number of records. Under the
same assumption, variable-length records may be packed better within a block
resulting in better space utilization and reduced search cost.

In addition, a small directory is stored in the main file blocks. This
directory is an index to the overtlow records and consists of a triplet for every
overtlow record: key value, record length, and pointer to the overflow block in
which the specific record is accommodated. The length of the triplet may be
less than one order of magnitude smaller than the length of the record. Another
scheme by Tom [15] proposes the use of an index for the overtlow records
residing in main memory. This technique is suitable for small- to medium-sized
files but not for large files because in the last case this index becomes too large
to tit in main memory. In Figure 1 our main block directory technique is
illustrated.

Overflow records of a specific main block are neither connected in a chain
nor clustered in a specific overtlow block. According to our scheme several
records from different main blocks or the same main block may exist in the
same overflow block. In other words, overflow blocks are shared by a varying
number of main blocks. The number of consecutive main blocks, forming a

RECORD1 RECORD2 RECORD3 I.ECORD4 RECORD5

RECORD6 RECORD1 UNUSED DIRECTORY

/NGT. POINTER

t

I I
I I

Fig. 1. Main block records ordered by length and main block directory techniques.

232 T. MANOLOPOULOS AND N. FISTAS

main block cluster, which overflow to a specific overflow block is a parameter
of the file. A main memory structure is needed for keeping the addresses of the
current available overflow blocks of all the main block clusters. A similar
scheme, with shared overflow blocks, is employed by Yuen and Du 1171 in
variations of linear hashing for partial match retrieval. In the past, the opposite
assumption has been adopted too [9], e.g., it has been accepted that the
overflow blocks have record capacity one. In other words it has been accepted
that the probabili~ that a varying number of main blocks shares the same
overflow block is negligible. As a consequence of the last scheme a chain of
records is identical to a chain of blocks. Figure 2 depicts our overflow scheme.

In the following the algorithms performing the operations of searching,
insertion, and deletion are given. It is clear that at most one (no) additional
overflow access is paid for the successful (unsuccessful) search at the cost of
slightly more complex insertion and deletion algorithms as well as the direc-
tory space cost. However, it will be shown that this space is negligible.

SEARCHING ALGORITHM

The key record is hashed and the main block address is derived;
IF the record is stored in the main block THEN process the record
ELSE IF the key record resides in the main block directory THEN

BEGIN
read the overflow block;
process the record

END
ELSE the search is unsuccessful;

overflow
blocks

Fig. 2. Shared overflow buckets per M = 4 main blocks.

ALGORITHMS FOR A HASHED FILE 233

INSERTION ALGORITHM

The key record is hashed and the main block address is derived;
The main block records are sorted in ascending length order;
IF the longest record fits in this specific main block

THEN write the main block on disk
ELSE
BEGIN

IF there is not an overflow directory THEN
BEGIN

fetch an overflow block from the system;
store the longest record in this overflow block;
initialize the main block directory;
accommodate the triplet in the directory;
IF the directory fits in the main block THEN
BEGIN

accommodate the directory in the main block;
write the main and overflow blocks on disk

END
ELSE
BEGIN

move the next longest record of the main block
in the overflow block;

accommodate the new triplet in the directory;
accommodate the directory in the main block;
write the main and overflow blocks on disk

END
END
ELSE {there is an overflow directory}
BEGIN

read the current overflow block of the cluster;
IF the overflow block has enough space THEN
BEGIN

store the longest record in this overflow block;
accommodate the triplet in the directory;
IF the directory fits in the main block THEN
BEGIN

accommodate the directory in the main block;
write the main and overflow blocks on disk

END
ELSE {the directory does not fit}

234 T. MANOLOPOULOS AND N. FISTAS

BEGIN
move the next longest record of the main block

in the overflow block;
accommodate the new triplet in the directory;
accommodate the directory in the main block;
write the main and overflow blocks on disk

END
END

END
END;

DELETION ALGORITHM

The key record is hashed and the main block address is derived;
IF the record is not stored in the main block

AND its key is not included in the directory
THEN the search is unsuccessful

ELSE IF there is not an overtlow directory THEN
BEGIN

delete the record;
write the main block on disk

END
ELSE

BEGIN
IF the record to be deleted is an overflow one THEN
BEGIN

read the overflow block;
delete the record;
update the main block directory;
IF the size of the shortest overflow record minus

a triplet size does not fit in the main block
THEN write the main and overflow blocks on disk

ELSE
BEGIN

move the shortest overflow record in the main block;
update the main block directory;
write the main and overtlow blocks on disk

END
END

ALGORITHMS FOR A HASHED FILE 235

ELSE (the record to be deleted resides in the main block}
BEGIN

delete the record;
IF the size of the shortest overflow record minus

a triplet size does not fit in the main block
THEN write the main and overtlow blocks on disk

ELSE
BEGIN

move the shortest overflow record in the main block;
update the main block directory;
write the main and overtlow blocks on disk

END
END

END
END;

3. THE SIMULATION

Current file systems use only preformatted disks (disks with fixed block
size). Let BS be the size of either a main or an overflow block. Let, also, KS
be the size of the key, LS be the size of the record length, and PS be the size
of the pointer to the overflow block. All sizes are measured in bytes. In total,
the size of the triplet is KS + LS + PS is in the area of 12 bytes, which is
negligible when compared with the block size, which may range from 512
bytes to several Kbytes.

In the general case it may be assumed that the population of records is
divided into t classes: C,, C,, . . . , C,. Class C, contains the records with
length RL,, class C, contains the records with length RL,, . . . , class C,
contains the records with length RL,. The probability that a record is in class
Ci is PR,, i=1,2 ,..., t and it is known. The assumption of a fixed number
of classes is justified from the fact that frequently variable-length records are
the result of missing attribute values for certain attributes, or repetitions of a
certain set of attribute values several times, or mixing of more than one record
type with a common key. In environments where variable-length records are
the result of some other compression scheme and a continuous probability
distribution of record lengths is observed, the range of lengths can be subdi-
vided into subranges and a class can be identified with a subrange. Table 1
summarizes the parameters of the file.

An extensive simulation has been written in Turbo Pascal and runs on IBM

236 T. MANOLOPOULOS AND N. FISTAS

TABLE 1

List of parameters

BS
LS
KS
PS
NB
M
t

ci
RL,
PRi

Block Size in bytes
Length Size in bytes
Key Size in bytes
Pointer Size in bytes
Number of main Blocks
Number of Main blocks forming a cluster
Number of record classes
Class i (1 < 1 < t)
Record Length of class i (1 Q i Q t) in bytes
PRobability of arriving records of class i

compatibles. Key record values range from 1 to the constant maxlongint of the
programming language (2.147.483.647). The number of main blocks is NB =
1000. The main and overflow block size is 1 or 2 Kbytes. The file parameter
M is set equal to 5, 10, or 20 main blocks.

For simplicity, only two record classes are considered. The record size of
the first class is always 400 bytes; the other class contains records of length
400, 200, or 100 bytes. The arriving probability corresponding to the first
(second) class is equal to 0.9, 0.5 or 0.1 (0.1, 0.5 or 0.9).

In the beginning the file is empty. Arriving records are directed in the
appropriate main block according to the remainder by division transformation.
Sooner or later the main blocks become full. Overflow blocks are fetched from
the system and the main block directory is used. Another structure used is an
array containing the addresses of the current overtlow blocks of the clusters.
The length of this array is NB/M. The loading of the file continues up to the
point that 15,000 records will have been stored. No deletions or updates are
considered.

What we are interested in is the performance for successful and unsuccess-
ful search as well as the space occupied by the file. Measurements are taken as
follows. We stop the tile loading process eight times (the end of the simulation
is included in this number) and calculate the desired estimates. Therefore, the
curves showing the search and space cost as a function of the time constist of
eight points. For comparison, another structure similar to the proposed struc-
ture is considered, e.g., the main block directory technique is used to index the
overflow records but no attention is paid in ordering the records ascendingly
according to the record length. Intuitively it seems that this structure will result
in worse space utilization and as a consequence worse search performance.
The values depicted in the following figures are produced by running the
simulation 10 times and taking the mean values.

ALGORITHMS FOR A HASHED FILE 237

4. NUMERICAL RESULTS

In this section we present and discuss some numerical results produced by
the simulation. The main points of interest are the space utilization and the
search performance. In this respect the main block directory and order-by-
length techniques are examined.

Figures 3 and 4 show the distribution of records in the main or overflow
blocks as a function of time for some parameter values. In particular, BS = 1
Kbyte, RL, = 400 bytes, RL, = 100 bytes, PR, = PR, = 0.5. Figure 3 (4)
corresponds to the case that the records are (not) ascendingly ordered accord-
ing to their length. Evidently the linear curve represents the total number of
records in the main and overflow blocks. The curve, which after some time
stabilizes (grows linearly), represents the records of the main block (overflow
blocks). It is remarked that in Figure 3 (4) the number of records stored in the
main block is equal to the number of records in the overflow blocks at the
fourth (sixth) time instant. This remark means that the use of the order-by-length
technique achieves better space utilization. From extensive experimentation it
is concluded that ordering by ascending record lengths gives better results
when the size difference between the short and the long record is considerable,
as well as when the arriving probability of the short record is greater than the

*

-4s

total

overflow

main

0 2 4 6 8

time instants
Fig. 3. Distribution of records in the main and overflow blocks according to the order-by-
key technique as a function of time. Parameters: BS = 1 Kb, RL, = 400 b, RL, = 100 b,
PR, = PR, = 0.5.

238 T. MANOLOI’OULOS AND N. FISTAS

of revs (*lOOO)

I -+ total

0 2 4 6 E

time instants
Fig. 4. Distribution of records in the main and overflow blocks according to the order-by-
length technique as a function of time. Parameters: BS = 1 Kb, RL, = 400 b, RL, = 100 b,
PR, = PR, = 0.5.

probability of the long record. This is because the smaller the average record
length, the more records are needed to fill the main block and therefore the less
expected number of overflow blocks are fetched from the system. In addition,
it is remarked that the greater the block size, the better the record packing.

Better space utilization has as a consequence better searching performance.
Figure 5 shows the overflow access cost as a function of time in the case of
successful search for the same parameter values of Figures 3 and 4. This cost
is equal to the number of overflow records divided by the total number of
records. As expected, the cost is always smaller than one overflow access. It is
anticipated that asymptotically the curves will tend to the unity. The upper
(lower) curve represents the case in which the order-by-key (length) technique
is used. Considerable gain is achieved under the same circumstances as
explained previously. No additional overflow accesses are needed for unsuc-
cessful search.

Another parameter taken in consideration in Figures 6 and 7 is the number
of main blocks A4 pointing to the same overflow blocks. Intuitively, it is clear
that changing the value of M affects the required space both in the main and
secondary memories. First, it influences the main memory required because of
the array for keeping the addresses of the currently available overtlow blocks.
Doubling the value of A4 results in halving the length of the array and vice

ALGORITHMS FOR A HASHED FILE 239

, nr unsuccessful search probability

* length

- key

I A I I

2 4 6 8

time instants
Fig. 5. Overflow access probability (cost) as a function of time according to both the
over-by-Ien~ and order-by-key techniques. Parameters: BS = 1 Kb, RL, = 400 b, RL, =
100 b, PR, = PR2 = 0.5.

wasted space in overflow area (Mb)
, - M=20

-+- k&10

- M=5

2 4 6 a
time instants

Fig. 6. Wasted space in the overflow area as a function of time according to the
order-by-length technique. Parameters: BS = 1 Kb, Rt, = 400 b, RL, = 200 b, PR, =
PA, = 0.5, M = 5, 10, 20.

240 T. MANOLOPOULOS AND N. FISTAS

-s-

+

-

M-20

M=lO

M=5

50’ / I I I I I

1 2 3 4 5 6 7 8

trme instants
Fig. 7. Wasted space per overflow block as a function of time according to the order-by-
length technique. Parameters: BS = 1 Kb, RL, = 400 b, RL, = 200 b, PR, = PR, = 0.5,
M= 5, 10, 20.

versa. Second, it influences disk space if the wasted space is considered. For
example, in Figure 6 (7) the wasted space in the overflow area (per overflow
block) as a function of time is depicted. The parameter values are BS = 1
Kbyte, RL, = 400 bytes, RL, = 200 bytes, PR, = PR, = 0.5. The experi-
mentation has shown that, especially as time grows, the influence of the value
of M on space is slight.

Another factor under consideration is the empty wasted space left at the end
of the main block. Intuitively, the larger the size of the records (with respect to
the block size), the more will be the wasted space at the end of the main block.
Analytical results and simulation are reported in [l 11. Figure 8 depicts the
percentage of the main block size that is wasted as a function of time. The gain
of the order-by-length over the order-by-key technique is noted again. The
greater the block size, the smaller the wasted space owing to better variable-
length record packing.

Finally, in Figure 9 the parameter values are BS = 1 Kbyte, RL, = 400
bytes, RL, = 200 bytes, PR, = 0.9, and PR, = 0.1. This figure illustrates
the distribution of the total occupied space for the main blocks except the
directories, the main block directories themselves, and the overflow blocks.
With time, the main block except the directory (directory itself) space will tend
to become zero (occupy the main block space). At this time some reorganiza-

ALGORITHMS FOR A HASHED FILE 241

asted space (Mb)

-I-- length

- key

0 1 2 3 4 5 6 7 0

time instants
Fig. 8. Wasted space at the end of main block as a function of time according to both the
order-by-key and order-by-key techniques. Parameters: BS = 1 Kb, RL, = 400 b, RL, = 200
b, PR, = PR, = 0.5.

used space (Mb)
6

* directory

+ overflow

+ main

-
4

total

0
0 2 4 6 0

time Instants
Fig. 9. Distribution of used total space as a function of time according to the order-by-key
techniques. Parameters: BS = 1 Kb, RL, = 400 b, RL, = 200 b, PR, = 0.9, PR, = 0.1.

242 T. MANOLOPOULOS AND N. FISTAS

tion is needed. However, for this time limit it is noted that the directory space
is negligible when compared with the total occupied space.

5. SUMMARY AND CONCLUSION

In this work the results of a simulation of the performance of a new file
structure are reported. More specifically, under the assumption of variable-
length records two techniques are examined. The first is the main block
directory technique and the second is the order-by-length technique. These
techniques may be used within any primary key file structure using overflow
areas and will improve the search performance for very limited additional
space. The successful (unsuccessful) search will always require at most one
(no) overflow access.

Future research in this area involves the application of the main block
directory in dynamic hashed files. Deletion of records and algorithms for better
overflow space utilization is required too. Another extension would be to
derive analytical performance estimates for the successful and unsuccessful
search and the occupied space and compare the simulation results. Another
step would be towards the development of file structures designed specially for
variable-length records.

REFERENCES

1. 0. Amble and D. E. Knuth, Ordered hash tables, Comput. J. 17:135-147 (1974).
2. S. Christodoulakis, Estimating block transfers and join sizes, in Proceedings of the

ACM SIGMOD-83 Conference, San Jose, California, pp. 40-54, 1983.
3. S. Christodoulakis, Implications of certain assumptions in database performance evalua-

tion, ACM Transactions on Database Systems 9(2):163- 186 (1984).
4. S. Christodoulakis, Y. Manolopoulos, and P. A. Larson, Analysis of Overflow Han-

dling for Variable Length Records, Information Systems 14(2): 151-152 (1989).
5. G. Diehr and B. Faaland, Optimal pagination of B-trees with variable length items,

Commun. ACM 27(3):241-247 (1984).
6. J. Hakola and A. Heiskanen, On the distribution of wasted space at the end of file

blocks, BIT 20(2):145-156 (1980).
7. G. U. Hubbard, Computer-assisted Database Design, Van Nostrand Reinhold, New

York, 1981.
8. L. L. Larmore and D. S. Hirchberg, Efficient optimal pagination of scrolls, Commun.

ACM 28(8):854-856 (1985).
9. P. A. Larson, Analysis of index sequential files with overflow chaining, ACM Trans.

Databwe Syst. 6(4):671-680 (1981).
10. P. A. Larson, Hash Files: some recent developments, in Proceedings of the Znterna-

tional CoMerence on Supercomputing Systems, Florida, 1983, pp. 671-679.
11. Y. Manolopoulos and C. Faloutsos, Analysis for the end of block waste space, BIT, 30:

620-630 (1990).

ALGORITHMS FOR A HASHED FILE 243

12. E. M. McCreight, Pagination of B-trees with variable-length records, Commun. ACM
20(9):670-674 (1977).

13. J. L. Szwarcfiter, Optimal multiway search trees for variable length size keys, Acta
Znjormaticu 21(1):47-60 (1984).

14. T. J. Teorey and J. P. Fry, Design of Database Structures, Prentice Hall, Englewood
Cliffs, New Jersey 1982.

15. A. A. Tom, Hashing with overflow indexing, BIT 24:317-332 (1984).
16. G. Wiederhold, File Organization for Database Design, McGraw-Hill, 1987.
17. T. S. Yuen and D. H. C. Du, Dynamic file structure for partial match retrieval based on

overflow bucket sharing, IEEE Trans. Software Eng. 12(8):801-810 (1986).

Received 18 September 1989; revised 5 June 1990

