

A roadmap to electronic payment transaction guarantees

and a Colored Petri Net model checking approach

Panagiotis Katsaros

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax: +30-2310-998419

katsaros@csd.auth.gr

1

Abstract

Electronic payment systems play a vital role in modern business-to-consumer and business-

to-business e-commerce. Atomicity, fault tolerance and security concerns form a problem

domain of interdependent issues that are taken into account to assure the transaction

guarantees of interest. We focus on the most notable payment transaction guarantees:

money conservation, no double spending, goods atomicity, distributed payment atomicity,

certified delivery or validated receipt and the high-level guarantees of fairness and

protection of payment participants’ interests. Apart from a roadmap to the forenamed

transaction guarantees, this work’s contribution is basically a full-fledged methodology for

building and validating high-level protocol models and for proving payment transaction

guarantees by model checking them from different participants perspectives (payer

perspective, as well as payee perspective). Our approach lies on the use of Colored Petri

Nets and the CPN Tools environment (i) for editing and analyzing protocol models, (ii) for

proving the required transaction guarantees by CTL-based (Computation Tree Temporal

Logic) model checking and (iii) for evaluating the need of candidate security requirements.

KEYWORDS: electronic payments, atomicity, fault tolerance, e-commerce transactions,

security, Colored Petri Nets, model checking

1. Introduction

Electronic payment systems are expected to ensure that payment transactions occur

atomically. This means that each participating node must reach the same conclusion as to

whether an ongoing payment is to be completed, even in the face of failures. Atomicity is

one of the key properties (Atomicity, Consistency, Isolation and Durability) – known as

ACID properties – of modern transactional information systems [20]. In these systems the

mechanism used for achieving atomic commitment (e.g. the two-phase commit protocol) is

2

bundled together with a specific program-to-program communication protocol and that

protocol lives on top of an appropriate infrastructure. In electronic payments, participants

may use communication protocols for which there are no transactional variants (e.g. HTTP)

and the programs may be deployed in very heterogeneous application environments. For

these reasons, electronic payment systems cannot rely on traditional transaction

mechanisms.

Another problem is that in addition to potential system crashes and accompanying

message omission failures, we have to take into account the possibility of fraudulent

behavior by the payment participants, as well as, the well-known security flaws of the

Internet infrastructure. A payment protocol must provide an appropriate combination of

transaction guarantees that depends on the application domain. Thus, we need means for

proving the expected transaction guarantees and for studying the protection requirements

against potential security flaws and intrusion attacks ([6]).

We focus on payment transaction guarantees like money conservation, no double

spending, goods atomicity, distributed payment atomicity and certified delivery or validated

receipt. Security concerns ([1] and [36]) are skimmed only to the degree needed to enable

safe payments, in the presence of various transaction attack scenarios or potentially

fraudulent behavior. Also, we refer to the high-level transaction guarantees of fairness ([2])

and protection of participants’ interests ([47]).

The proposed model checking approach verifies the forenamed transaction guarantees

from different participants’ perspectives that are selected based on the adopted trust model.

We suggest the construction and validation of a Colored Petri Net (CP-net) that reflects all

protocol execution scenarios, including unilateral transaction aborts, potentially fraudulent

behavior and all site failure and message loss possibilities. Valuable features of the CP-net

modeling language that play an important role in our model checking approach are: (i) the

3

fact that the formalism builds upon true concurrency instead of an interleaving-based

semantics, (ii) the fact that CP-nets provide a compact description of control,

synchronization and data manipulation resulting in an explicit representation of both model

states and events and (iii) the wide range of analysis alternatives, which allow to

conveniently express and subsequently check the required model correctness criteria and

the expected payment transaction guarantees.

The model is built in CPN Tools ([13]), an advanced toolset for editing, simulating and

analyzing CP-nets ([22]). The expected guarantees are verified by CTL-based

(Computation tree Temporal Logic) model checking. Our approach is described in terms of

a CP-net developed for NetBill, a system for Internet-based micropayments for information

goods and services.

Section 2 provides an overview of electronic payments and defines the transaction

guarantees of interest. Section 3 describes the proposed model building and validation

approach. Section 4 refers to the CTL-based model checking of the expected transaction

guarantees in terms of the developed NetBill CP-net. Section 5 outlines related model

checking works and other CP-net solutions to specific e-commerce problems. We conclude

with a discussion on the usefulness of the proposed approach and its potential impact.

2. Electronic payments and payment transaction guarantees

2.1 Electronic payment models

The growing importance of e-commerce and the ever-increasing number of business

transaction models has resulted in a plethora of payment systems. Online payments involve

communication with a trusted third party (TTP) during payment and in general they are

considered as more secure than offline payments that involve only the payer and the payee.

The vast majority of Internet payment systems are online systems that perform either:

4

• Credit-card payments (First Virtual, CyberCash, iKP, Anonymous Credit Cards)

• Micropayments (NetBill, Millicent, μ-iKP, MiniPay and NetCash)

• Or they are used as payment switches (OpenMarket).

Offline payment systems include

• The electronic purses that use smart cards (Danmont/Visa, CLIP, Mondex and

EMV Electronic Purse)

• The electronic checks (FSTC Electronic Checks)

• A number of electronic cash systems (eCash and CAFE).

A detailed description of the forenamed types of payment systems is given in [14], [17]

and [37]. In [1], the authors provide a thorough treatment of the most fundamental security

requirements, as well as a complete source of references. In what is concerned with credit-

card payments, iKP has been designed by IBM Research with the intention of serving as a

starting point for new standards. A commercially successful standard that was based on iKP

is the Secure Electronic Transactions (SET) specification, launched by Mastercard and

VISA as an open non-proprietary, license-free standard for securing on-line transactions. In

the field of micropayments, which mainly concern with payments of intangible products

(digital goods or services), NetBill is probably the most widely known commercially

successful payment system in use. Regarding the aforementioned offline payment options,

we know that Mondex, FSTC Electronic Checks and eCash have been adopted by large

financial organizations and banks as an alternative way of payments to be offered to their

customers. An important development in the last few years is the widespread use of one-

stop integrated payment processing services like the ones offered by PayPal, Amazon

Payments and Google Checkout. The payment protection policy of the forenamed service

providers applies only to tangible goods transactions (e.g. books, DVDs etc) and the

arbitration process for the resolution of disputes is based on proofs of delivery that are

5

provided by the seller. In effect, the declared user agreements do not offer guarantees for

the safety and the reliability of the application(s) used to access the payment service.

A number of recent contributions ([38], [30], [43], [29]) confirm an ongoing interest in

the development of new payment systems. Also, the work published in [41] points out the

need for custom-made payment systems, which provide payment services that are extended

beyond the traditional bilateral transaction model.

The authors of [21] and [36] are probably the first who pinpoint the need for a

systematic treatment of the correctness properties required in digital payment systems. The

first work focuses on model checking three transaction guarantees from the ones mentioned

in Section 1 and the second work proposes a framework of abstractions for the formal

definition of security properties, like for example payment integrity and privacy.

In general, the majority of the published articles, as well as a relevant book on digital

payment systems ([32]) and a well-known research project in e-commerce ([27]) focus on

the security requirements of electronic payments. Our work refers to model checking the

transaction guarantees mentioned in Section 1, in all protocol execution scenarios,

including unilateral transaction aborts, potentially fraudulent behavior, all site failure and

message loss possibilities and various protocol level transaction attacks.

2.2 Payment transaction guarantees

The money conservation guarantee ([21]) - also called money atomicity - is the basic level

of atomicity in electronic payments. This guarantee ensures that there is no possibility of

creation or destruction of money, while electronic money is being transferred. In a poorly

designed payment system, money conservation can be compromised due to site failures,

unilateral transaction aborts, fraudulent behavior and different forms of protocol-level

attacks. More specifically, in account transfer systems we do not allow non-atomic

6

execution of pairs of debit - credit actions and also we do not allow redundant debits and

credits within the same payment transaction.

We also require payment systems that prevent double-spending ([32]), that is, they

prevent execution scenarios where a single payment order is performed more than once. In

a replay attack, double spending takes place by replaying some messages from a previous

legitimate run. A common mechanism to prevent this attack is to guarantee the freshness of

messages exchanged between the participants. Freshness means that a message provably

belongs to the current payment transaction and is not a replay of a previous message.

Goods atomicity ([21]) is a transaction guarantee that ensures money atomicity and also

ensures that there is no possibility of paying without receiving goods or vice versa. In

bilateral payment transactions, goods atomicity is checked from both participants’

perspectives (payer and payee) in all cases of site failures, unilateral transaction aborts and

potentially fraudulent behavior.

In the more general case of multi-party payments, which is the case of distributed

purchase transactions, goods atomicity is required for all protocol participants ([25]). In a

distributed purchase transaction a consumer interacts with multiple merchants. Consider for

example a consumer who pays for an airline fare, if and only if, the accompanying

accommodation payment transaction asked from another merchant is also successfully

completed.

Distributed payment atomicity ([41]) guarantees the inclusion of interactions with

independent participants into a single transaction. A way to provide this guarantee in

heterogeneous environments, where applications use communication protocols with no

transactional variants, is the Transaction Internet Protocol – TIP ([28]). TIP’s two phase

commit coordinates a system’s transaction managers independently of the used application

7

communication protocol. TIP operates over TCP and optionally uses the Transport Layer

Security protocol ([15]) to authenticate the senders and to encrypt the TIP commands.

However, TIP is amenable to different forms of intrusion attacks (two denial of service

attacks, one transaction corruption attack, one packet-sniffing attack and one man-in-the-

middle attack) and for this reason customized payment systems that use TIP have to be

formally analyzed ([26]), in order to evaluate the need of candidate security characteristics.

Certified delivery ([21]) is a transaction guarantee that requires both money

conservation and goods atomicity and also requires all payment participants to be able to

prove the sensitive details of the transaction. In NetBill, certified delivery allows consumers

and merchants to prove what happened on-line and to settle disputes off-line. This

guarantee also has to be provided in all cases of site failures and message losses, unilateral

transaction aborts and potentially fraudulent behavior. In bilateral payment transactions,

certified delivery is checked from both participants’ perspectives (payer and payee).

Alternatively, a class of payment systems (e.g. [38]) used in digital goods transactions

provides the validated receipt guarantee, which ensures that the payer is able to verify the

contents of the product about to be received. This is achieved by enabling the payer to

verify that the encrypted goods sent by the merchant are given as encryption of the same

product, for which an escrowed copy has been previously encrypted by the TTP and has

been subsequently placed at a publicly accessible place.

Goods atomicity satisfies the high-level fair exchange property ([2] and [18]): no

protocol participant can gain any advantage over other participants by misbehaving. In

payment transactions the payer gains advantage if he receives the goods (or payment

receipt), but the payee does not receive the payment. On the other hand, a payee gains

advantage if he receives the payment, but the payer does not receive the goods (or payment

8

receipt). We note that fairness guarantees only that money is exchanged for something and

not necessarily for what the payer pays for.

Protection of participants’ interests ([47]) is another high-level guarantee that ensures

that participants get exactly what they are legitimate to get. This guarantee generalizes

fairness in the sense that in some cases one participant’s interests can be compromised even

if no one else has gained any advantage.

To analyze a protocol with respect to fairness, we consider protocol execution scenarios

where a participant misbehaves and we check whether the participant himself can obtain

any advantage. When analyzing a protocol with respect to protection of a participant’s

interests, we consider protocol execution scenarios where everything (other participants and

the network) except the participant’s local execution can go wrong and we check whether

the participant’s interests can be hurt. Also, we take into account threats that are not

considered when we analyze the protocol’s fairness. As an example, the assumed failure

model includes network failures, which are out of the control of the participants: in an

electronic cash payment, if the payment sent by the payer gets lost while in transit and the

“payee” does not send the goods, then no one has gained any advantage, but the customer’s

interests have been hurt. Also, we take into account the possibility of collusions among

multiple participants, as well as a class of attacks known as sabotage attacks, where a

participant misbehaves not aiming to obtain advantage, but to hurt someone else’s interests.

When the studied payment system uses trusted parties, all the forenamed guarantees

rely on these parties behaving as trusted. This means that trusted parties are assumed to

perform protocol steps correctly and reliably and this behavior is decisive to guaranteeing

satisfaction of the expected transaction guarantees. Thus, our high-level protocol models

are required to satisfy a set of protocol-specific assumptions that we call trust assumptions,

which are supposed to be part of the model’s correctness criteria.

9

3. A Colored Petri Net modeling approach for payment systems

3.1 The Colored Petri Net modeling language

Apart from the proposed CP-net analysis, two alternatives have been used in model

checking payment transaction guarantees. The work of [19] uses the SPIN model checker

and the one reported in [21] employs a Communicating Sequential Processes approach and

the Failure Divergence Refinement (FDR) tool ([39]). Both of them adopt a process-based

representation of the system, where processes are described using events and operators.

Events cause a process to change state, but the representation of states is implicit.

Significant restrictions of the forenamed approaches that motivate the alternative

approach proposed by us are:

• their limited expressiveness in the modeling of concurrently executed events and

• their limited expressiveness in specifying the correctness properties of interest

The interleaving semantics of PROMELA (SPIN’s specification language) and the trace

semantics of the CSP/FDR approach imply that concurrent execution of two events can

only be represented by the occurrence of the two events after each other, in any order.

From our experience with PROMELA ([5] and [6]), we realized that this fact thrusts the

modeler to express concurrency within a process by explicitly specifying all possible orders

of occurrence for the concurrent events. However, this approach is inadequate for models

with payment participants that have concurrent (and possibly synchronized) threads of

control.

This problem arises when we study the guarantees of interest in scenarios with

concurrent payment transactions. The absence of double spending guarantee in replay

attack scenarios is a typical case, where the TTP model is required to handle multiple

payment transactions with concurrent threads that obey to the modeled protocol rules. In

10

SPIN, the analyst has to explicitly specify all possible orders of occurrence for the

concurrent events within the TTP. Depending on the protocol size, the number of possible

event orders can be large and this results in an error-prone analysis. The CP-net formalism

is an attractive alternative, since concurrency is not expressed in an interleaving-based

semantics. The replay attack scenario and the model checking of the absence of double

spending are illustrated in more detail in section 4.5.

Regarding the second mentioned restriction of the published model checking

approaches, we note that in SPIN correctness properties are specified in Linear Temporal

Logic (LTL). In principle, LTL is poorly suited for reachability properties like the ones

implied by the transaction guarantees of interest. It implicitly quantifies over all possible

execution paths and therefore it can only express reachability negatively: something is not

reachable. Moreover, with LTL there is still no way to choose an arbitrary set of starting

states (nested reachability), for the model checking of the property of interest [7]. Figure 1

shows a typical case of two state space graphs, for which we cannot have an LTL formula

that is true for some tree and false for the other tree.

Figure 1. Two state space graphs, indistinguishable for Linear Temporal Logic (LTL)

11

In CSP/FDR the protocol and the property of interest are described as two different CSP

processes. To determine whether the protocol satisfies the property the modeler tests

whether the protocol’s set of traces is a subset of the property’s set of traces (trace

refinement). In [21] the authors confess that in general the most obvious specification of a

property is often incorrect or inadequately expressed. Indeed, a more precise property

specification is usually obtained as a result of some experimentation.

In contrast to SPIN and CSP/FDR, Petri Net (PT-net) modeling languages provide an

explicit representation of both states and events and an easy to understand and intuitively

appealing graphical representation. They have well-defined formal semantics that instead of

interleaving builds upon true concurrency and they also offer a wide range of formal

analysis alternatives.

CP-nets ([22], [23]) constitute a compact and much more convenient modeling

language when compared to ordinary PT-nets, in a similar way as high-level programming

languages are more adequate for practical programming than assembly code. In CP-nets we

attach a data value to each token and this results in much fewer places than would be

needed in a low-level PT-net. Thus, the tokens of a CP-net are distinguishable from each

other and hence colored. An important reason for using CP-nets is that they provide a

compact description of control and synchronization, integrated with the description of data

manipulation. This means that on a single workspace it can be seen what the environment,

enabling conditions and effects of a state transition are. CP-nets also provide support for

building large models, by relating smaller CP-nets to each other in a well-defined way. This

results in hierarchical descriptions and makes it possible to model very large systems in a

manageable and modular way.

CP-nets have been developed over the last 28 years and today constitute a mature

modeling language supported by an advanced toolset ([13]) for editing, interactively

12

simulating and formally analyzing the model by a wide range of analysis alternatives.

Reachability properties are specified in CTL by taking advantage of the offered explicit

representation of the system’s states. An informal introduction to the CP-net modeling

language is provided in Appendix A.

3.2 The NetBill payment system

The NetBill transaction protocol ([12]) involves three participants: the consumer (C), the

merchant (M) and the trusted third party (TTP). Transactions involve three phases: price

negotiation, goods delivery and payment. We consider the selling of information goods or

services, in which case NetBill links goods delivery and payment into a single atomic

transaction. We use the notation “X ⇒ Y message” to indicate that X sends the specified

message to Y. The basic protocol consists of the following messages:

 1. C ⇒ M Price request

 2. M ⇒ C Price quote

 3. C ⇒ M Goods request

 4. M ⇒ C Requested goods, encrypted with a key K

 5. C ⇒ M Electronic Payment Order (epo)

 6. M ⇒ TTP Endorsed Electronic Payment Order (including the key K)

 7. TTP ⇒ M Transaction result (including K in a successful payment)

 8. M ⇒ C Transaction result (including K in a successful payment)

C and M interact with each other in the following way:

• C issues a price request for a particular product (1) and M replies with the requested

price (2),

• C either aborts the transaction or issues a goods request to M (3),

• in the second case, M delivers the requested goods encrypted with a key K (4).

13

The goods are cryptographically checksummed in order to be able to confirm that

received goods are not affected by potential transmission errors and that they have not been

subsequently altered. The TTP is not involved until the payment phase:

• C sends to M (5) an electronic payment order (epo) including all necessary payment

details and the received product checksum,

• M validates the received epo and checksum information and either aborts the

transaction or endorses it by sending to the TTP the received payment order,

together with additional payment information and the decryption key K (6),

• TTP responds to M (7) with the payment result and the decryption key K (successful

payment), which are finally forwarded to C (8) to terminate the transaction.

NetBill protects C against fraud by M, in the following ways:

• the key K, which is needed to decrypt the goods is registered with the TTP and if M

does not respond in a valid payment as expected, C asks the key from the TTP,

• if there is a discrepancy between what C ordered and what M delivered, C can easily

demonstrate this discrepancy to the TTP, since the payment order received by TTP

includes all details about what exactly was ordered, the amount charged, the key K

sent by M and the checksum of the delivered encrypted goods. Thus, if the goods

are faulty it is easy to demonstrate that the problem lies with the goods as sent and

not with any subsequent alteration (that would produce different checksum

information).

3.3 General model structure and assumptions

We propose the places of a CP-net payment model to belong to the following categories:

• places that represent participants’ states with respect to the ongoing purchase

transaction (e.g. IDLE, WAIT, ABORTED, COMMITTED, FAILED etc),

14

• places that represent participants’ communication channels, like for example the

channel used for the messages sent by the Consumer to the Merchant,

• places that represent sensitive information, like for example money or purchased

goods (or payment receipt), which take one of usually two possible values

depending on the ongoing protocol execution scenario (e.g. valid or invalid goods,

enough or not enough account balance etc) and

• places used to represent transaction control flow, like for example places that trigger

a query, due to an occurred transaction timeout.

 colset E = with e;
 colset INT = int;
 colset BOOL = bool;
 colset STRING = string;
 colset validORnValid = with v | i;
 colset accBalance = with gValue | lessMoney;
 colset State = with IDLE | WAIT | W_FAILED
 | ABORTED | COMMITTED | C_FAILED
 | COMPLETED | DISPUTED_TR | LISTEN | NO_RECORD
 | L_FAILED | STARTED_TR | ST_FAILED | N_FAILED;
 colset NetBillMSg=union gRequest:validORnValid + eGoods:validORnValid
 +pORequest:validORnValid + trResult:STRING
 +dKey:validORnValid + query:E;
 colset NetBillMQ =list NetBillMSg;
 var p,q,r,s: NetBillMQ;
 var mes,mes2: NetBillMSg;
 var gReq:validORnValid;
 var pOrder: validORnValid;
 var enGoods: validORnValid;
 var balance: accBalance;
 var timer,timer2: BOOL;
 var key: validORnValid;
 var st: State;

Figure 2. Color sets and variables for the NetBill CP-net

Figure 2 introduces the color sets and variables used in the NetBill CP-net. The token

values included in the enumerated color set validORnValid are used in symbolically

representing sensitive information (goods request, payment order, encrypted goods and

encryption key) that determines the ongoing protocol execution scenario. The token values

included in the enumerated color set accBalance represent different cases of account

balance, when compared to the ordered goods value. Color set State includes the token

15

values needed to represent all possible participants’ states with respect to the ongoing

purchase transaction. Initial participants’ states are IDLE for C, LISTEN for M and

NO_RECORD for the TTP. The union color set NetBillMSg specifies all possible types of

messages exchanged through the model’s communication channels. Each channel is

represented as a list of NetBillMSg messages (NetBillMQ).

Consumer
Consumer

Merchant
Merchant

TTP
TTP

ConToMer
NetBillMQ

1`[]

conBalance
accBalance

1`gValue

tr_expire
BOOL

false
goods
validORnValid

merBalance
accBalance

Consumer
State

IDLE

MerToCon
NetBillMQ

1`[]

cTimeout
BOOL

false

MerToTTP
NetBillMQ

1`[]

TTPtoMer
NetBillMQ

1`[]

ConToTTP
NetBillMQ

1`[]

TTPtoCon
NetBillMQ

1`[]

Figure 3. Top level CP-net for the NetBill payment system

Figure 3 presents the top level CP-net that includes places of all of the four forenamed

categories. Place Consumer is the only one place of the first category shown in this page.

Places ConToMer, MerToCon, MerToTTP, TTPtoMer, ConToTTP and TTPtoCon

represent all participants’ communication channels (initially empty). Places conBalance,

merBalance and goods contain tokens that represent money and purchased goods

respectively. Finally, places cTimeout and tr_expire are used to express the

triggering of a query sent by C to the TTP, due to an occurred transaction timeout.

Substitution transitions Consumer, Merchant and TTP include the corresponding

participants’ state transitions to be described in the forthcoming paragraphs.

16

In the shown NetBill CP-net, the adopted modeling assumptions are:

• Non-reliable FIFO message delivery by the participants’ communication channels,

with no eavesdropping and no message integrity violation (these possibilities may

compromise privacy and payment integrity [6], but they are out of the scope of our

concern, since we focus on the transaction guarantees of section 2.21).

• Participants’ sites fail by crashing, without emission of spurious messages (fail-stop

failure model).

• While in a failed state, all protocol messages and data in participants’ input

communication channels are lost (omission failures).

• Message losses due to communication failures are modeled also as transitions to

failure states for the recipients and this representation is consistent with the effects

of a message loss to the ongoing purchase transaction.

The model’s trust assumptions do not allow dishonest or unexpected behavior for the

TTP. This means that irrespective of the occurred site failures and message losses the TTP

either aborts or completes the transaction and delivers the transaction result that in all cases

should be consistent with the occurrence or no occurrence of the requested payment.

3.4 Payment participants’ state transitions

This section provides finite state automata that specify the participants’ state transitions to

be modeled. Consumer’s finite state automaton (Figure 4 and Table 1) represents all

protocol execution scenarios, including unilateral transaction aborts, merchant fraud,

dishonest consumer behavior (low account balance) and all site failure and message loss

cases. State transitions reflect the effects of the exchanged protocol messages on the state of

the ongoing purchase transaction. Each transaction starts with the dispatch of a (valid or

1 However, as we already noted, fake protocol messages in distributed purchase transactions are likely to break the

assumed payment atomicity.

17

invalid) goods request (transition C1) and every goods request corresponds to the launch of

a new purchase transaction.

IDLE

WAIT

W_FAILED

ABORTED COMMITTED

C_FAILED

COMPLETEDDISPUTED_TR

C1

C2C3
C4

C5

C6
C7

C11
C12 C14

C8 C9
C10

C15

C13
C16

C17

C18C19

Figure 4. Consumer’s finite state automaton

Table 1 Consumer’s automaton transitions

Transitions from operational states:
C1 Consumer sends to the Merchant a (valid or invalid) goods request.
C2 Consumer receives from the Merchant the requested encrypted goods and sends him an electronic

payment order. Failure to perform these two actions atomically corresponds to executing
transition C5.

C3 Consumer aborts the ongoing purchase transaction.
C4 Consumer receives a message sent by the Merchant or the TTP, while being in state ABORTED.
C5 This models the occurrence of a consumer site failure, while the consumer was in state WAIT.

Protocol messages or data that lie in consumer’s input communication channels are lost.
C8 This models the occurrence of a consumer site failure, while the consumer was in state

COMMITTED. Protocol messages or data that lie in consumer’s input communication channels
are lost. The consumer remains committed to the already paid purchase transaction by means of
permanent storage.

C10 Ongoing purchase transaction timeouts due to a merchant site failure or a fraudulent merchant
abort. The consumer queries the TTP for the transaction result.

C11 Consumer receives a “Succeed” transaction result and the required decryption key by the
merchant.

C12 Consumer receives a “Succeed” transaction result and a decryption key by the merchant, but
discovers a merchant fraud.

C13 Consumer receives an “Aborted” transaction result by the merchant.
C14 Consumer receives a “Succeed” transaction result and the required decryption key by the TTP.
C15 Consumer receives a “Succeed” transaction result and a decryption key by the TTP, but discovers

a merchant fraud.
C16 Consumer receives an “Aborted” transaction result by the TTP.
C17 Consumer’s sent request timeouts, due to a merchant site failure or due to merchant’s unilateral

abort.
C18 Consumer receives a “Succeed” transaction result, while being in state COMPLETED.
C19 Consumer receives a “Succeed” transaction result, while being in state DISPUTED_TR.
Transitions from failure states:
C6 Consumer’s site recovers from a failure and the ongoing purchase transaction is aborted. Protocol

messages or data that lie in consumer’s input communication channels are lost (the consumer
cannot receive messages while being in state W_FAILED).

C7 Consumer’s site recovers from a failure and continues with the ongoing purchase transaction.
Protocol messages or data that lie in consumer’s input communication channels are lost.

C9 Consumer’s site recovers from a failure and queries the TTP for the result of the ongoing
purchase transaction. Protocol messages or data that lie in consumer’s input communication
channels are lost.

18

Site failures (including message loss cases) are not represented by terminating states:

irrespective of the occurred site failures a consumer either aborts or completes a purchase

transaction and the received goods are either the ordered ones or are not the ones expected.

As a consequence, the shown finite state automaton includes three terminating states

(COMPLETED, ABORTED and DISPUTED_TR) and two failure states (W_FAILED and

C_FAILED) that correspond to two different recovery cases. While the consumer is in a

failed state, all protocol messages and data received in its input communication channels

are lost.

Merchant’s finite state automaton (Figure 5 and Table 2) reflects all merchant behavior

possibilities, including unilateral transaction aborts, merchant fraud and all site failures and

message losses. We abstract from candidate recovery mechanisms (which result in loss of

generality) by assuming that merchant’s site does not provide recovery with respect to the

ongoing transaction. As a consequence, the shown finite state automaton includes four

terminating states (COMPLETED, ABORTED, L_FAILED and ST_FAILED) with two of

them corresponding to site failure (and message loss) states. In all failed states, protocol

messages and data received in merchant’s input communication channels are lost.

LISTEN

ABORTED

STARTED_TR

COMPLETED ST_FAILED

M2

M3

M1

L_FAILED

M6

M7

M9M10
M5

M11

M4

M8
M12

M13

Figure 5. Merchant’s finite state automaton

19

Table 2 Merchant’s automaton transitions

Transitions from operational states:
M1 The merchant thread receives a valid goods request and responds with an encrypted version of

the requested goods. Failure to perform these two actions atomically corresponds to executing
transition M2.

M2 This models the occurrence of a merchant site failure, while the merchant thread was in the
LISTEN state. Protocol messages or data that lie in merchant’s input communication channels
are lost. We do not make assumptions regarding the merchant site recovery.

M3 The merchant thread receives an invalid goods request (e.g. wrong product) or an invalid
payment order (e.g. invalid product checksum number) and aborts the ongoing purchase
transaction.

M4 The merchant thread aborts the ongoing purchase transaction due to unilateral decision.
M5 The merchant thread receives a goods request or a payment order, while being in state ABORTED.
M6 The merchant thread endorses a valid electronic payment order and forwards it (including the

required decryption key) to the TTP. Potential failure to perform these two actions atomically
corresponds to executing transition M2 (site failure) or transition M4 (unilateral abort).

M7 The merchant thread aborts the ongoing purchase transaction.
M8 The merchant thread receives the transaction result and does not notify the consumer.
M9 This models the occurrence of a merchant site failure, while the merchant thread was in state

STARTED_TR. Protocol messages or data that lie in merchant’s input communication channels
are lost. We do not make assumptions regarding the merchant’s site recovery.

M10 The merchant thread receives a “Succeed” transaction result from the TTP and forwards it
together with the required decryption key to the consumer. Failure to perform these two actions
atomically corresponds to executing transition M9.

M11 The merchant thread receives an “Aborted” transaction result from the TTP and notifies the
consumer. Failure to perform these two actions atomically corresponds to executing transition
M9.

M12 Protocol messages sent to the merchant’s input communication channels are lost.
M13 Protocol messages sent to the merchant’s input communication channels are lost.

N_FAILED

L_FAILED

ST_FAILEDSTARTED_TR

TTP1 ABORTEDNO_RECORD

COMPLETED

TTP2TTP3

TTP4 TTP5
TTP6

TTP7

TTP8

TTP9

TTP10

TTP11

TTP12

TTP13

TTP14

Figure 6. TTP finite state automaton

The TTP finite state automaton (Figure 6 and Table 3) reflects all protocol execution

scenarios (valid or invalid payment order, low account balance, etc), as well as unilateral

transaction aborts (debit or credit failures) and all site failure possibilities (including

message loss cases). The adopted trust assumptions imply that irrespective of the occurred

20

site failures or message losses the TTP either aborts or completes the purchase transaction

and delivers the transaction result as expected. As a consequence, the shown finite state

automaton includes two terminating states (COMPLETED and ABORTED) and three failure

states (L_FAILED, ST_FAILED and N_FAILED) that correspond to three different

recovery cases. While the TTP is in a failed state, all protocol messages and data received

in its input communication channels are lost.

Table 3 TTP automaton transitions

Transitions from operational states:
TTP1 The TTP receives an invalid payment order (e.g. invalid merchant account) and notifies the

merchant for the transaction abort. Failure to perform these two actions atomically corresponds to
executing transition TTP3

TTP2 The TTP receives a valid payment order, but fails to debit consumer’s account and notifies the
merchant for the transaction abort. Failure to perform these actions atomically corresponds to
executing transition TTP3.

TTP3 This models the occurrence of a TTP site failure, while the TTP was in the NO_RECORD state.
Protocol messages or data that lie in TTP input communication channels are lost.

TTP5 TTP receives a consumer’s query for the ongoing purchase transaction and responds with a “No
Record” message. Failure to perform these two actions atomically corresponds to executing
transition TTP3.

TTP6 The TTP receives a consumer’s query for the ongoing purchase transaction and responds with an
“Aborted” message.

TTP7 The TTP receives a valid payment order and debits consumer’s account. Failure to perform these
two actions atomically corresponds to executing transition TTP3.

TTP8 This models the occurrence of a TTP site failure, while the TTP was in the STARTED_TR state.
Protocol messages or data that lie in TTP input communication channels are lost.

TTP10 The TTP credits merchant’s account, but fails to deliver the transaction result due to a site failure.
Protocol messages or data that lie in TTP input communication channels are lost.

TTP12 The TTP credits merchant’s account and delivers to the merchant the transaction result. Failure to
perform these two actions atomically corresponds to executing transition TTP10.

TTP13 The TTP receives a consumer’s query for the ongoing purchase transaction and responds with a
“Succeed” result notification accompanied by the required decryption key.

TTP14 The TTP fails to credit merchant’s account, returns debited amount to the consumer’s account
and sends to the merchant an “Aborted” transaction result. Failure to perform these actions
atomically corresponds to executing transition TTP8.

Transitions from failure states:
TTP4 The TTP recovers from a site failure. Protocol messages or data that lie in TTP input

communication channels are lost (the TTP cannot receive messages while being in state
L_FAILED).

TTP9 The TTP recovers from a site failure, returns debited amount to the consumer’s account (by
means of permanent storage) and sends to the merchant an “Aborted” message. Protocol
messages or data that lie in TTP input communication channels are lost (the TTP cannot receive
messages while being in state ST_FAILED).

TTP11 The TTP site recovers from a failure and sends to the merchant a “Succeed” transaction result
accompanied by the required decryption key (that is retrieved by means of permanent storage).
Protocol messages or data that lie in TTP input communication channels are lost (the TTP cannot
receive messages while being in state N_FAILED).

3.5 Payment participants’ CP-nets

21

IDLE

WAIT

p

p^^[gRequest gReq]

1`i

gReq

q

[]

ABORTED

ABORTED

WAIT

COMMITTED
p

p^^[pORequest pOrder]

q

1`[]
WAIT

W_FAILED

q

1`[]W_FAILED

ABORTED

mes::q

q

q

1`[]W_FAILED

WAIT

WAIT

ABORTED

WAIT

ABORTED

true

false

false

false

timer

timer

false

C_FAILED

COMMITTED
timer

true

q

1`[]

if (cf(query(e),q)=0)
then q^^[query e]
else q

q
COMMITTED

COMMITTED
true

false

COMMITTED

COMPLETED

mes

eGoods(v)
mes::q

tl q

COMMITTED

COMPLETED

mes::q

tl qeGoods(v)

mes2

mes::q

tl q

COMMITTED

DISPUTED_TR

mes::q

tl q

COMMITTED

DISPUTED_TRmes2

COMMITTED

ABORTED

mes::q

q

mes::q

q

COMMITTED

ABORTED

hd q

hd q

hd q

hd q

balance

1`gValue

pORequest pOrder

enGoods

p

1`[]

COMMITTED

C_FAILED

q

1`[]

p

1`[]

COMPLETED

COMPLETED

p

[]

q

[]

DISPUTED_TR

DISPUTED_TR

p

[]

q

[]

p

[]

timer

false

timer

false

timer

false

timer
false

timerfalse

timer

false

timer

false

timer

false

timer

false

q
if (cf(query(e),q)=0)
then q^^[query e]
else q

timer2

false

false

C1

C2

NetBillMSg.of_eGoods(mes)

C4

q<>[] orelse p<>[]

C5

C6

C7

C3

C17

C9

C10

C11

mes=trResult("Success")
andalso hd q=dKey(v)

C14

mes=trResult("Success")
andalso hd q=dKey(v)

C15

mes=trResult("Success")
andalso (hd q=dKey(i)
orelse mes2=eGoods(i))

C12

mes=trResult("Success")
andalso (hd q=dKey(i)
orelse mes2=eGoods(i))

C13

NetBillMSg.of_trResult(mes)
andalso mes<>trResult("Success")

C16

NetBillMSg.of_trResult(mes)
andalso mes<>trResult("Success")

C8

C18

(q<>[] andalso NetBillMSg.of_trResult(hd q)
orelse p<>[] andalso NetBillMSg.of_trResult(hd p))

C19

(q<>[] andalso NetBillMSg.of_trResult(hd q)
orelse p<>[] andalso NetBillMSg.of_trResult(hd p))

ConToMer
NetBillMQI/O

co

goodsReq

validORnValid

1`i

nBalance
accBalanceI/O

MerToCon
NetBillMQI/O

Consumer
StateI/O

cTimeout

BOOL
I/O

ConToTTP
NetBillMQI/O

encrGoods
NetBillMSg

TTPtoCon

NetBillMQ
I/O

decrKey
NetBillMSg

pOrderReq
NetBillMSg

goods
validORnValidOut

tr_expire BOOL
I/O

Figure 7. Consumer’s CP-net for the NetBill payment system

22

The CP-net of Figure 7 implements C’s finite state automaton as it is specified in Section

3.4. C1 is the single transition that initially is enabled in this CP-net and this transition

basically corresponds to the start of a purchase transaction. C1 changes C’s state from

IDLE to WAIT, appends a goods request (unbound variable gReq) to the ConToMer

channel and generates an encrypted goods token (unbound variable enGoods) for the

ongoing purchase transaction. The symbolic value of enGoods determines the analyzed

protocol execution scenario, in what is concerned with the possibility of M to respond with

the requested goods (v) or not (i).

Unbound variables allow us to interactively choose and simulate the protocol execution

scenario of interest, but the model’s state space analysis includes all possible protocol

execution scenarios. Variable balance is another unbound variable with values that

symbolically represent different cases of account balance. Places conBalance,

encrGoods and decrKey store token values for sensitive data that respectively refer to:

• the amount available in C’s account, when compared to the ordered goods value,

• the received encrypted goods and more precisely, whether they are the requested

ones (v) or not (i) and

• the received decryption key and more precisely, whether it is the required one (v) or

not (i).

Places goodsReq and pOrderReq store token values that determine the ongoing

purchase transaction, with respect to the validity of (a) the dispatched goods request and (b)

the dispatched payment order request.

A true token value in cTimeout triggers transition C10 that essentially represents

the dispatch of a query to the TTP, regarding the result of the ongoing payment transaction.

Finally, place tr_expire represents a timer used by the TTP CP-net.

23

mes::q

q

q

1`[]

timer
true

p
p^^[eGoods enGoods]

mes::q
q

LISTEN

ABORTED

q

timer
true

mes::q

q

p

if pOrder=v
then p^^[pORequest(pOrder)]^^[dKey key]
else p^^[pORequest(pOrder)]

key

LISTEN

LISTEN

LISTEN
L_FAILED

ABORTED

ABORTED

LISTEN

ABORTED

LISTEN

STARTED_TR

STARTED_TR

ABORTED

mes::q

if (mes=trResult("Success"))
then tl q
else q

ABORTED

ABORTED

p q

1`[] 1`[]

STARTED_TR

ST_FAILED

p

1`[]

mes::q

STARTED_TR

COMPLETED

mes::mes2::q

q
pkey

p^^[trResult("Success")]^^[dKey key]

mes::q

q

STARTED_TR

ABORTED

pORequest pOrder

p

p^^[trResult("Aborted")]

goods
validORnValid

enGoods
I/O

false

ST_FAILED

ST_FAILED

mes::q

if (mes=trResult("Success"))
then tl q
else q

true

false

true

false

true

L_FAILED
decrKey

validORnValid

L_FAILED

mes::q
M13

q

goodsReq
NetBillMSg

timer

if st=ABORTED
then false
else if q<>[]
then timer
else true

timer

if st<>ABORTED
then true
else false

timer

false

timer

M1

mes=gRequest(v)
mes

tr_expire
BOOLI/O

M2

Merchant
State

LISTEN M3

mes=gRequest(i) orelse
mes=pORequest(i)

ConToMer
NetBillMQI/O

M5

NetBillMSg.of_gRequest(mes) orelse
NetBillMSg.of_pORequest(mes)cTimeout

BOOLI/O MerToCon
NetBillMQI/O

M4

pOrderReq
NetBillMSg

M6

mes=pORequest(v)

MerToTTP
NetBillMQI/O

false

M7

st
Consumer

StateI/O

TTPtoMer
NetBillMQ

M8

NetBillMSg.of_trResult(mes)

I/O

M9

st

M10

mes=trResult("Success")
andalso mes2=dKey(key)

M11

mes=trResult("Aborted")

M12

NetBillMSg.of_trResult(mes)

Figure 8. Merchant’s CP-net for the NetBill payment system

The CP-net in Figure 8 implements M’s finite state automaton as it is specified in

Section 3.4. Transition M1 is enabled when M’s state is LISTEN and if there is a valid

goods request in the ConToMer channel. Occurrence of M1 places the encrypted goods

token value generated by C1 (found in place goods) in the MerToCon channel. Variables

pOrder and key are unbound variables that respectively represent

• whether the payment order including the data filled by M is valid (v) or not valid

(i) and

24

• the sent decryption key and more precisely, whether it is the required one (v) or not

(i).

The token values that determine the ongoing protocol execution scenario are stored in

places pOrderReq and decrKey. M’s CP-net also uses the places cTimeout and

tr_expire that have been already described when introducing C’s CP-net.

NO_RECORD

ABORTED

mes::q

q

p

p^^[trResult("Aborted")]

NO_RECORD

ABORTED

mes::p

r

if r<>[]
then tl r
else r

s
if r<>[]
then s^^[trResult("Aborted")]
else s

mes::q

tl q

r

if r<>[]
then tl r
else r

s

if r<>[]
then s^^[trResult("Aborted")]
else s

NO_RECORD

ABORTED

NO_RECORD

STARTED_TR

balance

mes::q

tl q

s^^[trResult("No Record")]

s

p

NO_RECORD

L_FAILED

q

[]

r

[]

L_FAILED

NO_RECORD

q

[]
r

if timer2=false
then []
else r^^[query e]timer

if timer2=false
then true
else false STARTED_TR

ST_FAILED

q

[]

r

[]

balance

timer

true
ST_FAILED

ABORTED

balance

balance
p

p^^[trResult("Aborted")]

r

[]

q

[]

balance balance

timer

true
STARTED_TR

ABORTED

p

p^^[trResult("Aborted")]

hd q

mes

mes

STARTED_TR

COMPLETED

mesbalance

balance

p

p^^[trResult("Success")]^^[mes]

COMPLETED

COMPLETED
mes

mes2::r

r

s

if s=[]
then [trResult("Success")]^^[mes]
else s

mes2::r

r

s

if s=[]
then [trResult("Aborted")]
else s

ABORTED

ABORTED

true
false

timer2

q

timer

false

false

timer

STARTED_TR

N_FAILED

q

[]

p

[]

balance

balance

N_FAILED

COMPLETED
mes

p

p^^[trResult("Success")]^^[mes]

timer

true

r

[]

q

[]

TTP1

mes=pORequest(i)

TTP5

NetBillMSg.of_query(mes)
andalso q=[]

TTP2

mes=pORequest(v)

TTP7

mes=pORequest(v)
andalso balance=gValue

TTP3

TTP4

TTP8

TTP9

TTP14

TTP12

TTP13

NetBillMSg.of_query(mes2)

TTP6

NetBillMSg.of_query(mes2)

TTP10

TTP11

TTPtoCon

NetBillMQ
I/O

tr_expire
BOOLI/O

merBalance
accBalanceI/O

ConToTTP

NetBillMQ
I/O

TTPtoMer

NetBillMQ
I/O

conBalance
accBalanceI/O

MerToTTP
NetBillMQI/O

cTimeout
BOOLI/O

TTPState

NO_RECORD

amount
accBalance

decrKey
NetBillMSg

Figure 9. The TTP CP-net for the NetBill payment system

25

Figure 9 shows the CP-net that implements TTP’s finite state automaton. Place

merBalance represents the amount transferred to M’s account, in case of a succeed

payment. Place amount stores the amount to be transferred and place decrKey stores the

decryption key to be transmitted. In both places, sensitive data are stored temporarily and

they are used as prescribed by the adopted trust assumptions.

3.6 State space analysis and model validation

State space analysis is used to explore a standard set of dynamic properties for the

developed high-level protocol model and to validate (or correct) the model with respect to a

set of model correctness criteria that include:

 (a) the absence of self-loop terminal markings,

 (b) correct protocol termination and absence of deadlocks,

 (c) the absence of livelocks and

 (d) the validity of the adopted trust assumptions.

 Figure 10 shows the standard state space analysis report for the NetBill CP-net. The

first part of the shown standard report provides statistical information regarding the

automatically generated state space graph (also called occurrence graph). The NetBill state

space includes 6439 markings and 18915 arcs that represent the occurrence of different

transition instances. The corresponding graph of strongly connected components (Scc

graph) includes 2678 nodes and 11257 arcs.

The checked bounds-related properties characterize the CP-net in terms of the tokens

we may have at the places of interest. The shown integer bounds refer to the upper bounds

and lower bounds of the number of tokens we may have and essentially provide a mean to

explore the places that represent sensitive information.

26

Statistics
--
 State Space
 Nodes: 6439
 Arcs: 18915
 Secs: 30
 Status: Full
 Scc Graph
 Nodes: 2678
 Arcs: 11257
 Secs: 2

Boundedness Properties
--
 Best Integers Bounds Upper Lower
 Consumer'decrKey 1 1 0
 Consumer'encrGoods 1 1 0
 Consumer'goodsReq 1 1 1
 Consumer'pOrderReq 1 1 0
 Merchant'Merchant 1 1 1
 Merchant'decrKey 1 1 0
 Merchant'pOrderReq 1 1 0
 TTP'TTP 1 1 1
 TTP'amount 1 1 0
 TTP'decrKey 1 1 0
 TopLevel'ConToMer 1 1 1
 TopLevel'ConToTTP 1 1 1
 TopLevel'Consumer 1 1 1
 TopLevel'MerToCon 1 1 1
 TopLevel'MerToTTP 1 1 1
 TopLevel'TTPtoCon 1 1 1
 TopLevel'TTPtoMer 1 1 1
 TopLevel'cTimeout 1 1 1
 TopLevel'conBalance 1 1 0
 TopLevel'goods 1 1 0
 TopLevel'merBalance 1 1 0
 TopLevel'tr_expire 1 1 1

Home Properties
--
 Home Markings: None

Liveness Properties
--
 Dead Markings: 72 [963,665,592,5905,5890,...]
 Dead Transitions Instances: None
 Live Transitions Instances: None

Fairness Properties
--

Merchant'M13 1 No Fairness Consumer'C1 1 No Fairness
Consumer'C10 1 No Fairness
Consumer'C11 1 Fair
Consumer'C12 1 Fair
Consumer'C13 1 Fair
Consumer'C14 1 Just
Consumer'C15 1 Just
Consumer'C16 1 Just
Consumer'C17 1 No Fairness
Consumer'C18 1 Fair
Consumer'C19 1 Fair
Consumer'C2 1 No Fairness
Consumer'C3 1 No Fairness
Consumer'C4 1 No Fairness
Consumer'C5 1 No Fairness
Consumer'C6 1 No Fairness
Consumer'C7 1 No Fairness
Consumer'C8 1 No Fairness
Consumer'C9 1 No Fairness
Merchant'M1 1 No Fairness
Merchant'M10 1 No Fairness
Merchant'M11 1 No Fairness
Merchant'M12 1 No Fairness

Merchant'M2 1 No Fairness
Merchant'M3 1 No Fairness
Merchant'M4 1 No Fairness
Merchant'M5 1 No Fairness
Merchant'M6 1 No Fairness
Merchant'M7 1 No Fairness
Merchant'M8 1 No Fairness
Merchant'M9 1 No Fairness
TTP'TTP1 1 No Fairness
TTP'TTP10 1 No Fairness
TTP'TTP11 1 No Fairness
TTP'TTP12 1 No Fairness
TTP'TTP13 1 No Fairness
TTP'TTP14 1 No Fairness
TTP'TTP2 1 No Fairness
TTP'TTP3 1 No Fairness
TTP'TTP4 1 No Fairness
TTP'TTP5 1 No Fairness
TTP'TTP6 1 No Fairness
TTP'TTP7 1 No Fairness
TTP'TTP8 1 No Fairness
TTP'TTP9 1 No Fairness

Figure 10. State space analysis report for the NetBill CP-net

27

A more detailed version of the shown report provides upper and lower multi-set bounds

that include all token values that is possible to appear in the places of interest (by

definition, the upper multi-set bound of a place is the smallest multi-set which is larger than

all reachable markings of the place). Apart from the places that represent sensitive

information, this allows us to explore the contents of the lists used as participants’

communication channels, as well as the participants’ reachable states. For the NetBill CP-

net we did not find unreachable participants’ states and unexpected (combinations of)

protocol messages in participants’ communication channels. Also, we verified that the

token values that appear in places that represent sensitive information reflect all possible

protocol participants’ inputs.

Home properties provide information about markings or sets of markings to which it is

always possible to return. However, the protocol termination correctness assumption

requires the model to not include home markings and this is successfully verified for the

developed NetBill CP-net.

Liveness properties provide information regarding:

• The number of dead markings that is, markings with no enabled transitions. Dead

markings are protocol termination or deadlock states and CP-net correctness in

terms of them requires further analysis.

• The number of dead transitions that is, transitions that are not enabled in at least

one reachable marking.

• The number of live transitions that is, transitions that always can become enabled

once more.

As expected, the developed NetBill CP-net does not include dead and live transitions,

but correct protocol termination and absence of deadlocks requires further analysis. An

28

enumeration of all dead markings is easily obtained by the non-standard query shown in

Figure 11.

let
 val fid = TextIO.openOut "ListOfDeadMarkings.txt"
 val _ = TextIO.output(fid, "List of dead markings: \n")
 val _ = EvalNodes(ListDeadMarkings(),
 fn n => INT.output(fid,n))
 val _ = TextIO.output(fid, "\nNumber of dead markings: ")
 val _ = INT.output(fid,length (ListDeadMarkings()))
in
 TextIO.closeOut(fid)
end

type ListOfDeadMarkings.txt

List of dead markings:
963 665 592 5905 5890 5875 5860 5269 5249
5229 5209 519 518 516 515 3555 3549 3543
3537 3380 3377 3373 3370 3366 3360 3169
3166 3144 3138 3132 3126 2969 2966 2962
2959 2955 2949 2758 2755 2716 2708 2687
2679 2648 2640 2619 2611 1925 1922 1921
1920 1851 1841 1833 1815 1805 1797 1793
1790 1786 1783 1725 1715 1707 1689 1679
1671 1667 1664 1660 1657 1084
Number of dead markings: 72

Figure 11. Dead markings in the NetBill CP-net

The last part of the produced standard analysis report (Figure 10) refers to the model’s

fairness properties (these properties are not related to the fair exchange transaction

guarantee defined in Section 2.2) and provides information about how often the individual

transitions occur. An impartial transition occurs infinitely often in any infinite occurrence

sequence. If this transition ceases to occur, then the protocol must terminate after some

number of additional steps. The same is true if a transition is found to be fair (like the

transitions C11, C12, C13, C18 and C19), which is a weaker fairness property stating that

the transition occurs infinitely often in all infinite occurrence sequences where it is

infinitely often enabled. Finally, a transition is just (like the transitions C14, C15 and C16),

if the transition occurs in all cases where this transition is persistently enabled. We easily

verify that the above fairness interpretations are compatible with the descriptions of the

forenamed transitions that are given in Table 1.

Regarding the analysis needed to prove correct protocol termination, Figure 12 shows

the non-standard state space query verifying that the NetBill CP-net does not include self-

loop terminal markings. This means that all protocol termination cases are included in the

29

list of dead markings shown in Figure 11. This finding is crucial for correctly expressing

the CTL-based formulae used to verify the transaction guarantees of interest.

fun SelfLoopTerminal n=(OutNodes(n)=[n])
fun InValidTerminal()=PredNodes(EntireGraph,
 fn n => (SelfLoopTerminal n),
 NoLimit);
let
 val fid = TextIO.openOut "ListOfSelfLoops.txt"
 val _ = TextIO.output(fid, "List of self loop terminals: \n")
 val _ = EvalNodes(InValidTerminal(),
 fn n => INT.output(fid,n))
in
 TextIO.closeOut(fid)
end

t

ype ListOfSelfLoops.txt

List of self loop terminals:

Figure 12. Absence of self-loop terminal nodes

fun ValidTerminal n=(length (hd (Mark.TopLevel'ConToMer 1 n))=0 andalso
 length (hd (Mark.TopLevel'MerToCon 1 n))=0 andalso
 length (hd (Mark.TopLevel'ConToTTP 1 n))=0 andalso
 length (hd (Mark.TopLevel'TTPtoCon 1 n))=0 andalso
 length (hd (Mark.TopLevel'MerToTTP 1 n))=0 andalso
 length (hd (Mark.TopLevel'TTPtoMer 1 n))=0 andalso

 (Mark.Consumer'Consumer 1 n=[ABORTED] andalso
 Mark.TTP'TTP 1 n=[ABORTED] andalso
 (Mark.Merchant'Merchant 1n=[ABORTED]
 orelse Mark.Merchant'Merchant 1n=[L_FAILED]
 orelse Mark.Merchant'Merchant 1n=[ST_FAILED])
 orelse Mark.Consumer'Consumer 1 n=[DISPUTED_TR] andalso
 Mark.TTP'TTP 1 n=[COMPLETED] andalso
 (Mark.Merchant'Merchant 1 n=[COMPLETED]
 orelse Mark.Merchant'Merchant 1 n=[ST_FAILED]
 orelse Mark.Merchant'Merchant 1 n=[ABORTED])
 orelse Mark.Consumer'Consumer 1 n=[COMPLETED] andalso
 Mark.TTP'TTP 1 n=[COMPLETED] andalso
 (Mark.Merchant'Merchant 1 n=[COMPLETED]
 orelse Mark.Merchant'Merchant 1 n=[ST_FAILED]
 orelse Mark.Merchant'Merchant 1 n=[ABORTED])))

fun InValidTerminal()=PredNodes(ListDeadMarkings(),
 fn n => not (ValidTerminal n),
 NoLimit);
let
 val fid = TextIO.openOut "DeadlockMarkings.txt"
 val _ = TextIO.output(fid, "List of deadlock markings: \n")
 val _ = EvalNodes(InValidTerminal(),
 fn n => INT.output(fid,n))
in
 TextIO.closeOut(fid)
end

type DeadlockMarkings.txt

List of deadlock markings:

Figure 13. Absence of deadlock markings

Figure 13 shows the non-standard state space query verifying that the NetBill CP-net

does not include deadlock markings. We prove that all protocol termination cases (dead

30

markings) are correct that is, communication channels are empty and we only have valid

participants’ state combinations. More precisely, we verify that when C ends in state

COMPLETED, this is also true for the TTP, but M can be in state COMPLETED,

ST_FAILED or ABORTED depending on the merchant’s honesty or the occurred site

failures or message losses. When C ends in state DISPUTED_TR we require the TTP to

end in state COMPLETED (the TTP includes only two final states that is, states

COMPLETED and ABORTED; merchant fraud regarding the delivered goods - disputed

transaction - is not tangible by the TTP) and M to end as in the previous termination case.

Finally, when C ends in state ABORTED we require the TTP to end in state ABORTED and

M to end in state ABORTED, L_FAILED or ST_FAILED depending on the merchant’s

unilateral decision or the occurred site failures and message losses. Function

InValidTerminal() checks for invalid dead markings and the empty list obtained in

query’s output confirms the absence of deadlocks.

An important model correctness criterion is the absence of livelocks. A livelock is

detected, when the state space contains a cycle that leads to no markings outside the cycle.

In this case, once the cycle is entered it will repeat forever. A protocol model, which

terminates properly, should be free from livelocks.

A convenient way to check the absence of livelocks is to study the automatically

generated graph of strongly connected components (Scc graph). A strongly connected

component of the state space is a maximal sub-graph whose nodes are mutually reachable

from each other. The generated Scc graph has a node for each strongly connected

component and includes arcs that connect two different components, if there is an arc in the

original state space graph that connects a node of the first component to a node that belongs

to the second one. As initial strongly connected component is characterized a component

without incoming arcs and as terminals are characterized all components without outgoing

31

arcs. Since each node in the state space belongs to only one strongly connected component,

the Scc graph is always smaller than or equal to the corresponding state space.

Depending on the structure of the generated state space, model checking the absence of

livelocks takes one of the following two forms:

• If the state space and its Scc graph are isomorphic and also there are no self-loops,

then the protocol model is free of livelocks.

• If the state space contains self-loops or if there is at least one strongly connected

component that consists of more than one node, then we need to examine if all

terminal components are trivial that is, they consist of a single node and no arcs. A

non-trivial terminal component represents a livelock in the protocol model.

The non-standard state space query shown in Figure 14 verifies that the NetBill Scc

graph does not include non-trivial terminal strongly connected components and so the

developed protocol model is free of livelocks.

fun ListTerminalSCCs()=PredAllSccs(SccTerminal);
fun InValidTermSCC()=PredSccs(ListTerminalSCCs(),
 fn n => not (SccTrivial n),
 NoLimit);
let
 val fid = TextIO.openOut "AbsenceOfLivelocks.txt"
 val _ = if InValidTermSCC()=[]
 then TextIO.output(fid, "No Livelocks!")
 else TextIO.output(fid, "Livelocks detected!")
in
 TextIO.closeOut(fid)
end

t

ype AbsenceOfLivelocks.txt

No Livelocks!

Figure 14. Absence of livelocks

In fact, the state space queries shown in Figures 12 and 13, as well as other auxiliary

queries, helped us to debug the NetBill CP-net with respect to the described model

correctness criteria. Also, we minimized the number of correct dead markings to only 72,

by having managed to exclude similar markings that differ only in terms of the token values

32

of cTimeout and tr_expire. We remind that these places are used to express the

triggering of queries and such a difference is irrelevant for all protocol termination states.

fun TrCompleted n = (Mark.TTP'TTP 1 n=[COMPLETED]);
fun reportSucceed n = (List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) = trResult"Success");
fun reportNotSucceed n = (List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) <> trResult"Success");
fun creditDone n = (Mark.TopLevel'merBalance 1 n = [gValue]);
val trustViolation1States = PredNodes(EntireGraph,
 fn n => (TrCompleted n andalso reportNotSucceed n),
 NoLimit);
val trustViolation2States = PredNodes(EntireGraph,
 fn n => (reportSucceed n andalso not (creditDone n)),
 NoLimit);
let
 val fid = TextIO.openOut "TrustAssumptionsA.txt"
 val _ = if (trustViolation1States=[] andalso trustViolation2States=[])
 then TextIO.output(fid,"No trust assumptions violation!")
 else TextIO.output(fid,"Trust assumptions violation detected!")
in
 TextIO.closeOut(fid)
end

t

ype TrustAssumptionsA.txt

No trust assumptions
violation!

Figure 15. Model checking trust assumptions violation (A)

The query of Figure 15 model checks the trust assumptions for the successful

completion of the ongoing payment transaction. Set trustViolation1States detects

if there are markings, where TTP’s state is COMPLETED and the TTP does not report the

correct transaction result through the TTPtoMer communication channel. Set

trustViolation2States detects if there are markings, where TTP reports a success

transaction result, but the payment (gValue) has not been credited to M’s account

(merBalance). No trust assumption violation is detected.

The query of Figure 16 model checks the trust assumptions regarding the aborted

payment transactions. In this case, the transaction result is reported either through the

TTPtoMer or through the TTPtoCon communication channel and model checking

attempts to detect two different sets of trust violation markings. Set

trustViolation1States detects if there are markings, where TTP’s state is

ABORTED and the TTP does not report the correct transaction result. Set

trustViolation2States detects if there are markings, where TTP reports an aborted

33

transaction result, but the TTP has debited C’s account (conBalance) as opposed to what

is expected. No trust assumption violation is detected.

fun TrAborted n = (Mark.TTP'TTP 1 n=[ABORTED]);
fun reportSucceed n = ((List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) = trResult"Success") orelse
 (List.nth(Mark.TopLevel'TTPtoCon 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoCon 1 n,0),0) = trResult"Success"));
fun reportNotSucceed n = ((List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) <> trResult"Success") orelse
 (List.nth(Mark.TopLevel'TTPtoCon 1 n,0)<>[] andalso
 List.nth(List.nth(Mark.TopLevel'TTPtoCon 1 n,0),0) <> trResult"Success"));
fun debitDone n = (Mark.TopLevel'conBalance 1 n = []);
val trustViolation1States = PredNodes(EntireGraph,
 fn n => (TrAborted n andalso reportSucceed n),
 NoLimit);
val trustViolation2States = PredNodes(EntireGraph,
 fn n => (reportNotSucceed n andalso debitDone n),
 NoLimit);
let
 val fid = TextIO.openOut "TrustAssumptionsB.txt"
 val _ = if (trustViolation1States=[] andalso trustViolation2States=[])
 then TextIO.output(fid,"No trust assumptions violation!")
 else TextIO.output(fid,"Trust assumptions violation detected!")
in
 TextIO.closeOut(fid)
end

t

ype TrustAssumptionsB.txt

No trust assumptions
violation!

Figure 16. Model checking trust assumptions violation (B)

In the NetBill CP-net, money conservation is a TTP responsibility and for this reason, it

is also one of the model’s correctness criteria (trust assumption) that have to be checked.

However, in the general case, payment systems are not necessary to involve trusted parties

and therefore money conservation is not always one of the model’s trust assumptions

([48]). Moreover, since money conservation is conveniently expressed as a CTL property,

model checking this guarantee is presented together with other protocol correctness criteria

in the next section.

4. Model checking payment transaction guarantees

The NetBill system aims to provide a wide range of payment transaction guarantees, from

those mentioned in section 2.2. Protocol’s design adopts an encryption-based atomicity

approach ([44]), where the goods are initially sent to C in an encrypted form and therefore

34

cannot be used, without the required decryption key. The key is dispatched only on receipt

of the corresponding payment. On the other hand, payment systems that adopt an authority-

based atomicity approach ([38]) require the TTP to retain an escrowed copy of the

purchased goods.

There is an increasing interest for payment systems, which will be based on the already

known “non-blocking” commit protocols, as well as, for distributed payment systems ([41])

and systems for offline payments. Also, an active field of research is the design of systems

with a semi-trusted third party ([18]) that is possible to misbehave on its own, but will not

collude with any of the payment participants.

The described CP-net modeling approach is a formal analysis alternative for proving the

transaction guarantees of section 2.2. The current section introduces the use of CTL-based

model checking in terms of the developed NetBill CP-net. Preliminary results regarding

some of the transaction guarantees of section 2.2 were first shown in [24].

We propose the use of the ASK-CTL library ([11]) of the CPN Tools ([13]), in order to

express the expected transaction guarantees as properties of paths in the state space. A path

is a sequence of states and transition occurrences of the state space, constrained by the

direction of arcs. Paths may be infinite and this implies some difficulties in selecting the

proper path quantification operators, based on their semantics. An ASK-CTL formula is

interpreted either over the domain of states or over the domain of transition occurrences in

a path. However, the domain switch operator MODAL allows one to jump from one domain

to the other.

4.1 Model checking money conservation

Money conservation is a requisite in all payment systems. We do not accept the protocol to

leave one or more transactions in a partial or ambiguous state, where the system has created

35

or destroyed money. This guarantee should be assured in all cases of site failures, message

losses and fraudulent behavior.

In an account transfer system with a TTP like NetBill, money conservation is included

in the model’s trust assumptions and it guarantees that either the funds transfer should

complete (M has the money and C does not) or it should not occur at all (C has the money

and M does not).

In Figure 6 we observe that funds transfer commences on the occurrence of TTP7.

Thus, model checking money conservation includes all paths starting with an arc that

corresponds to the occurrence of TTP7 (96 paths). In Figure 17, this list of arcs (transition

occurrences) is given by the value debitTIs. Having moved to a non-legitimate state, we

require the system to guarantee that eventually either, M has the money and C does not, or

C has the money and M does not.

fun debitC a = (ArcToTI a = TI.TTP'TTP7 1);
val debitTIs = PredArcs(EntireGraph,
 fn a => (debitC a),
 NoLimit);
fun moneyLoss n = ((Mark.TopLevel'conBalance 1 n=[]
 andalso Mark.TopLevel'merBalance 1 n=[])
 orelse (Mark.TopLevel'conBalance 1 n<>[]
 andalso Mark.TopLevel'merBalance 1 n<>[]));
val debitAction = AF("No debit!",debitC);
val mLossForm = MODAL(NF("",moneyLoss));
val noMoneyConservation = INV(ALONG(mLossForm));
fun verify a = eval_arc noMoneyConservation a;
val results = map verify debitTIs;
let
 val fid = TextIO.openOut "MoneyConservation.txt"
 val _ = if (cf(true,results)>0)
 then TextIO.output(fid,"No money conservation!")
 else TextIO.output(fid,"Protocol does not create or destroy money!")
in
 TextIO.closeOut(fid)
end

t

ype MoneyConservation.txt

Protocol does not create or
destroy money!

Figure 17. Money conservation in the NetBill CP-net

To avoid using the EV operator, where for some argument say A, EV(A)≡

FORALL_UNITL(TT,A) holds, if A becomes true in a finite - but not infinite - number of

steps, we model check the converse: there is no reachable path, where for every state

36

neither M nor C has the money and there is also no reachable path, where for every state

both M and C have the money. In Figure 17, this is expressed by the value mLossForm.

Operator INV (where for some argument A, INV(A)≡NOT(POS(NOT(A)))) returns

true, if the argument is true for all reachable states (or arcs) from the state (or arc) we are

now. Finally, operator ALONG (where ALONG(A)≡NOT(EV(NOT(A)))) can also be

applied in infinite paths and returns true, if there is a path for which the argument holds for

every state (or arc). Model checking is performed by eval_arc.

4.2 Model checking goods atomicity (fair exchange)

Having verified money conservation, goods atomicity (fair exchange) also requires that

goods (or payment receipt) will be obtained, if and only if, the payment is transferred to the

merchant or the merchant’s account. Goods atomicity is an important guarantee that in

bilateral payment transactions has to be ensured from both participants’ perspectives, in all

cases of site failures, message losses, unilateral aborts and fraudulent behavior.

fun validEPObyC n = (Mark.TopLevel'ConToMer 1 n = [[pORequest(v)]]);
val validEPOstates = PredNodes(EntireGraph,
 fn n => (validEPObyC n),
 NoLimit);
fun noMoney n = (Mark.TopLevel'conBalance 1 n = []);
fun noDecrKey n = (Mark.Consumer'decrKey 1 n = []);
val paidTrans = NF("No payment!", noMoney);
val noGoods = NF("Found decr key!", noDecrKey);
val noGAtomicityForC = AND(POS(INV(paidTrans)), INV(noGoods));
fun verify n = eval_node noGAtomicityForC n;
val results = map verify validEPOstates;
let
 val fid = TextIO.openOut "GoodsAtomicityForC.txt"
 val _ = if (cf(true,results)>0)
 then TextIO.output(fid,"Non atomic goods delivery for C!")
 else TextIO.output(fid,"Atomic goods delivery for C!")
in
 TextIO.closeOut(fid)
end

type GoodsAtomicityForC.txt

Atomic goods delivery for C!

Figure 18. Goods atomicity from the consumer’s perspective

In Figure 18, value noGAtomicityForC expresses the possibility of some state,

where for each reachable state we have at the same time no money in C’s account

37

(Consumer has paid) and C does not own the decryption key for the paid goods. Function

eval_node model checks the absence of goods atomicity for all states, in which C has

dispatched a valid payment order (pORequest(v)). The obtained result proves goods

atomicity from the consumer’s perspective.

Figure 19, proves goods atomicity from the merchant’s perspective: there is no state, in

which for each reachable state M does not own the money for the payment and at the same

time, it is possible for C to get the decryption key and to keep it forever.

fun sentEPObyC n = (Mark.TopLevel'ConToMer 1 n = [[pORequest(v)]]
 orelse Mark.TopLevel'ConToMer 1 n = [[pORequest(i)]]);
val sentEPOstates = PredNodes(EntireGraph,
 fn n => (sentEPObyC n),
 NoLimit);
fun noMoney n = (Mark.TopLevel'merBalance 1 n = []);
fun foundDecrKey n = (Mark.Consumer'decrKey 1 n <> []);
val notPaidTrans = NF("Payment found!", noMoney);
val goodsDelivered = NF("No goods delivered!", foundDecrKey);
val noGAtomicityForM = AND(INV(notPaidTrans), POS(INV(goodsDelivered)));
fun verify n = eval_node noGAtomicityForM n;
val results = map verify sentEPOstates;
let
 val fid = TextIO.openOut "GoodsAtomicityForM.txt"
 val _ = if (cf(true,results)>0)
 then TextIO.output(fid, "Non atomic goods delivery for M!")
 else TextIO.output(fid, "Atomic goods delivery for M!")
in
 TextIO.closeOut(fid)
end

t

ype GoodsAtomicityForM.txt

Atomic goods delivery for M!

Figure 19. Goods atomicity from the merchant’s perspective

4.3 Model checking certified delivery

Having proved money conservation and goods atomicity, certified delivery also requires

that all payment participants can prove the sensitive details of the performed transaction.

Certified delivery in bilateral payment transactions should be ensured from both

participants’ perspectives, in all cases of site failures, message losses, unilateral aborts and

fraudulent behavior.

In the NetBill payment system, C proves that the received encrypted goods are intact, if

he owns the checksum number of the received goods and if this number is the same as the

one gathered by the TTP through C’s payment order. The code of Figure 20 proves that it is

38

not possible to eventually deliver any goods decryption key when C has not obtained the

corresponding checksum number.

fun noChecksumOwnedByC n = (Mark.Consumer'encrGoods 1 n = []);
fun foundDecrKey n = (Mark.Consumer'decrKey 1 n <> []);
val noChecksum = NF("Checksum owned by C!", noChecksumOwnedByC);
val goodsDelivered = NF("No goods delivered!", foundDecrKey);
val noCertifiedDeliveryForC = POS(AND(ALONG(noChecksum),EV(goodsDelivered)));
val result = eval_node noCertifiedDeliveryForC InitNode;
let
 val fid = TextIO.openOut "CertifiedDelForC.txt"
 val _ = if (result=true)
 then TextIO.output(fid, "Non certified delivery for C!")
 else TextIO.output(fid, "Certified delivery for C!")
in
 TextIO.closeOut(fid)
end

t

ype CertifiedDelForC.txt

Certified delivery for C!

Figure 20. Certified delivery from the consumer’s perspective

On the other hand, the code of Figure 21 proves that it is not possible for M to have

endorsed C’s payment order when he has not have received the corresponding C’s goods

request. Goods request’s checksum number is in fact included in an encrypted part of C’s

endorsed payment order, which can be read only by the TTP. The obtained result proves the

certified delivery guarantee from the merchant’s perspective.

fun noGRequestOwnedByM n = (Mark.Merchant'goodsReq 1 n = []);
fun foundEndorsedEPO n = (Mark.Merchant'pOrderReq 1 n <> []);
val noGRequest = NF("", noGRequestOwnedByM);
val endorsedEPO = NF("No goods delivered!", foundEndorsedEPO);
val noCertifiedDeliveryForM = POS(AND(ALONG(noGRequest), EV(endorsedEPO)));
val result = eval_node noCertifiedDeliveryForM InitNode;
let
 val fid = TextIO.openOut "CertifiedDeliveryForM.txt"
 val _ = if (result=true)
 then TextIO.output(fid,"Non certified delivery for M!")
 else TextIO.output(fid,"Certified delivery for M!")
in
 TextIO.closeOut(fid)
end

t

ype CertifiedDelForM.txt

Certified delivery for M!

Figure 21. Certified delivery from the merchant’s perspective

4.4 Model checking protection of participants’ interests

39

We remind that the high-level guarantee of protection of participants’ interests ensures that

participants get exactly what they are legitimate to get, in all cases of site failures, message

losses, unilateral aborts and fraudulent behavior.

For the NetBill payment system, collusions between the TTP and C or between the TTP

and M are not studied, as a consequence of the adopted trust assumptions. Thus, protection

of participants’ interests takes the following context:

C’s protection guarantee - “If M is entitled to a payment, then C actually receives the

goods, or C can claim them in an offline dispute handling.”

M’s protection guarantee - “If C actually receives the goods, or C can claim them in an

offline dispute handling, then M is entitled to a payment.”

fun paymentEntitledForM n = (Mark.Merchant'pOrderReq 1 n = [pORequest(v)]
 andalso Mark.TTP'TTP 1 n = [COMPLETED]);
fun noGoodsReceivedByC n = (Mark.Consumer'encrGoods 1 n = []
 orelse Mark.Consumer'decrKey 1 n = []);
fun noGoodsClaimedOfflineByC n = (Mark.Consumer'Consumer 1 n <> [DISPUTED_TR]);
val paymentEntitled = NF("No payment for M!", paymentEntitledForM);
val noGoodsReceived = NF("Goods received by C!", noGoodsReceivedByC);
val noGoodsClaimedOffline = NF("Goods claimed offline!", noGoodsClaimedOfflineByC);
val noProtectionForC = POS(INV(AND(paymentEntitled,
 AND(noGoodsReceived,noGoodsClaimedOffline))));
val result = eval_node noProtectionForC InitNode;
let
 val fid = TextIO.openOut "ProtectionForC.txt"
 val _ = if (result=true)
 then TextIO.output(fid, "No protection of interests for C!")
 else TextIO.output(fid, "The protocol protects C's interests!")
in
 TextIO.closeOut(fid)
end

t

ype ProtectionForC.txt

The protocol protects C's
interests!

Figure 22. Protection of consumer’s interests

The code shown in Figure 22 proves C’s protection guarantee as follows. M is entitled

to a payment, if and only if he has proof that the TTP committed the transaction a) with a

successful result and b) it did so, in response to a valid electronic payment order.

On the other hand, C actually receives the goods during the protocol execution, if and

only if C receives an encrypted version of the ordered goods alongside a key, and the goods

can be obtained by decrypting the encrypted goods with the owned key. Also, C can claim

40

ordered goods in an offline dispute handling, if C can show that the transaction was

successfully processed by the TTP, in response to a valid request, but the goods cannot be

retrieved from the decryption key released with the transaction result and the encrypted

goods given by M.

 C’s protection guarantee is violated, when in some state the value

noProtectionForC becomes true. The result ensures that NetBill protects C’s interests.

4.5 A replay attack counterexample

As in most well known payment systems, NetBill transactions are amenable to protocol

level replay attacks that aim in replaying some protocol messages from a previous

legitimate run. Figure 23 introduces a modified NetBill CP-net that compared to the first

one shown in Figure 3 provides a basis for proving the double spending possibility and for

studying potential countermeasures.

ttpSynch
ttpSynch

TTP2
TTP2

mSynch
mSynch

doubleSpendingM
doubleSpendingM

TTP1
TTP1

Merchant
Merchant

Consumer
Consumer

decrKeyTTP
[]

NetBillMQ

amount2
accBalance

amount1
accBalance

conBalance

2`gValue

accBalance

TTP1

NO_RECORD

State
TTP2

NO_RECORD

State

decrKey

alidORnValidv
dsMerchant

LISTEN

State

Merchant
LISTEN

State

pOrderReq
NetBillMSg

Consumer
IDLE

State

tr_expire
false

BOOL
goods
validORnValid

merBalance
accBalance

TTPtoCon
1`[]

NetBillMQ

ConToTTP
1`[]

NetBillMQ

TTPtoMer
1`[]

NetBillMQ

MerToTTP
1`[]

NetBillMQ

cTimeout
false

BOOL

MerToCon
1`[]

NetBillMQ

ConToMer
1`[]

NetBillMQ

Consumer Merchant TTP1

doubleSpendingM

mSynch

TTP2ttpSynch

Figure 23. Top level CP-net with a double spending merchant and two TTP threads

41

We point out the following modifications:

• An additional substitution transition, named doubleSpendingM, includes the

state transitions for the new place dsMerchant, which is used to represent a

protocol replay merchant thread. The mSynch substitution transition synchronizes

the state transitions of the Merchant and dsMerchant places.

• Two similar TTP transitions are used instead of the single TTP transition shown in

Figure 3. Finally, the new ttpSynch transition synchronizes state transitions of

the TTP1 and TTP2 places, as well as token exchanges between TTP’s

communication channels and the temporary store places amount1, amount2 and

decrKeyTTP.

We omit the details of the new substitution transitions, but we note the addition of

double charging possibilities by having sent in the conBalance place, two

accBalance tokens instead of one.

fun ttp1Charged n=(Mark.TopLevel'TTP1 1 n=[COMPLETED]);
fun ttp2Charged n=(Mark.TopLevel'TTP2 1 n=[COMPLETED]);
fun consumerTrCompleted n=(Mark.TopLevel'Consumer 1 n

 =[COMPLETED]);
fun doubleSpending()=PredNodes(ListDeadMarkings(),
 fn n => (ttp1Charged n
 andalso ttp2Charged n
 andalso consumerTrCompleted n),
 NoLimit);
let
val fid=TextIO.openOut "DSpendingCounterexample.txt"
val _ =TextIO.output(fid,"Path to a double spending dead marking: \n")
val _ = EvalArcs(ArcsInPath (1,hd (doubleSpending())),
 fn a => STRING.output(fid,st_BE(ArcToBE a)))
in
TextIO.closeOut(fid)
end

type DSpendingCounterexample.txt

Path to a double spending dead marking:
"Consumer'C1 1: {p=[],gReq=v,enGoods=v}"
"Merchant'M1 1: {p=[],enGoods=v,mes=gRequest(v),q=[]}"
"Consumer'C2 1: {p=[],mes=eGoods(v),q=[],pOrder=v,
 balance=gValue,balance2=gValue}"
"Merchant'M6 1: {p=[],mes=pORequest(v),q=[],pOrder=v,
 key=v}"
"TTP1'TTP7 1: {p=[],mes=pORequest(v),q=[dKey(v)],
 balance=gValue}"
"ttpSynch'TTPF7 1: {balance=gValue,r=[],q=[]}"
"ttpSynch'TTPF8 1: {timer=false,p=[],q=[],r=[],
 timer2=false,s=[dKey(v)]}"
"doubleSpendingM'M6 1: {mes=pORequest(v),p=[],key=v}"
"TTP2'TTP7 1: {p=[dKey(v)],mes=pORequest(v),q=[dKey(v)],
 balance=gValue}"
"TTP2'TTP12 1: {q=[dKey(v)],p=[trResult("Success"),dKey(v)],
 balance=gValue}"
"Consumer'C10 1: {q=[]}"
"ttpSynch'TTPF20 1: {s=[],q=[dKey(v)],mes=query(e),r=[],
 st=COMPLETED,st2=COMPLETED}"
"doubleSpendingM'M7 1: {}"
"Consumer'C14 1: {timer=false,mes=trResult("Success"),
 q=[dKey(v)]}"
"mSynch'M9 1: {st2=ABORTED,timer=false,
 q=[trResult("Success"),dKey(v), trResult("Success")
 dKey(v)],p=[],st=COMPLETED}"

Figure 24. Counterexample that represents a protocol replay attack

42

Figure 24 shows the generation of a counterexample that represents a protocol replay

attack. Under the assumptions of no self-loop terminal markings and no livelocks, we

examine all dead markings, such that the states of both TTP places are COMPLETED and

the state of the Consumer place does not allow C to set a transaction dispute. Since the

resulted list is not empty, we use function ArcsInPath to generate a path from marking 1

to one of the markings included in the list.

Protocol level replay scenarios can be used to simulate undesirable fraudulent behavior,

in order to design appropriate double spending prevention schemes. In NetBill ([12]),

double spending prevention is based on a globally unique epo (electronic payment order)

identifier that is first sent by M to C, together with the encrypted version of the ordered

goods. The received epo identifier is then included in the payment order signed by C and

eventually received by the TTP. A message freshness indication (a timestamp marking the

time at the end of goods delivery) allows the TTP to discard stale epo identifiers from time

to time.

Other common freshness mechanisms are based on the use of nonces. Because nonces

are unpredictable and are used in only one context, they ensure that a message cannot be

reused in later transactions.

4.6 Model checking concurrent payment transactions and protocol-level intruder attacks

Model checking the described transaction guarantees in concurrent payment systems has

the following difficulties:

• The time needed to develop a model increases with respect to the number of

concurrent payment transactions, due to the complexity of the thread synchronizing

substitution transitions (see for example transitions ttpSynch and mSynch in

Figure 23).

43

• Concurrent payments are likely to result in computationally expensive state spaces.

If we are interested in deriving a transaction guarantee counterexample, we can exploit

the CPN Tools state space branching options for the partial generation of the model’s state

space. We stop after having derived a representative counterexample.

If we are interested in generating the whole state space, we observe that the different

orders of firing transitions of participants’ threads result in different markings and paths in

the model’s state space. In order to prevent unnecessary interleaving, we have to define an

equivalence relation for any two occurrence sequences, with respect to the checked

transaction guarantee. Then, there is no need to include all of the unnecessary interleaving

of participants’ threads in the generated state space graph. One possibility is to employ an

appropriate token-passing scheme, in order to allow only the transitions of one participant’s

thread to be enabled at a given time.

In [3], the authors use a token-passing scheme to model check a key exchange

cryptographic protocol (the TMN protocol), against possible intruder attacks. In a payment

system, an intruder attack [6] may also target the system’s security guarantees (integrity,

authorization, non-repudiation, confidentiality etc), but our modeling approach focuses in

model checking the described transaction atomicity guarantees. A payment transaction

guarantee that is amenable to different forms of intruder attacks is the distributed payment

atomicity.

4.7 Colored Petri Net model checking alternatives

Payment transaction guarantees may also be checked by detailed examination of the

protocol’s dead markings, but this is not true for all of them. If we consider the money

conservation guarantee, we model check that having moved to a non-legitimate state, the

system guarantees that eventually either, M has the money and C does not, or C has the

44

money and M does not. By examination of the protocol’s dead markings we cannot

guarantee that all transitions to non-legitimate states eventually result in legitimate ones.

An alternative CP-net analysis is the invariant analysis. Place invariant analysis aims to

formulate some equations, which we postulate to be satisfied independently of the steps that

occur. Each invariant property is then transformed to an equivalent place flow that is

checked by considering individual transitions one at a time. This implies that for each

transition, we need only look at its immediate surroundings. Transition invariants are

similar to place invariants, but they are used to determine occurrence sequences that have

no total effect, i.e., they have the same start and end markings.

5. Related work

Part of our work refers to model checking fault tolerance with respect to the described

payment transaction guarantees. In related work, we refer to the analysis reported in [8] for

verifying the redundancy mechanisms employed in fault-tolerant control systems. Two

different formalisms are interchangeably used to specify a system: the Calculus of

Communicating Systems (CCS)/Meije process algebra [4] and a Labeled Transition System

(LTS) representation developed with the ATG tool [40]. The JACK verification

environment [10] is then used to generate the whole system’s LTS from the provided

network of subsystems. Fault tolerance properties like for example the fail-stop, the fail-

silence, the fail-safety and other properties are then expressed in Action-based Computation

Tree Logic (ACTL) [31] and are checked by the AMC model checker, which is available in

JACK.

The most important similarity between the work reported in [8] and the approach of the

present article is the fact that both works model explicitly the occurrence of faults as

opposed to other works in the literature of fault tolerant systems, which in fact model only

the failure behavior itself. However, [8] does not address the possibility of message losses

45

due to communication failures and also does not meet the problem of verifying trust

assumptions and fraud scenarios that are prominent in electronic payment systems.

Regarding the adopted approach, we underline the obvious advantages of the CPN Tools

alternative, which offers a single integrated environment for model building and simulation, as

well as, for expressing and verification of the target system properties. In contrast to the process

algebraic approach of [8], the CP-net formalism provides an explicit representation of both

states and events and a formal semantics that builds upon true concurrency and sets the

ground for a compact description of control and synchronization that is integrated with the

description of data manipulation.

Another interesting model checking approach is the one described in [42]. In that work,

the authors attempt a finite-state analysis of two contract signing protocols. The correctness

properties of interest do not include the atomicity guarantees addressed in the present

article, but are related to the fair exchange, the accountability and the abuse-freeness of the

examined protocols.

Model checking is based on Murφ [16], a tool that employs its own high-level language

for the description of nondeterministic finite-state machines. While there is no explicit

notion of process, it is implicitly modeled by a set of related rules and communication

between processes is modeled by shared variables. The Murφ system can then check, by

explicit state enumeration, if every reachable state of the model satisfies a given set of

invariants. This approach seems adequate for correctness properties that are characterized

as “monotonic”, i.e. properties that if they cease to hold at some point, this does not change

in the remainder of the run. However, Murφ and the model checking by state invariants

underlie the restrictions discussed in section 3.1, when trying to express nested reachability.

This fact is also recognized by the authors of [42], who call “non-monotonic” all properties,

which do not hold on intermediate states (as the money conservation guarantee that we

46

proved in the NetBill case). In effect, they recognize that with tools like Murφ it is only

possible “to formalize and check an approximation to a non-monotonic property”. In their

proposal they conjectured the states that invalidate the checked property and eventually

verified this conjecture by analyzing in Murφ a modified protocol environment. The CP-net

approach discussed in present article does not underlie the described restrictions in

expressing complex correctness properties. Invariant analysis is not excluded, but in CP-

nets this analysis concerns the place or transition invariants and it is not based on explicit

state enumeration, with the associated state space explosion risks.

In the field of e-commerce transactions, CP-nets have also been used in [33] and [34],

which describe a formal analysis of the Internet Open Trading Protocol (IOTP). Protocol

verification is based on the methodology of [9] and aims to prove that the protocol

specification satisfies the requirements of its users, as they are described in the so-called

protocol’s service specification. However, the forenamed protocol verification approach

does not aim to prove potential transaction atomicity guarantees as we do, by taking into

account site failure, message loss and participants’ fraud possibilities.

6. Conclusion

This work’s contribution is a systematic approach in the development and validation of

high-level CP-net models of electronic payment systems. We proposed the use of four

different types of places and an automata-driven model building technique. The developed

models are appropriate for model checking all levels of transaction atomicity guarantees, as

well as potential protocol-level intrusion attacks. In the obtained model checking results we

take into account all cases of site failures, message losses, unilateral transaction aborts and

fraudulent participant behavior.

47

Our experience suggests that when systematic model development is focused in the

verification of the considered payment transaction guarantees, it exploits the strengths of

Colored Petri Nets and avoids their pitfalls. For a real-scale protocol like NetBill, our

approach resulted in a model of manageable size in terms of both its usability within the

advanced graphical environment of CPN Tools and its generated state space. Although we

were aware that in CPN Tools current representation and storage of the generated states is

far from being optimal - compared to other mature tools like SPIN - we noted that a

computer with a Pentium IV processor (2.4 GHz) and 500 MB RAM generated the model’s

state space in only 30 seconds. Also, the graph of the strongly connected components,

which is utilized in CTL model checking, was generated in only 2 seconds. In effect, this

allowed us to exploit the strengths of CTL in expressing the considered transaction

guarantees in the form of state space queries, each of which was answered in a couple of

seconds.

The overall approach can be used in studying an important class of open problems in

electronic commerce ([45]), like for example the atomicity mechanisms needed in

distributed purchase transactions ([46]), the development of “non-blocking” payment

systems or systems with semi-trusted or no trusted parties and so on. We referred to some

of these challenges, but we also underline the potentiality of our approach for model

checking transaction guarantees of different types of systems (contract signing systems,

electronic auction systems, orchestrated web services for transactional workflows [35] etc).

Acknowledgments

We acknowledge the CPN Tools team at Aarhus University, Denmark for kindly providing

us the license of use of the valuable CP-net toolset. Also, we acknowledge the anonymous

referees for their thorough contribution in improving the quality of the present article.

48

References

[1] Asokan N., Janson, P., Steiner M., Waidner, M. 1997. State of the art in electronic payment

systems. IEEE Computer, 30 (9): 28-35

[2] Asokan, N. Fairness in Electronic Commerce, PhD Thesis, University of Waterloo, Ontario,

Canada, 1998

[3] Al-Azzoni, I., Down, D. G., Khedri, R. 2005. Modeling and verification of cryptographic

protocols using Coloured Petri Nets and Design/CPN. Nordic Journal of Computing, 12 (3):

200-228

[4] Austry, D., Boudol, G. 1989. Algebre de proessus at synchronization. Theoretical

Computer Science, 1 (30): 91-131

[5] Basagiannis, S., Katsaros, P., Pombortsis, A. Interlocking control by Distributed Signal

Boxes: design and verification with the SPIN model checker. Proceedings of the

International Symposium on Parallel and Distributed Processing and Applications (ISPA

2006), Lecture Notes in Computer Science 4330, Springer-Verlag, 2006; 317-328

[6] Basagiannis, S., Katsaros, P., Pombortsis, A. Intrusion attack tactics for the model checking

of e-commerce security guarantees. Proceedings of the 26th International Conference on

Computer Safety, Reliability and Security (SAFECOMP), Lecture Notes in Computer

Science 4680, Springer-Verlag, 2007; 238-251

[7] Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.,

McKenzie, P. Systems and Software Verification – Model-Checking Techniques and Tools,

Springer, 2001

[8] Bernardeschi, C., Fantechi, A., Gnesi, S. 2002. Model checking fault tolerant systems.

Software testing, verification and reliability, Wiley, 12: 251-275

49

[9] Billington, J., Gallasch, G. E., Han. A Coloured Petri Net approach to protocol verification.

In: Lectures on Concurrency and Petri Nets - Advances in Petri Nets, Lecture Notes in

Computer Science 3098, Springer-Verlag, 2004; 210-290

[10] Bouali, A., Gnesi, S., Larosa, S. 1994. The integration project for the JACK environment.

Bullentin of the EATCS, 54: 207-223.

[11] Cheng, A., Christensen, S., Mortensen, K. H. Model checking Coloured Petri Nets

exploiting strongly connected components, Proceedings of the International Workshop on

Discrete Event Systems, Edinburgh, Scotland, UK, 1996; 169-177.

[12] Cox, B., Tygar, J. D., Sirbu, M. NetBill security and transaction protocol. Proceedings of

the 1st USENIX Workshop in Electronic Commerce, USENIX Association, 1995; 77-88

[13] CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[14] Deitel, H. M., Deitel, P. J., Nieto, T. R. e-Business & e-Commerce: How to program.

Prentice Hall, 2001.

[15] Dierks, T., Allen, C. The TLS Protocol, Version 1.0, Network Working Group, IETF 2246,

January 1999. On-line: http://www.ietf.org/rfc/rfc2246.txt

[16] Dill, D. The Murφ verification system, Proceedings of the 8th International Conference on

Computer Aided Verification, 1996; 390-393.

[17] Ferreira, L. de C., Dahab, R. A scheme for analyzing electronic payment systems,

Proceedings of the 14th Annual Computer Security Applications Conference, IEEE

Computer Society, 1998; 137-146.

[18] Franklin, M., Reiter, M., Fair exchange with a semi-trusted third party, Proceedings of the

4th ACM Conference on Computer and Communication Security, 1997; 1-6.

[19] Garcia-Fanjul, J., Tuya, J. and Corrales, J. A. Formal verification and simulation of the

NetBill protocol using SPIN, Proceedings of the 4th International Workshop on Automata

Theoretic Verification with the SPIN Model Checker, ENST, Paris, France, 1998; 195-210

50

http://www.ietf.org/rfc/rfc2246.txt

[20] Georgiadis, C. K., Pimenidis, E., Web services enabling virtual enterprise transactions,

Proceedings of the IADIS International Conference on e-Commerce, Barcelona, Spain,

2006; 297-302

[21] Heintze, N., Tygar, J., Wing, J., Wong, H., Model checking electronic commerce protocols,

Proceedings of the 2nd USENIX Workshop in Electronic Commerce, Oakland, CA,

USENIX Association, California, 1996; 146-164

[22] Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.

Volumes 1-3 (second corrected printing), Monographs in Theoretical Computer Science,

Springer-Verlag, 1997

[23] Jensen, K. An introduction to the practical use of Coloured Petri Nets, In: Lectures on Petri

Nets II: Applications, ed.: W. Reisig, G. Rozenberg, LNCS 1492, Springer, 1996; 237-292

[24] Katsaros, P., Odontidis, V., Gousidou-Koutita, M. Colored Petri Net based model checking

and failure analysis for E-commerce protocols, Proceedings of the Sixth Workshop and

Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN'05), DAIMI PB-

576, Dept. of Computer Science, University of Aarhus, Denmark, 2005; 267-283

[25] Ketchpel S., Garcia-Molina, H. Making trust explicit in distributed commerce transactions.

Proceedings of the 16th International Conference on Distributed Computing Systems

(ICDCS-96), IEEE Computer Society Press, 1996; 270–281

[26] Kempster, T., Stirling, C., Thanisch, P. A critical analysis of the Transaction Internet

Protocol, Proceedings of the 2nd International Conference on Telecommunications and

Electronic Commerce (ICTEC), Nashville, TN, USA, 1999

[27] Lacoste, G., Pfitzmann, B., Steiner, M., Waidner, M. SEMPER: Secure Electronic

Marketplace for Europe. Lecture Notes in Computer Science 1854, Springer-Verlag, 2000

[28] Lyon, J., Evans, K., Klein, J. Transaction Internet Protocol, Version 3.0, Network Working

Group, IETF 2371, July 1998. On-line: http://www.ietf.org/rfc/rfc2371.txt

51

http://www.ietf.org/rfc/rfc2371.txt

[29] Mu, Y., Nguyen, K. Q., Varadharajan, V. A fair electronic cash scheme. Proceedings of

ISEC 2001, Lecture Notes in Computer Science 2040, Springer-Verlag, 2001; 20-32

[30] Nenadic, A., Zhang, N., Barton, S. A security protocol for certified e-goods delivery.

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC 04), IEEE Computer Society, 2004.

[31] De Nicola, R., Vaandrager, FW. Actions versus state based logics for transition systems,

Proceedings de l’ Ecole de Printemps on Semantics of Concurrency, Lecture Notes in

Computer Science 469, Springer-Verlag, 1990; 407-419.

[32] O’ Mahony, D., Peirce, M., Tewari, H. Electronic payment systems for e-commerce

(Second Edition). Artech House, 2001.

[33] Ouyang, C., Kristensen, L. M., Billington, J. A formal and executable specification of the

Internet Open Trading Protocol, Proceedings of EC-Web 2002, Lecture Notes in Computer

Science 2455, Springer-Verlag, 2002; 377-387

[34] Ouyang, C., Billington, J. An improved formal specification of the Internet Open Trading

Protocol, Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia,

Cyprus, 2004; 779-783

[35] Papazoglou, M. P. 2003. Web services and Business Transactions. World Wide Web:

Internet and Web Information Systems, 6: 49-91

[36] Pfitzmann B., Waidner M. Properties of payment systems – General definition sketch and

classification. Research Report RZ 2823 (#90126), IBM Research Division, May 1996

[37] Pombortsis, A., Tsoulfas, A. An introduction to Electronic Commerce (In Greek). Tziolas

Publishers. 2002.

[38] Ray, I., Ray, I., Natarajan, N. 2005. An anonymous and failure resilient fair-exchange e-

commerce protocol. Decision Support Systems, 39: 267-292

[39] Roscoe, A. W. The theory and practice of concurrency. Prentice-Hall (Pearson). 2005.

52

[40] Roy, V., De Simone, R. AUTO and Autograph. Proceedings of the Workshop on Computer

Aided Verification, Lecture Notes in Computer Science 531, Springer-Verlag, 1990; 65-75.

[41] Schuldt, H., Popovici, A., Schek, H.-J. Automatic generation of reliable e-commerce

payment processes. Proceedings of the First International Conference on Web Information

Systems Engineering (WISE 00), Vol. 1, IEEE Computer Society, 2000; 434-441

[42] Shmatikov, V., Mitchell, J. C. 2002. Finite-state analysis of two contract signing protocols.

Theoretical Computer Science, 283 (2): 419-450

[43] Shyamasundar, R. K., Deshmukh, B. MicroBill: An efficient secure system for subscription

based services. Proceedings of ASIAN 2002, Lecture Notes in Computer Science 2550,

Springer-Verlag, 2002; 220-232

[44] Su, J., Tygar, J. D. Building blocks for atomicity in electronic commerece, Proceedings of

the Sixth USENIX UNIX Security Symposium, USENIX Association, San Jose, California,

1996;

[45] Tygar, J. D. Atomicity in electronic commerce. 1998. Atomicity in electronic commerce.

netWorker, ACM Press, 2 (2): 32-43

[46] Wang, G., Das, A. Models and protocol structures for software agent based complex e-

commerce transactions, Proceedings of EC-Web 2001, Lecture Notes in Computer Science

2115, Springer-Verlag, 2001; 121-131

[47] Wong, H. L. Protecting individuals’ interests in Electronic Commerce Protocols, PhD

Thesis, CMU-CS-00-160, School of Computer Science. Carnegie Mellon University,

Pittsburgh, 2000

[48] Xu, S., Yung, M., Zhang, G., Zhu, H. Money conservation via atomicity in fair off-line e-

cash, Proceedings of the 2nd International Workshop of Information Security, Lecture

Notes in Computer Science 1729, Springer-Verlag, 1999; 14-31

Appendix A

53

In CP-nets the states are represented by means of places (which are drawn as ellipses). By

convention we write the names of the places inside the ellipses. Each place has an

associated data type determining the kind of data that the place may contain (by convention

the type information is written in italics, next to the place). The type declarations implicitly

specify the operations that can be performed on the values of the types. A state of a CP-net

is called a marking and consists of a number of tokens positioned on the individual places.

Each token carries a data value, which belongs to the type of the corresponding place.

A marking of a CP-net is a function, which maps each place into a multi-set of tokens of

the correct type. We refer to the token values as token colors and to their data types as color

sets. The types of a CP-net can be arbitrarily complex, e.g., a record where one field is a

real, another a text string and a third a list of integers.

The actions of a CP-net are represented by means of transitions, which are drawn as

rectangles. An incoming arc indicates that the transition may remove tokens from the

corresponding place while an outgoing arc indicates that the transition may add tokens. The

exact number of tokens and their data values are determined by the arc expressions, which

are positioned next to the arcs. Arc expressions may contain variables as well as constants.

To talk about the occurrence of a transition, we need to bind incoming expressions to

values from their corresponding types. Let us assume that we bind the incoming variable v

of some transition T to the value d. The pair (T, <v =d >) is called binding element and this

binding element is enabled in a marking M, when there are enough tokens in its input

places. In a marking M, it is possible to enable more than one binding elements of T. If the

binding element (T, <v =d >) occurs, it removes tokens from its input places and adds

tokens to its output places. In addition to the arc expressions, it is possible to attach a

boolean expression with variables to each transition. The boolean expression is called a

54

guard and specifies that we only accept binding elements, for which the boolean expression

evaluates to true.

55

	C1
	C2
	C3
	C4
	C5
	C8
	C10
	C11
	C12
	C13
	C14
	C15
	C16
	C17
	C18
	C19
	C6
	C7
	C9
	M1
	M2
	M3
	M4
	M5
	M6
	M7
	M8
	M9
	M10
	M11
	M12
	M13
	TTP1
	TTP2
	TTP3
	TTP5
	TTP6
	TTP7
	TTP8
	TTP10
	TTP12
	TTP13
	TTP14
	TTP4
	TTP9
	TTP11

