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Abstract 

Electronic payment systems play a vital role in modern business-to-consumer and business-

to-business e-commerce. Atomicity, fault tolerance and security concerns form a problem 

domain of interdependent issues that are taken into account to assure the transaction 

guarantees of interest. We focus on the most notable payment transaction guarantees: 

money conservation, no double spending, goods atomicity, distributed payment atomicity, 

certified delivery or validated receipt and the high-level guarantees of fairness and 

protection of payment participants’ interests. Apart from a roadmap to the forenamed 

transaction guarantees, this work’s contribution is basically a full-fledged methodology for 

building and validating high-level protocol models and for proving payment transaction 

guarantees by model checking them from different participants perspectives (payer 

perspective, as well as payee perspective). Our approach lies on the use of Colored Petri 

Nets and the CPN Tools environment (i) for editing and analyzing protocol models, (ii) for 

proving the required transaction guarantees by CTL-based (Computation Tree Temporal 

Logic) model checking and (iii) for evaluating the need of candidate security requirements.   
 

KEYWORDS: electronic payments, atomicity, fault tolerance, e-commerce transactions, 

security, Colored Petri Nets, model checking 

 

1. Introduction 

Electronic payment systems are expected to ensure that payment transactions occur 

atomically. This means that each participating node must reach the same conclusion as to 

whether an ongoing payment is to be completed, even in the face of failures. Atomicity is 

one of the key properties (Atomicity, Consistency, Isolation and Durability) – known as 

ACID properties – of modern transactional information systems [20]. In these systems the 

mechanism used for achieving atomic commitment (e.g. the two-phase commit protocol) is 
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bundled together with a specific program-to-program communication protocol and that 

protocol lives on top of an appropriate infrastructure. In electronic payments, participants 

may use communication protocols for which there are no transactional variants (e.g. HTTP) 

and the programs may be deployed in very heterogeneous application environments. For 

these reasons, electronic payment systems cannot rely on traditional transaction 

mechanisms.  

Another problem is that in addition to potential system crashes and accompanying 

message omission failures, we have to take into account the possibility of fraudulent 

behavior by the payment participants, as well as, the well-known security flaws of the 

Internet infrastructure. A payment protocol must provide an appropriate combination of 

transaction guarantees that depends on the application domain. Thus, we need means for 

proving the expected transaction guarantees and for studying the protection requirements 

against potential security flaws and intrusion attacks ([6]). 

We focus on payment transaction guarantees like money conservation, no double 

spending, goods atomicity, distributed payment atomicity and certified delivery or validated 

receipt. Security concerns ([1] and [36]) are skimmed only to the degree needed to enable 

safe payments, in the presence of various transaction attack scenarios or potentially 

fraudulent behavior. Also, we refer to the high-level transaction guarantees of fairness ([2]) 

and protection of participants’ interests ([47]). 

The proposed model checking approach verifies the forenamed transaction guarantees 

from different participants’ perspectives that are selected based on the adopted trust model. 

We suggest the construction and validation of a Colored Petri Net (CP-net) that reflects all 

protocol execution scenarios, including unilateral transaction aborts, potentially fraudulent 

behavior and all site failure and message loss possibilities. Valuable features of the CP-net 

modeling language that play an important role in our model checking approach are: (i) the 
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fact that the formalism builds upon true concurrency instead of an interleaving-based 

semantics, (ii) the fact that CP-nets provide a compact description of control, 

synchronization and data manipulation resulting in an explicit representation of both model 

states and events and (iii) the wide range of analysis alternatives, which allow to 

conveniently express and subsequently check the required model correctness criteria and 

the expected payment transaction guarantees.      

The model is built in CPN Tools ([13]), an advanced toolset for editing, simulating and 

analyzing CP-nets ([22]). The expected guarantees are verified by CTL-based 

(Computation tree Temporal Logic) model checking. Our approach is described in terms of 

a CP-net developed for NetBill, a system for Internet-based micropayments for information 

goods and services. 

Section 2 provides an overview of electronic payments and defines the transaction 

guarantees of interest. Section 3 describes the proposed model building and validation 

approach. Section 4 refers to the CTL-based model checking of the expected transaction 

guarantees in terms of the developed NetBill CP-net. Section 5 outlines related model 

checking works and other CP-net solutions to specific e-commerce problems. We conclude 

with a discussion on the usefulness of the proposed approach and its potential impact.  

 

2. Electronic payments and payment transaction guarantees  
 

2.1 Electronic payment models 

The growing importance of e-commerce and the ever-increasing number of business 

transaction models has resulted in a plethora of payment systems. Online payments involve 

communication with a trusted third party (TTP) during payment and in general they are 

considered as more secure than offline payments that involve only the payer and the payee.  

The vast majority of Internet payment systems are online systems that perform either:  
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• Credit-card payments (First Virtual, CyberCash, iKP, Anonymous Credit Cards) 

• Micropayments (NetBill, Millicent, μ-iKP, MiniPay and NetCash)  

• Or they are used as payment switches (OpenMarket).  

Offline payment systems include  

• The electronic purses that use smart cards (Danmont/Visa, CLIP, Mondex and 

EMV Electronic Purse)  

• The electronic checks (FSTC Electronic Checks) 

• A number of electronic cash systems (eCash and CAFE).  

A detailed description of the forenamed types of payment systems is given in [14], [17] 

and [37]. In [1], the authors provide a thorough treatment of the most fundamental security 

requirements, as well as a complete source of references. In what is concerned with credit-

card payments, iKP has been designed by IBM Research with the intention of serving as a 

starting point for new standards. A commercially successful standard that was based on iKP 

is the Secure Electronic Transactions (SET) specification, launched by Mastercard and 

VISA as an open non-proprietary, license-free standard for securing on-line transactions. In 

the field of micropayments, which mainly concern with payments of intangible products 

(digital goods or services), NetBill is probably the most widely known commercially 

successful payment system in use. Regarding the aforementioned offline payment options, 

we know that Mondex, FSTC Electronic Checks and eCash have been adopted by large 

financial organizations and banks as an alternative way of payments to be offered to their 

customers. An important development in the last few years is the widespread use of one-

stop integrated payment processing services like the ones offered by PayPal, Amazon 

Payments and Google Checkout. The payment protection policy of the forenamed service 

providers applies only to tangible goods transactions (e.g. books, DVDs etc) and the 

arbitration process for the resolution of disputes is based on proofs of delivery that are 
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provided by the seller. In effect, the declared user agreements do not offer guarantees for 

the safety and the reliability of the application(s) used to access the payment service.     

A number of recent contributions ([38], [30], [43], [29]) confirm an ongoing interest in 

the development of new payment systems. Also, the work published in [41] points out the 

need for custom-made payment systems, which provide payment services that are extended 

beyond the traditional bilateral transaction model. 

The authors of [21] and [36] are probably the first who pinpoint the need for a 

systematic treatment of the correctness properties required in digital payment systems. The 

first work focuses on model checking three transaction guarantees from the ones mentioned 

in Section 1 and the second work proposes a framework of abstractions for the formal 

definition of security properties, like for example payment integrity and privacy. 

In general, the majority of the published articles, as well as a relevant book on digital 

payment systems ([32]) and a well-known research project in e-commerce ([27]) focus on 

the security requirements of electronic payments. Our work refers to model checking the 

transaction guarantees mentioned in Section 1, in all protocol execution scenarios, 

including unilateral transaction aborts, potentially fraudulent behavior, all site failure and 

message loss possibilities and various protocol level transaction attacks. 

 

2.2 Payment transaction guarantees 

The money conservation guarantee ([21]) - also called money atomicity - is the basic level 

of atomicity in electronic payments. This guarantee ensures that there is no possibility of 

creation or destruction of money, while electronic money is being transferred. In a poorly 

designed payment system, money conservation can be compromised due to site failures, 

unilateral transaction aborts, fraudulent behavior and different forms of protocol-level 

attacks. More specifically, in account transfer systems we do not allow non-atomic 
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execution of pairs of debit - credit actions and also we do not allow redundant debits and 

credits within the same payment transaction. 

We also require payment systems that prevent double-spending ([32]), that is, they 

prevent execution scenarios where a single payment order is performed more than once. In 

a replay attack, double spending takes place by replaying some messages from a previous 

legitimate run. A common mechanism to prevent this attack is to guarantee the freshness of 

messages exchanged between the participants. Freshness means that a message provably 

belongs to the current payment transaction and is not a replay of a previous message. 

Goods atomicity ([21]) is a transaction guarantee that ensures money atomicity and also 

ensures that there is no possibility of paying without receiving goods or vice versa. In 

bilateral payment transactions, goods atomicity is checked from both participants’ 

perspectives (payer and payee) in all cases of site failures, unilateral transaction aborts and 

potentially fraudulent behavior. 

In the more general case of multi-party payments, which is the case of distributed 

purchase transactions, goods atomicity is required for all protocol participants ([25]). In a 

distributed purchase transaction a consumer interacts with multiple merchants. Consider for 

example a consumer who pays for an airline fare, if and only if, the accompanying 

accommodation payment transaction asked from another merchant is also successfully 

completed.  

Distributed payment atomicity ([41]) guarantees the inclusion of interactions with 

independent participants into a single transaction. A way to provide this guarantee in 

heterogeneous environments, where applications use communication protocols with no 

transactional variants, is the Transaction Internet Protocol – TIP ([28]). TIP’s two phase 

commit coordinates a system’s transaction managers independently of the used application 
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communication protocol. TIP operates over TCP and optionally uses the Transport Layer 

Security protocol ([15]) to authenticate the senders and to encrypt the TIP commands. 

However, TIP is amenable to different forms of intrusion attacks (two denial of service 

attacks, one transaction corruption attack, one packet-sniffing attack and one man-in-the-

middle attack) and for this reason customized payment systems that use TIP have to be 

formally analyzed ([26]), in order to evaluate the need of candidate security characteristics. 

Certified delivery ([21]) is a transaction guarantee that requires both money 

conservation and goods atomicity and also requires all payment participants to be able to 

prove the sensitive details of the transaction. In NetBill, certified delivery allows consumers 

and merchants to prove what happened on-line and to settle disputes off-line. This 

guarantee also has to be provided in all cases of site failures and message losses, unilateral 

transaction aborts and potentially fraudulent behavior. In bilateral payment transactions, 

certified delivery is checked from both participants’ perspectives (payer and payee). 

Alternatively, a class of payment systems (e.g. [38]) used in digital goods transactions 

provides the validated receipt guarantee, which ensures that the payer is able to verify the 

contents of the product about to be received. This is achieved by enabling the payer to 

verify that the encrypted goods sent by the merchant are given as encryption of the same 

product, for which an escrowed copy has been previously encrypted by the TTP and has 

been subsequently placed at a publicly accessible place.     

Goods atomicity satisfies the high-level fair exchange property ([2] and [18]): no 

protocol participant can gain any advantage over other participants by misbehaving. In 

payment transactions the payer gains advantage if he receives the goods (or payment 

receipt), but the payee does not receive the payment. On the other hand, a payee gains 

advantage if he receives the payment, but the payer does not receive the goods (or payment 
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receipt). We note that fairness guarantees only that money is exchanged for something and 

not necessarily for what the payer pays for. 

Protection of participants’ interests ([47]) is another high-level guarantee that ensures 

that participants get exactly what they are legitimate to get. This guarantee generalizes 

fairness in the sense that in some cases one participant’s interests can be compromised even 

if no one else has gained any advantage.  

To analyze a protocol with respect to fairness, we consider protocol execution scenarios 

where a participant misbehaves and we check whether the participant himself can obtain 

any advantage. When analyzing a protocol with respect to protection of a participant’s 

interests, we consider protocol execution scenarios where everything (other participants and 

the network) except the participant’s local execution can go wrong and we check whether 

the participant’s interests can be hurt. Also, we take into account threats that are not 

considered when we analyze the protocol’s fairness. As an example, the assumed failure 

model includes network failures, which are out of the control of the participants: in an 

electronic cash payment, if the payment sent by the payer gets lost while in transit and the 

“payee” does not send the goods, then no one has gained any advantage, but the customer’s 

interests have been hurt. Also, we take into account the possibility of collusions among 

multiple participants, as well as a class of attacks known as sabotage attacks, where a 

participant misbehaves not aiming to obtain advantage, but to hurt someone else’s interests. 

When the studied payment system uses trusted parties, all the forenamed guarantees 

rely on these parties behaving as trusted. This means that trusted parties are assumed to 

perform protocol steps correctly and reliably and this behavior is decisive to guaranteeing 

satisfaction of the expected transaction guarantees. Thus, our high-level protocol models 

are required to satisfy a set of protocol-specific assumptions that we call trust assumptions, 

which are supposed to be part of the model’s correctness criteria. 
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3. A Colored Petri Net modeling approach for payment systems  
 

3.1 The Colored Petri Net modeling language 

Apart from the proposed CP-net analysis, two alternatives have been used in model 

checking payment transaction guarantees. The work of [19] uses the SPIN model checker 

and the one reported in [21] employs a Communicating Sequential Processes approach and 

the Failure Divergence Refinement (FDR) tool ([39]). Both of them adopt a process-based 

representation of the system, where processes are described using events and operators. 

Events cause a process to change state, but the representation of states is implicit. 

Significant restrictions of the forenamed approaches that motivate the alternative 

approach proposed by us are: 

• their limited expressiveness in the modeling of concurrently executed events and  

• their limited expressiveness in specifying the correctness properties of interest 

The interleaving semantics of PROMELA (SPIN’s specification language) and the trace 

semantics of the CSP/FDR approach imply that concurrent execution of two events can 

only be represented by the occurrence of the two events after each other, in any order. 

From our experience with PROMELA ([5] and [6]), we realized that this fact thrusts the 

modeler to express concurrency within a process by explicitly specifying all possible orders 

of occurrence for the concurrent events. However, this approach is inadequate for models 

with payment participants that have concurrent (and possibly synchronized) threads of 

control.  

This problem arises when we study the guarantees of interest in scenarios with 

concurrent payment transactions. The absence of double spending guarantee in replay 

attack scenarios is a typical case, where the TTP model is required to handle multiple 

payment transactions with concurrent threads that obey to the modeled protocol rules. In 
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SPIN, the analyst has to explicitly specify all possible orders of occurrence for the 

concurrent events within the TTP. Depending on the protocol size, the number of possible 

event orders can be large and this results in an error-prone analysis. The CP-net formalism 

is an attractive alternative, since concurrency is not expressed in an interleaving-based 

semantics. The replay attack scenario and the model checking of the absence of double 

spending are illustrated in more detail in section 4.5. 

Regarding the second mentioned restriction of the published model checking 

approaches, we note that in SPIN correctness properties are specified in Linear Temporal 

Logic (LTL). In principle, LTL is poorly suited for reachability properties like the ones 

implied by the transaction guarantees of interest. It implicitly quantifies over all possible 

execution paths and therefore it can only express reachability negatively: something is not 

reachable. Moreover, with LTL there is still no way to choose an arbitrary set of starting 

states (nested reachability), for the model checking of the property of interest [7]. Figure 1 

shows a typical case of two state space graphs, for which we cannot have an LTL formula 

that is true for some tree and false for the other tree. 
 

 
 

Figure 1. Two state space graphs, indistinguishable for Linear Temporal Logic (LTL) 
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In CSP/FDR the protocol and the property of interest are described as two different CSP 

processes. To determine whether the protocol satisfies the property the modeler tests 

whether the protocol’s set of traces is a subset of the property’s set of traces (trace 

refinement). In [21] the authors confess that in general the most obvious specification of a 

property is often incorrect or inadequately expressed. Indeed, a more precise property 

specification is usually obtained as a result of some experimentation. 

In contrast to SPIN and CSP/FDR, Petri Net (PT-net) modeling languages provide an 

explicit representation of both states and events and an easy to understand and intuitively 

appealing graphical representation. They have well-defined formal semantics that instead of 

interleaving builds upon true concurrency and they also offer a wide range of formal 

analysis alternatives. 

CP-nets ([22], [23]) constitute a compact and much more convenient modeling 

language when compared to ordinary PT-nets, in a similar way as high-level programming 

languages are more adequate for practical programming than assembly code. In CP-nets we 

attach a data value to each token and this results in much fewer places than would be 

needed in a low-level PT-net. Thus, the tokens of a CP-net are distinguishable from each 

other and hence colored. An important reason for using CP-nets is that they provide a 

compact description of control and synchronization, integrated with the description of data 

manipulation. This means that on a single workspace it can be seen what the environment, 

enabling conditions and effects of a state transition are. CP-nets also provide support for 

building large models, by relating smaller CP-nets to each other in a well-defined way. This 

results in hierarchical descriptions and makes it possible to model very large systems in a 

manageable and modular way. 

CP-nets have been developed over the last 28 years and today constitute a mature 

modeling language supported by an advanced toolset ([13]) for editing, interactively 
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simulating and formally analyzing the model by a wide range of analysis alternatives. 

Reachability properties are specified in CTL by taking advantage of the offered explicit 

representation of the system’s states. An informal introduction to the CP-net modeling 

language is provided in Appendix A. 

 

3.2 The NetBill payment system 

The NetBill transaction protocol ([12]) involves three participants: the consumer (C), the 

merchant (M) and the trusted third party (TTP). Transactions involve three phases: price 

negotiation, goods delivery and payment. We consider the selling of information goods or 

services, in which case NetBill links goods delivery and payment into a single atomic 

transaction. We use the notation “X ⇒ Y message” to indicate that X sends the specified 

message to Y. The basic protocol consists of the following messages:  

 1. C ⇒ M  Price request 

 2. M ⇒ C  Price quote 

 3. C ⇒ M  Goods request 

 4. M ⇒ C  Requested goods, encrypted with a key K 

 5. C ⇒ M  Electronic Payment Order (epo) 

 6. M ⇒ TTP  Endorsed Electronic Payment Order (including the key K) 

 7. TTP ⇒ M  Transaction result (including K in a successful payment) 

 8. M ⇒ C  Transaction result (including K in a successful payment) 

C and M interact with each other in the following way:  

• C issues a price request for a particular product (1) and M replies with the requested 

price (2), 

• C either aborts the transaction or issues a goods request to M (3), 

• in the second case, M delivers the requested goods encrypted with a key K (4). 
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The goods are cryptographically checksummed in order to be able to confirm that 

received goods are not affected by potential transmission errors and that they have not been 

subsequently altered. The TTP is not involved until the payment phase: 

• C sends to M (5) an electronic payment order (epo) including all necessary payment 

details and the received product checksum, 

• M validates the received epo and checksum information and either aborts the 

transaction or endorses it by sending to the TTP the received payment order, 

together with additional payment information and the decryption key K (6), 

• TTP responds to M (7) with the payment result and the decryption key K (successful 

payment), which are finally forwarded to C (8) to terminate the transaction. 

NetBill protects C against fraud by M, in the following ways: 

• the key K, which is needed to decrypt the goods is registered with the TTP and if M 

does not respond in a valid payment as expected, C asks the key from the TTP, 

• if there is a discrepancy between what C ordered and what M delivered, C can easily 

demonstrate this discrepancy to the TTP, since the payment order received by TTP 

includes all details about what exactly was ordered, the amount charged, the key K 

sent by M and the checksum of the delivered encrypted goods. Thus, if the goods 

are faulty it is easy to demonstrate that the problem lies with the goods as sent and 

not with any subsequent alteration (that would produce different checksum 

information). 
 

3.3 General model structure and assumptions 

We propose the places of a CP-net payment model to belong to the following categories: 

• places that represent participants’ states with respect to the ongoing purchase 

transaction (e.g. IDLE, WAIT, ABORTED, COMMITTED, FAILED etc), 
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• places that represent participants’ communication channels, like for example the 

channel used for the messages sent by the Consumer to the Merchant, 

• places that represent sensitive information, like for example money or purchased 

goods (or payment receipt), which take one of usually two possible values 

depending on the ongoing protocol execution scenario (e.g. valid or invalid goods, 

enough or not enough account balance etc) and 

• places used to represent transaction control flow, like for example places that trigger 

a query, due to an occurred transaction timeout. 

     colset E   = with e; 
     colset INT  = int; 
     colset BOOL  = bool; 
     colset STRING  = string; 
     colset validORnValid = with v | i; 
     colset accBalance = with gValue | lessMoney; 
     colset State  =  with IDLE   | WAIT   | W_FAILED  
                          | ABORTED | COMMITTED  | C_FAILED  
                          | COMPLETED | DISPUTED_TR  | LISTEN | NO_RECORD 
                          | L_FAILED  | STARTED_TR  | ST_FAILED | N_FAILED; 
     colset NetBillMSg=union gRequest:validORnValid  + eGoods:validORnValid 
                            +pORequest:validORnValid + trResult:STRING 
                            +dKey:validORnValid + query:E; 
     colset NetBillMQ =list NetBillMSg; 
     var p,q,r,s: NetBillMQ; 
     var mes,mes2: NetBillMSg; 
     var gReq:validORnValid; 
     var pOrder: validORnValid; 
     var enGoods: validORnValid; 
     var balance: accBalance; 
     var timer,timer2: BOOL; 
     var key: validORnValid; 
     var st: State; 

Figure 2. Color sets and variables for the NetBill CP-net 
 

Figure 2 introduces the color sets and variables used in the NetBill CP-net. The token 

values included in the enumerated color set validORnValid are used in symbolically 

representing sensitive information (goods request, payment order, encrypted goods and 

encryption key) that determines the ongoing protocol execution scenario. The token values 

included in the enumerated color set accBalance represent different cases of account 

balance, when compared to the ordered goods value. Color set State includes the token 
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values needed to represent all possible participants’ states with respect to the ongoing 

purchase transaction. Initial participants’ states are IDLE for C, LISTEN for M and 

NO_RECORD for the TTP. The union color set NetBillMSg specifies all possible types of 

messages exchanged through the model’s communication channels. Each channel is 

represented as a list of NetBillMSg messages (NetBillMQ). 
 

Consumer
Consumer

Merchant
Merchant

TTP
TTP

ConToMer
NetBillMQ

1`[]

conBalance
accBalance

1`gValue

tr_expire
BOOL

false
goods
validORnValid

merBalance
accBalance

Consumer
State

IDLE

MerToCon
NetBillMQ

1`[]

cTimeout
BOOL

false

MerToTTP
NetBillMQ

1`[]

TTPtoMer
NetBillMQ

1`[]

ConToTTP
NetBillMQ

1`[]

TTPtoCon
NetBillMQ

1`[]

 
Figure 3. Top level CP-net for the NetBill payment system 

 

Figure 3 presents the top level CP-net that includes places of all of the four forenamed 

categories. Place Consumer is the only one place of the first category shown in this page. 

Places ConToMer, MerToCon, MerToTTP, TTPtoMer, ConToTTP and TTPtoCon 

represent all participants’ communication channels (initially empty). Places conBalance, 

merBalance and goods contain tokens that represent money and purchased goods 

respectively. Finally, places cTimeout and tr_expire are used to express the 

triggering of a query sent by C to the TTP, due to an occurred transaction timeout. 

Substitution transitions Consumer, Merchant and TTP include the corresponding 

participants’ state transitions to be described in the forthcoming paragraphs. 
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In the shown NetBill CP-net, the adopted modeling assumptions are: 

• Non-reliable FIFO message delivery by the participants’ communication channels, 

with no eavesdropping and no message integrity violation (these possibilities may 

compromise privacy and payment integrity [6], but they are out of the scope of our 

concern, since we focus on the transaction guarantees of section 2.21). 

• Participants’ sites fail by crashing, without emission of spurious messages (fail-stop 

failure model). 

• While in a failed state, all protocol messages and data in participants’ input 

communication channels are lost (omission failures). 

• Message losses due to communication failures are modeled also as transitions to 

failure states for the recipients and this representation is consistent with the effects 

of a message loss to the ongoing purchase transaction. 

The model’s trust assumptions do not allow dishonest or unexpected behavior for the 

TTP. This means that irrespective of the occurred site failures and message losses the TTP 

either aborts or completes the transaction and delivers the transaction result that in all cases 

should be consistent with the occurrence or no occurrence of the requested payment. 

 

3.4 Payment participants’ state transitions 

This section provides finite state automata that specify the participants’ state transitions to 

be modeled. Consumer’s finite state automaton (Figure 4 and Table 1) represents all 

protocol execution scenarios, including unilateral transaction aborts, merchant fraud, 

dishonest consumer behavior (low account balance) and all site failure and message loss 

cases. State transitions reflect the effects of the exchanged protocol messages on the state of 

the ongoing purchase transaction. Each transaction starts with the dispatch of a (valid or 

                                                 
1 However, as we already noted, fake protocol messages in distributed purchase transactions are likely to break the 

assumed payment atomicity. 
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invalid) goods request (transition C1) and every goods request corresponds to the launch of 

a new purchase transaction. 
 

IDLE

WAIT

W_FAILED

ABORTED COMMITTED

C_FAILED

COMPLETEDDISPUTED_TR

C1

C2C3
C4

C5

C6
C7

C11
C12 C14

C8 C9
C10

C15

C13
C16

C17

C18C19

 
 

Figure 4. Consumer’s finite state automaton 
  

Table 1 Consumer’s automaton transitions 

Transitions from operational states: 
C1 Consumer sends to the Merchant a (valid or invalid) goods request. 
C2 Consumer receives from the Merchant the requested encrypted goods and sends him an electronic 

payment order. Failure to perform these two actions atomically corresponds to executing 
transition C5. 

C3 Consumer aborts the ongoing purchase transaction. 
C4 Consumer receives a message sent by the Merchant or the TTP, while being in state ABORTED. 
C5 This models the occurrence of a consumer site failure, while the consumer was in state WAIT. 

Protocol messages or data that lie in consumer’s input communication channels are lost. 
C8 This models the occurrence of a consumer site failure, while the consumer was in state 

COMMITTED. Protocol messages or data that lie in consumer’s input communication channels 
are lost. The consumer remains committed to the already paid purchase transaction by means of 
permanent storage.  

C10 Ongoing purchase transaction timeouts due to a merchant site failure or a fraudulent merchant 
abort. The consumer queries the TTP for the transaction result. 

C11 Consumer receives a “Succeed” transaction result and the required decryption key by the 
merchant. 

C12 Consumer receives a “Succeed” transaction result and a decryption key by the merchant, but 
discovers a merchant fraud. 

C13 Consumer receives an “Aborted” transaction result by the merchant. 
C14 Consumer receives a “Succeed” transaction result and the required decryption key by the TTP. 
C15 Consumer receives a “Succeed” transaction result and a decryption key by the TTP, but discovers 

a merchant fraud. 
C16 Consumer receives an “Aborted” transaction result by the TTP. 
C17 Consumer’s sent request timeouts, due to a merchant site failure or due to merchant’s unilateral 

abort. 
C18 Consumer receives a “Succeed” transaction result, while being in state COMPLETED. 
C19 Consumer receives a “Succeed” transaction result, while being in state DISPUTED_TR. 
Transitions from failure states: 
C6 Consumer’s site recovers from a failure and the ongoing purchase transaction is aborted. Protocol 

messages or data that lie in consumer’s input communication channels are lost (the consumer 
cannot receive messages while being in state W_FAILED). 

C7 Consumer’s site recovers from a failure and continues with the ongoing purchase transaction. 
Protocol messages or data that lie in consumer’s input communication channels are lost. 

C9 Consumer’s site recovers from a failure and queries the TTP for the result of the ongoing 
purchase transaction. Protocol messages or data that lie in consumer’s input communication 
channels are lost. 
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Site failures (including message loss cases) are not represented by terminating states: 

irrespective of the occurred site failures a consumer either aborts or completes a purchase 

transaction and the received goods are either the ordered ones or are not the ones expected. 

As a consequence, the shown finite state automaton includes three terminating states 

(COMPLETED, ABORTED and DISPUTED_TR) and two failure states (W_FAILED and 

C_FAILED) that correspond to two different recovery cases. While the consumer is in a 

failed state, all protocol messages and data received in its input communication channels 

are lost. 

Merchant’s finite state automaton (Figure 5 and Table 2) reflects all merchant behavior 

possibilities, including unilateral transaction aborts, merchant fraud and all site failures and 

message losses. We abstract from candidate recovery mechanisms (which result in loss of 

generality) by assuming that merchant’s site does not provide recovery with respect to the 

ongoing transaction. As a consequence, the shown finite state automaton includes four 

terminating states (COMPLETED, ABORTED, L_FAILED and ST_FAILED) with two of 

them corresponding to site failure (and message loss) states. In all failed states, protocol 

messages and data received in merchant’s input communication channels are lost. 
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Figure 5. Merchant’s finite state automaton 
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Table 2 Merchant’s automaton transitions 

Transitions from operational states: 
M1 The merchant thread receives a valid goods request and responds with an encrypted version of 

the requested goods. Failure to perform these two actions atomically corresponds to executing 
transition M2. 

M2 This models the occurrence of a merchant site failure, while the merchant thread was in the 
LISTEN state. Protocol messages or data that lie in merchant’s input communication channels 
are lost. We do not make assumptions regarding the merchant site recovery. 

M3 The merchant thread receives an invalid goods request (e.g. wrong product) or an invalid 
payment order (e.g. invalid product checksum number) and aborts the ongoing purchase 
transaction. 

M4 The merchant thread aborts the ongoing purchase transaction due to unilateral decision. 
M5 The merchant thread receives a goods request or a payment order, while being in state ABORTED. 
M6 The merchant thread endorses a valid electronic payment order and forwards it (including the 

required decryption key) to the TTP. Potential failure to perform these two actions atomically 
corresponds to executing transition M2 (site failure) or transition M4 (unilateral abort). 

M7 The merchant thread aborts the ongoing purchase transaction. 
M8 The merchant thread receives the transaction result and does not notify the consumer. 
M9 This models the occurrence of a merchant site failure, while the merchant thread was in state 

STARTED_TR. Protocol messages or data that lie in merchant’s input communication channels 
are lost. We do not make assumptions regarding the merchant’s site recovery. 

M10 The merchant thread receives a “Succeed” transaction result from the TTP and forwards it 
together with the required decryption key to the consumer. Failure to perform these two actions 
atomically corresponds to executing transition M9. 

M11 The merchant thread receives an “Aborted” transaction result from the TTP and notifies the 
consumer. Failure to perform these two actions atomically corresponds to executing transition 
M9. 

M12 Protocol messages sent to the merchant’s input communication channels are lost. 
M13 Protocol messages sent to the merchant’s input communication channels are lost. 
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Figure 6. TTP finite state automaton 
 

The TTP finite state automaton (Figure 6 and Table 3) reflects all protocol execution 

scenarios (valid or invalid payment order, low account balance, etc), as well as unilateral 

transaction aborts (debit or credit failures) and all site failure possibilities (including 

message loss cases). The adopted trust assumptions imply that irrespective of the occurred 

20 



site failures or message losses the TTP either aborts or completes the purchase transaction 

and delivers the transaction result as expected. As a consequence, the shown finite state 

automaton includes two terminating states (COMPLETED and ABORTED) and three failure 

states (L_FAILED, ST_FAILED and N_FAILED) that correspond to three different 

recovery cases. While the TTP is in a failed state, all protocol messages and data received 

in its input communication channels are lost. 
 

Table 3 TTP automaton transitions 

Transitions from operational states: 
TTP1 The TTP receives an invalid payment order (e.g. invalid merchant account) and notifies the 

merchant for the transaction abort. Failure to perform these two actions atomically corresponds to 
executing transition TTP3 

TTP2 The TTP receives a valid payment order, but fails to debit consumer’s account and notifies the 
merchant for the transaction abort. Failure to perform these actions atomically corresponds to 
executing transition TTP3. 

TTP3 This models the occurrence of a TTP site failure, while the TTP was in the NO_RECORD state. 
Protocol messages or data that lie in TTP input communication channels are lost. 

TTP5 TTP receives a consumer’s query for the ongoing purchase transaction and responds with a “No 
Record” message. Failure to perform these two actions atomically corresponds to executing 
transition TTP3. 

TTP6 The TTP receives a consumer’s query for the ongoing purchase transaction and responds with an 
“Aborted” message. 

TTP7 The TTP receives a valid payment order and debits consumer’s account. Failure to perform these 
two actions atomically corresponds to executing transition TTP3. 

TTP8 This models the occurrence of a TTP site failure, while the TTP was in the STARTED_TR state. 
Protocol messages or data that lie in TTP input communication channels are lost. 

TTP10 The TTP credits merchant’s account, but fails to deliver the transaction result due to a site failure. 
Protocol messages or data that lie in TTP input communication channels are lost. 

TTP12 The TTP credits merchant’s account and delivers to the merchant the transaction result. Failure to 
perform these two actions atomically corresponds to executing transition TTP10. 

TTP13 The TTP receives a consumer’s query for the ongoing purchase transaction and responds with a 
“Succeed” result notification accompanied by the required decryption key. 

TTP14 The TTP fails to credit merchant’s account, returns debited amount to the consumer’s account 
and sends to the merchant an “Aborted” transaction result. Failure to perform these actions 
atomically corresponds to executing transition TTP8. 

Transitions from failure states: 
TTP4 The TTP recovers from a site failure. Protocol messages or data that lie in TTP input 

communication channels are lost (the TTP cannot receive messages while being in state 
L_FAILED). 

TTP9 The TTP recovers from a site failure, returns debited amount to the consumer’s account (by 
means of permanent storage) and sends to the merchant an “Aborted” message. Protocol 
messages or data that lie in TTP input communication channels are lost (the TTP cannot receive 
messages while being in state ST_FAILED). 

TTP11 The TTP site recovers from a failure and sends to the merchant a “Succeed” transaction result 
accompanied by the required decryption key (that is retrieved by means of permanent storage). 
Protocol messages or data that lie in TTP input communication channels are lost (the TTP cannot 
receive messages while being in state N_FAILED). 

 

3.5 Payment participants’ CP-nets 
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Figure 7. Consumer’s CP-net for the NetBill payment system 
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The CP-net of Figure 7 implements C’s finite state automaton as it is specified in Section 

3.4. C1 is the single transition that initially is enabled in this CP-net and this transition 

basically corresponds to the start of a purchase transaction. C1 changes C’s state from 

IDLE to WAIT, appends a goods request (unbound variable gReq) to the ConToMer 

channel and generates an encrypted goods token (unbound variable enGoods) for the 

ongoing purchase transaction. The symbolic value of enGoods determines the analyzed 

protocol execution scenario, in what is concerned with the possibility of M to respond with 

the requested goods (v) or not (i).  

Unbound variables allow us to interactively choose and simulate the protocol execution 

scenario of interest, but the model’s state space analysis includes all possible protocol 

execution scenarios. Variable balance is another unbound variable with values that 

symbolically represent different cases of account balance. Places conBalance, 

encrGoods and decrKey store token values for sensitive data that respectively refer to: 

• the amount available in C’s account, when compared to the ordered goods value, 

• the received encrypted goods and more precisely, whether they are the requested 

ones (v) or not (i) and 

• the received decryption key and more precisely, whether it is the required one (v) or 

not (i). 

Places goodsReq and pOrderReq store token values that determine the ongoing 

purchase transaction, with respect to the validity of (a) the dispatched goods request and (b) 

the dispatched payment order request. 

A true token value in cTimeout triggers transition C10 that essentially represents 

the dispatch of a query to the TTP, regarding the result of the ongoing payment transaction. 

Finally, place tr_expire represents a timer used by the TTP CP-net. 
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Figure 8. Merchant’s CP-net for the NetBill payment system 
 

The CP-net in Figure 8 implements M’s finite state automaton as it is specified in 

Section 3.4. Transition M1 is enabled when M’s state is LISTEN and if there is a valid 

goods request in the ConToMer channel. Occurrence of M1 places the encrypted goods 

token value generated by C1 (found in place goods) in the MerToCon channel. Variables 

pOrder and key are unbound variables that respectively represent 

• whether the payment order including the data filled by M is valid (v) or not valid 

(i) and 
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• the sent decryption key and more precisely, whether it is the required one (v) or not 

(i). 

The token values that determine the ongoing protocol execution scenario are stored in 

places pOrderReq and decrKey. M’s CP-net also uses the places cTimeout and 

tr_expire that have been already described when introducing C’s CP-net. 
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Figure 9. The TTP CP-net for the NetBill payment system 
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Figure 9 shows the CP-net that implements TTP’s finite state automaton. Place 

merBalance represents the amount transferred to M’s account, in case of a succeed 

payment. Place amount stores the amount to be transferred and place decrKey stores the 

decryption key to be transmitted. In both places, sensitive data are stored temporarily and 

they are used as prescribed by the adopted trust assumptions. 
 

3.6 State space analysis and model validation 

State space analysis is used to explore a standard set of dynamic properties for the 

developed high-level protocol model and to validate (or correct) the model with respect to a 

set of model correctness criteria that include: 

 (a) the absence of self-loop terminal markings,  

 (b) correct protocol termination and absence of deadlocks,  

 (c) the absence of livelocks and  

 (d) the validity of the adopted trust assumptions. 

 Figure 10 shows the standard state space analysis report for the NetBill CP-net. The 

first part of the shown standard report provides statistical information regarding the 

automatically generated state space graph (also called occurrence graph). The NetBill state 

space includes 6439 markings and 18915 arcs that represent the occurrence of different 

transition instances. The corresponding graph of strongly connected components (Scc 

graph) includes 2678 nodes and 11257 arcs. 

The checked bounds-related properties characterize the CP-net in terms of the tokens 

we may have at the places of interest. The shown integer bounds refer to the upper bounds 

and lower bounds of the number of tokens we may have and essentially provide a mean to 

explore the places that represent sensitive information.  
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Statistics 
------------------------------------------------------------------------ 
  State Space   
    Nodes:  6439 
    Arcs:   18915 
    Secs:   30 
    Status: Full 
  Scc Graph  
    Nodes:  2678 
    Arcs:   11257 
    Secs:   2 
 
Boundedness Properties 
------------------------------------------------------------------------ 
  Best Integers Bounds    Upper      Lower 
  Consumer'decrKey 1      1          0 
  Consumer'encrGoods 1    1          0 
  Consumer'goodsReq 1     1          1 
  Consumer'pOrderReq 1    1          0 
  Merchant'Merchant 1     1          1 
  Merchant'decrKey 1      1          0 
  Merchant'pOrderReq 1    1          0 
  TTP'TTP 1               1          1 
  TTP'amount 1            1          0 
  TTP'decrKey 1           1          0 
  TopLevel'ConToMer 1     1          1 
  TopLevel'ConToTTP 1     1          1 
  TopLevel'Consumer 1     1          1 
  TopLevel'MerToCon 1     1          1 
  TopLevel'MerToTTP 1     1          1 
  TopLevel'TTPtoCon 1     1          1 
  TopLevel'TTPtoMer 1     1          1 
  TopLevel'cTimeout 1     1          1 
  TopLevel'conBalance 1   1          0 
  TopLevel'goods 1        1          0 
  TopLevel'merBalance 1   1          0 
  TopLevel'tr_expire 1    1          1 
 
Home Properties 
------------------------------------------------------------------------ 
  Home Markings:  None 
 
Liveness Properties 
------------------------------------------------------------------------ 
  Dead Markings:  72 [963,665,592,5905,5890,...] 
  Dead Transitions Instances: None 
  Live Transitions Instances: None 
 
Fairness Properties 
------------------------------------------------------------------------ 

Merchant'M13 1         No Fairness Consumer'C1 1          No Fairness 
Consumer'C10 1         No Fairness 
Consumer'C11 1         Fair 
Consumer'C12 1         Fair 
Consumer'C13 1         Fair 
Consumer'C14 1         Just 
Consumer'C15 1         Just 
Consumer'C16 1         Just 
Consumer'C17 1         No Fairness 
Consumer'C18 1         Fair 
Consumer'C19 1         Fair 
Consumer'C2 1          No Fairness 
Consumer'C3 1          No Fairness 
Consumer'C4 1          No Fairness 
Consumer'C5 1          No Fairness 
Consumer'C6 1          No Fairness 
Consumer'C7 1          No Fairness 
Consumer'C8 1          No Fairness 
Consumer'C9 1          No Fairness 
Merchant'M1 1          No Fairness 
Merchant'M10 1         No Fairness 
Merchant'M11 1         No Fairness 
Merchant'M12 1         No Fairness 

Merchant'M2 1          No Fairness 
Merchant'M3 1          No Fairness 
Merchant'M4 1          No Fairness 
Merchant'M5 1          No Fairness 
Merchant'M6 1          No Fairness 
Merchant'M7 1          No Fairness 
Merchant'M8 1          No Fairness 
Merchant'M9 1          No Fairness 
TTP'TTP1 1             No Fairness 
TTP'TTP10 1            No Fairness 
TTP'TTP11 1            No Fairness 
TTP'TTP12 1            No Fairness 
TTP'TTP13 1            No Fairness 
TTP'TTP14 1            No Fairness 
TTP'TTP2 1             No Fairness 
TTP'TTP3 1             No Fairness 
TTP'TTP4 1             No Fairness 
TTP'TTP5 1             No Fairness 
TTP'TTP6 1             No Fairness 
TTP'TTP7 1             No Fairness 
TTP'TTP8 1             No Fairness 
TTP'TTP9 1             No Fairness 

Figure 10. State space analysis report for the NetBill CP-net 
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A more detailed version of the shown report provides upper and lower multi-set bounds 

that include all token values that is possible to appear in the places of interest (by 

definition, the upper multi-set bound of a place is the smallest multi-set which is larger than 

all reachable markings of the place). Apart from the places that represent sensitive 

information, this allows us to explore the contents of the lists used as participants’ 

communication channels, as well as the participants’ reachable states. For the NetBill CP-

net we did not find unreachable participants’ states and unexpected (combinations of) 

protocol messages in participants’ communication channels. Also, we verified that the 

token values that appear in places that represent sensitive information reflect all possible 

protocol participants’ inputs. 

Home properties provide information about markings or sets of markings to which it is 

always possible to return. However, the protocol termination correctness assumption 

requires the model to not include home markings and this is successfully verified for the 

developed NetBill CP-net. 

Liveness properties provide information regarding: 

• The number of dead markings that is, markings with no enabled transitions. Dead 

markings are protocol termination or deadlock states and CP-net correctness in 

terms of them requires further analysis. 

• The number of dead transitions that is, transitions that are not enabled in at least 

one reachable marking. 

• The number of live transitions that is, transitions that always can become enabled 

once more. 

As expected, the developed NetBill CP-net does not include dead and live transitions, 

but correct protocol termination and absence of deadlocks requires further analysis. An 
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enumeration of all dead markings is easily obtained by the non-standard query shown in 

Figure 11. 
 

let 
  val fid = TextIO.openOut "ListOfDeadMarkings.txt" 
  val _ = TextIO.output(fid, "List of dead markings: \n") 
  val _ = EvalNodes(ListDeadMarkings(), 
            fn n => INT.output(fid,n) ) 
  val _ = TextIO.output(fid, "\nNumber of dead markings: ")
  val _ = INT.output(fid,length (ListDeadMarkings())) 
in 
  TextIO.closeOut(fid) 
end 

type ListOfDeadMarkings.txt 
 
List of dead markings:  
963 665 592 5905 5890 5875 5860 5269 5249 
5229 5209 519 518 516 515 3555 3549 3543 
3537 3380 3377 3373 3370 3366 3360 3169 
3166 3144 3138 3132 3126 2969 2966 2962 
2959 2955 2949 2758 2755 2716 2708 2687 
2679 2648 2640 2619 2611 1925 1922 1921 
1920 1851 1841 1833 1815 1805 1797 1793 
1790 1786 1783 1725 1715 1707 1689 1679 
1671 1667 1664 1660 1657 1084 
Number of dead markings: 72 

Figure 11. Dead markings in the NetBill CP-net 
 

The last part of the produced standard analysis report (Figure 10) refers to the model’s 

fairness properties (these properties are not related to the fair exchange transaction 

guarantee defined in Section 2.2) and provides information about how often the individual 

transitions occur. An impartial transition occurs infinitely often in any infinite occurrence 

sequence. If this transition ceases to occur, then the protocol must terminate after some 

number of additional steps. The same is true if a transition is found to be fair (like the 

transitions C11, C12, C13, C18 and C19), which is a weaker fairness property stating that 

the transition occurs infinitely often in all infinite occurrence sequences where it is 

infinitely often enabled. Finally, a transition is just (like the transitions C14, C15 and C16), 

if the transition occurs in all cases where this transition is persistently enabled. We easily 

verify that the above fairness interpretations are compatible with the descriptions of the 

forenamed transitions that are given in Table 1. 

Regarding the analysis needed to prove correct protocol termination, Figure 12 shows 

the non-standard state space query verifying that the NetBill CP-net does not include self-

loop terminal markings. This means that all protocol termination cases are included in the 
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list of dead markings shown in Figure 11. This finding is crucial for correctly expressing 

the CTL-based formulae used to verify the transaction guarantees of interest. 
 

fun SelfLoopTerminal n=(OutNodes(n)=[n]) 
fun InValidTerminal()=PredNodes(EntireGraph, 
                                                     fn n => (SelfLoopTerminal n),
                                                     NoLimit); 
let 
  val fid = TextIO.openOut "ListOfSelfLoops.txt" 
  val _ = TextIO.output(fid, "List of self loop terminals: \n") 
  val _ = EvalNodes(InValidTerminal(), 
                               fn n => INT.output(fid,n) ) 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype ListOfSelfLoops.txt 

List of self loop terminals: 

Figure 12. Absence of self-loop terminal nodes 
 

fun ValidTerminal n=(length (hd (Mark.TopLevel'ConToMer 1 n))=0 andalso 
                 length (hd (Mark.TopLevel'MerToCon 1 n))=0 andalso 
                 length (hd (Mark.TopLevel'ConToTTP 1 n))=0 andalso 
                 length (hd (Mark.TopLevel'TTPtoCon 1 n))=0 andalso 
                 length (hd (Mark.TopLevel'MerToTTP 1 n))=0 andalso 
                 length (hd (Mark.TopLevel'TTPtoMer 1 n))=0 andalso 
 
                 (Mark.Consumer'Consumer 1 n=[ABORTED] andalso 
                       Mark.TTP'TTP 1 n=[ABORTED] andalso 
                       (Mark.Merchant'Merchant 1n=[ABORTED]  
                            orelse Mark.Merchant'Merchant 1n=[L_FAILED]  
                            orelse Mark.Merchant'Merchant 1n=[ST_FAILED])  
                  orelse Mark.Consumer'Consumer 1 n=[DISPUTED_TR] andalso 
                       Mark.TTP'TTP 1 n=[COMPLETED] andalso 
                       (Mark.Merchant'Merchant 1 n=[COMPLETED]  
                            orelse Mark.Merchant'Merchant 1 n=[ST_FAILED] 
                            orelse Mark.Merchant'Merchant 1 n=[ABORTED])  
                  orelse Mark.Consumer'Consumer 1 n=[COMPLETED] andalso 
                       Mark.TTP'TTP 1 n=[COMPLETED] andalso 
                       (Mark.Merchant'Merchant 1 n=[COMPLETED]  
                            orelse Mark.Merchant'Merchant 1 n=[ST_FAILED] 
                            orelse Mark.Merchant'Merchant 1 n=[ABORTED]))) 
 
fun InValidTerminal()=PredNodes(ListDeadMarkings(), 
                                                     fn n => not (ValidTerminal n), 
                                                     NoLimit); 
let 
  val fid = TextIO.openOut "DeadlockMarkings.txt" 
  val _ = TextIO.output(fid, "List of deadlock markings: \n") 
  val _ = EvalNodes(InValidTerminal(), 
            fn n => INT.output(fid,n) ) 
in 
  TextIO.closeOut(fid) 
end 

type DeadlockMarkings.txt 
 
List of deadlock markings: 

 
Figure 13. Absence of deadlock markings 

 

Figure 13 shows the non-standard state space query verifying that the NetBill CP-net 

does not include deadlock markings. We prove that all protocol termination cases (dead 
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markings) are correct that is, communication channels are empty and we only have valid 

participants’ state combinations. More precisely, we verify that when C ends in state 

COMPLETED, this is also true for the TTP, but M can be in state COMPLETED, 

ST_FAILED or ABORTED depending on the merchant’s honesty or the occurred site 

failures or message losses. When C ends in state DISPUTED_TR we require the TTP to 

end in state COMPLETED (the TTP includes only two final states that is, states 

COMPLETED and ABORTED; merchant fraud regarding the delivered goods - disputed 

transaction - is not tangible by the TTP) and M to end as in the previous termination case. 

Finally, when C ends in state ABORTED we require the TTP to end in state ABORTED and 

M to end in state ABORTED, L_FAILED or ST_FAILED depending on the merchant’s 

unilateral decision or the occurred site failures and message losses. Function 

InValidTerminal() checks for invalid dead markings and the empty list obtained in 

query’s output confirms the absence of deadlocks. 

An important model correctness criterion is the absence of livelocks. A livelock is 

detected, when the state space contains a cycle that leads to no markings outside the cycle. 

In this case, once the cycle is entered it will repeat forever. A protocol model, which 

terminates properly, should be free from livelocks. 

A convenient way to check the absence of livelocks is to study the automatically 

generated graph of strongly connected components (Scc graph). A strongly connected 

component of the state space is a maximal sub-graph whose nodes are mutually reachable 

from each other. The generated Scc graph has a node for each strongly connected 

component and includes arcs that connect two different components, if there is an arc in the 

original state space graph that connects a node of the first component to a node that belongs 

to the second one. As initial strongly connected component is characterized a component 

without incoming arcs and as terminals are characterized all components without outgoing 
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arcs. Since each node in the state space belongs to only one strongly connected component, 

the Scc graph is always smaller than or equal to the corresponding state space.    

Depending on the structure of the generated state space, model checking the absence of 

livelocks takes one of the following two forms: 

• If the state space and its Scc graph are isomorphic and also there are no self-loops, 

then the protocol model is free of livelocks. 

• If the state space contains self-loops or if there is at least one strongly connected 

component that consists of more than one node, then we need to examine if all 

terminal components are trivial that is, they consist of a single node and no arcs. A 

non-trivial terminal component represents a livelock in the protocol model. 

The non-standard state space query shown in Figure 14 verifies that the NetBill Scc 

graph does not include non-trivial terminal strongly connected components and so the 

developed protocol model is free of livelocks. 
 

fun ListTerminalSCCs()=PredAllSccs(SccTerminal); 
fun InValidTermSCC()=PredSccs(ListTerminalSCCs(), 
                                    fn n => not (SccTrivial n), 
                                    NoLimit); 
let 
  val fid = TextIO.openOut "AbsenceOfLivelocks.txt" 
  val _ = if InValidTermSCC()=[] 
              then TextIO.output(fid, "No Livelocks!") 
              else TextIO.output(fid, "Livelocks detected!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype AbsenceOfLivelocks.txt 

No Livelocks! 

 
Figure 14. Absence of livelocks 

 

In fact, the state space queries shown in Figures 12 and 13, as well as other auxiliary 

queries, helped us to debug the NetBill CP-net with respect to the described model 

correctness criteria. Also, we minimized the number of correct dead markings to only 72, 

by having managed to exclude similar markings that differ only in terms of the token values 
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of cTimeout and tr_expire. We remind that these places are used to express the 

triggering of queries and such a difference is irrelevant for all protocol termination states. 
 

fun TrCompleted n = (Mark.TTP'TTP 1 n=[COMPLETED]);  
fun reportSucceed n = (List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso  
              List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) = trResult"Success");
fun reportNotSucceed n = (List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso  
            List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) <> trResult"Success");
fun creditDone n = (Mark.TopLevel'merBalance 1 n = [gValue]); 
val trustViolation1States = PredNodes(EntireGraph, 
                                                  fn n => (TrCompleted n andalso reportNotSucceed n),
                                                  NoLimit); 
val trustViolation2States = PredNodes(EntireGraph, 
                                                  fn n => (reportSucceed n andalso not (creditDone n)), 
                                                  NoLimit); 
let 
  val fid = TextIO.openOut "TrustAssumptionsA.txt" 
  val _ = if (trustViolation1States=[] andalso trustViolation2States=[]) 
              then TextIO.output(fid,"No trust assumptions violation!") 
              else TextIO.output(fid,"Trust assumptions violation detected!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype TrustAssumptionsA.txt 

No trust assumptions 
violation! 

Figure 15. Model checking trust assumptions violation (A) 
 

The query of Figure 15 model checks the trust assumptions for the successful 

completion of the ongoing payment transaction. Set trustViolation1States detects 

if there are markings, where TTP’s state is COMPLETED and the TTP does not report the 

correct transaction result through the TTPtoMer communication channel. Set 

trustViolation2States detects if there are markings, where TTP reports a success 

transaction result, but the payment (gValue) has not been credited to M’s account 

(merBalance). No trust assumption violation is detected.  

The query of Figure 16 model checks the trust assumptions regarding the aborted 

payment transactions. In this case, the transaction result is reported either through the 

TTPtoMer or through the TTPtoCon communication channel and model checking 

attempts to detect two different sets of trust violation markings. Set 

trustViolation1States detects if there are markings, where TTP’s state is 

ABORTED and the TTP does not report the correct transaction result. Set 

trustViolation2States detects if there are markings, where TTP reports an aborted 
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transaction result, but the TTP has debited C’s account (conBalance) as opposed to what 

is expected. No trust assumption violation is detected. 
 

fun TrAborted n = (Mark.TTP'TTP 1 n=[ABORTED]);  
fun reportSucceed n = ((List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso  
    List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) = trResult"Success") orelse
                                        (List.nth(Mark.TopLevel'TTPtoCon 1 n,0)<>[] andalso  
            List.nth(List.nth(Mark.TopLevel'TTPtoCon 1 n,0),0) = trResult"Success"));
fun reportNotSucceed n = ((List.nth(Mark.TopLevel'TTPtoMer 1 n,0)<>[] andalso 
  List.nth(List.nth(Mark.TopLevel'TTPtoMer 1 n,0),0) <> trResult"Success") orelse
                                           (List.nth(Mark.TopLevel'TTPtoCon 1 n,0)<>[] andalso  
          List.nth(List.nth(Mark.TopLevel'TTPtoCon 1 n,0),0) <> trResult"Success"));
fun debitDone n = (Mark.TopLevel'conBalance 1 n = []); 
val trustViolation1States = PredNodes(EntireGraph, 
                                                            fn n => (TrAborted n andalso reportSucceed n),
                                                            NoLimit); 
val trustViolation2States = PredNodes(EntireGraph, 
                                                        fn n => (reportNotSucceed n andalso debitDone n),
                                                        NoLimit); 
let 
  val fid = TextIO.openOut "TrustAssumptionsB.txt" 
  val _ = if (trustViolation1States=[] andalso trustViolation2States=[]) 
              then TextIO.output(fid,"No trust assumptions violation!") 
              else TextIO.output(fid,"Trust assumptions violation detected!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype TrustAssumptionsB.txt 

No trust assumptions 
violation! 

 
Figure 16. Model checking trust assumptions violation (B) 

 

In the NetBill CP-net, money conservation is a TTP responsibility and for this reason, it 

is also one of the model’s correctness criteria (trust assumption) that have to be checked. 

However, in the general case, payment systems are not necessary to involve trusted parties 

and therefore money conservation is not always one of the model’s trust assumptions 

([48]). Moreover, since money conservation is conveniently expressed as a CTL property, 

model checking this guarantee is presented together with other protocol correctness criteria 

in the next section. 

   

4. Model checking payment transaction guarantees  

The NetBill system aims to provide a wide range of payment transaction guarantees, from 

those mentioned in section 2.2. Protocol’s design adopts an encryption-based atomicity 

approach ([44]), where the goods are initially sent to C in an encrypted form and therefore 
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cannot be used, without the required decryption key. The key is dispatched only on receipt 

of the corresponding payment. On the other hand, payment systems that adopt an authority-

based atomicity approach ([38]) require the TTP to retain an escrowed copy of the 

purchased goods. 

There is an increasing interest for payment systems, which will be based on the already 

known “non-blocking” commit protocols, as well as, for distributed payment systems ([41]) 

and systems for offline payments. Also, an active field of research is the design of systems 

with a semi-trusted third party ([18]) that is possible to misbehave on its own, but will not 

collude with any of the payment participants. 

The described CP-net modeling approach is a formal analysis alternative for proving the 

transaction guarantees of section 2.2. The current section introduces the use of CTL-based 

model checking in terms of the developed NetBill CP-net. Preliminary results regarding 

some of the transaction guarantees of section 2.2 were first shown in [24].  

We propose the use of the ASK-CTL library ([11]) of the CPN Tools ([13]), in order to 

express the expected transaction guarantees as properties of paths in the state space. A path 

is a sequence of states and transition occurrences of the state space, constrained by the 

direction of arcs. Paths may be infinite and this implies some difficulties in selecting the 

proper path quantification operators, based on their semantics. An ASK-CTL formula is 

interpreted either over the domain of states or over the domain of transition occurrences in 

a path. However, the domain switch operator MODAL allows one to jump from one domain 

to the other.   
 

4.1 Model checking money conservation 

Money conservation is a requisite in all payment systems. We do not accept the protocol to 

leave one or more transactions in a partial or ambiguous state, where the system has created 
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or destroyed money. This guarantee should be assured in all cases of site failures, message 

losses and fraudulent behavior. 

In an account transfer system with a TTP like NetBill, money conservation is included 

in the model’s trust assumptions and it guarantees that either the funds transfer should 

complete (M has the money and C does not) or it should not occur at all (C has the money 

and M does not).  

In Figure 6 we observe that funds transfer commences on the occurrence of TTP7. 

Thus, model checking money conservation includes all paths starting with an arc that 

corresponds to the occurrence of TTP7 (96 paths). In Figure 17, this list of arcs (transition 

occurrences) is given by the value debitTIs. Having moved to a non-legitimate state, we 

require the system to guarantee that eventually either, M has the money and C does not, or 

C has the money and M does not. 
 

fun debitC a = (ArcToTI a = TI.TTP'TTP7 1); 
val debitTIs = PredArcs(EntireGraph, 
                                           fn a => (debitC a), 
                                           NoLimit); 
fun moneyLoss n = ((Mark.TopLevel'conBalance 1 n=[]  
                                                 andalso Mark.TopLevel'merBalance 1 n=[]) 
                                   orelse (Mark.TopLevel'conBalance 1 n<>[]  
                                                 andalso Mark.TopLevel'merBalance 1 n<>[])); 
val debitAction = AF("No debit!",debitC); 
val mLossForm = MODAL(NF("",moneyLoss)); 
val noMoneyConservation = INV(ALONG(mLossForm)); 
fun verify a = eval_arc noMoneyConservation a; 
val results = map verify debitTIs; 
let 
  val fid = TextIO.openOut "MoneyConservation.txt" 
  val _ = if (cf(true,results)>0) 
              then TextIO.output(fid,"No money conservation!") 
              else TextIO.output(fid,"Protocol does not create or destroy money!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype MoneyConservation.txt 

Protocol does not create or 
destroy money! 

 
Figure 17. Money conservation in the NetBill CP-net 

 

To avoid using the EV operator, where for some argument say A, EV(A)≡ 

FORALL_UNITL(TT,A) holds, if A becomes true in a finite - but not infinite - number of 

steps, we model check the converse: there is no reachable path, where for every state 
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neither M nor C has the money and there is also no reachable path, where for every state 

both M and C have the money. In Figure 17, this is expressed by the value mLossForm.  

Operator INV (where for some argument A, INV(A)≡NOT(POS(NOT(A)))) returns 

true, if the argument is true for all reachable states (or arcs) from the state (or arc) we are 

now. Finally, operator ALONG (where ALONG(A)≡NOT(EV(NOT(A)))) can also be 

applied in infinite paths and returns true, if there is a path for which the argument holds for 

every state (or arc). Model checking is performed by eval_arc. 
 

4.2 Model checking goods atomicity (fair exchange) 

Having verified money conservation, goods atomicity (fair exchange) also requires that 

goods (or payment receipt) will be obtained, if and only if, the payment is transferred to the 

merchant or the merchant’s account. Goods atomicity is an important guarantee that in 

bilateral payment transactions has to be ensured from both participants’ perspectives, in all 

cases of site failures, message losses, unilateral aborts and fraudulent behavior. 
 

fun validEPObyC n = (Mark.TopLevel'ConToMer 1 n = [[pORequest(v)]]); 
val validEPOstates = PredNodes(EntireGraph, 
                                                         fn n => (validEPObyC n), 
                                                         NoLimit); 
fun noMoney n = (Mark.TopLevel'conBalance 1 n = []); 
fun noDecrKey n = (Mark.Consumer'decrKey 1 n = []); 
val paidTrans = NF("No payment!", noMoney); 
val noGoods = NF("Found decr key!", noDecrKey); 
val noGAtomicityForC = AND(POS(INV(paidTrans)), INV(noGoods)); 
fun verify n = eval_node noGAtomicityForC n; 
val results = map verify validEPOstates; 
let 
  val fid = TextIO.openOut "GoodsAtomicityForC.txt" 
  val _ = if (cf(true,results)>0) 
              then TextIO.output(fid,"Non atomic goods delivery for C!") 
              else TextIO.output(fid,"Atomic goods delivery for C!") 
in 
  TextIO.closeOut(fid) 
end 

type GoodsAtomicityForC.txt 
 
Atomic goods delivery for C! 

Figure 18. Goods atomicity from the consumer’s perspective 
 

In Figure 18, value noGAtomicityForC expresses the possibility of some state, 

where for each reachable state we have at the same time no money in C’s account 
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(Consumer has paid) and C does not own the decryption key for the paid goods. Function 

eval_node model checks the absence of goods atomicity for all states, in which C has 

dispatched a valid payment order (pORequest(v)). The obtained result proves goods 

atomicity from the consumer’s perspective.     

Figure 19, proves goods atomicity from the merchant’s perspective: there is no state, in 

which for each reachable state M does not own the money for the payment and at the same 

time, it is possible for C to get the decryption key and to keep it forever. 
 

fun sentEPObyC n = (Mark.TopLevel'ConToMer 1 n = [[pORequest(v)]] 
                                   orelse Mark.TopLevel'ConToMer 1 n = [[pORequest(i)]]); 
val sentEPOstates = PredNodes(EntireGraph, 
                                                        fn n => (sentEPObyC n), 
                                                        NoLimit); 
fun noMoney n = (Mark.TopLevel'merBalance 1 n = []); 
fun foundDecrKey n = (Mark.Consumer'decrKey 1 n <> []); 
val notPaidTrans = NF("Payment found!", noMoney); 
val goodsDelivered = NF("No goods delivered!", foundDecrKey); 
val noGAtomicityForM = AND(INV(notPaidTrans), POS(INV(goodsDelivered)));
fun verify n = eval_node noGAtomicityForM n; 
val results = map verify sentEPOstates; 
let 
  val fid = TextIO.openOut "GoodsAtomicityForM.txt" 
  val _ = if (cf(true,results)>0) 
              then TextIO.output(fid, "Non atomic goods delivery for M!") 
              else TextIO.output(fid, "Atomic goods delivery for M!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype GoodsAtomicityForM.txt 

Atomic goods delivery for M! 

Figure 19. Goods atomicity from the merchant’s perspective 
   

4.3 Model checking certified delivery 

Having proved money conservation and goods atomicity, certified delivery also requires 

that all payment participants can prove the sensitive details of the performed transaction. 

Certified delivery in bilateral payment transactions should be ensured from both 

participants’ perspectives, in all cases of site failures, message losses, unilateral aborts and 

fraudulent behavior. 

In the NetBill payment system, C proves that the received encrypted goods are intact, if 

he owns the checksum number of the received goods and if this number is the same as the 

one gathered by the TTP through C’s payment order. The code of Figure 20 proves that it is 
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not possible to eventually deliver any goods decryption key when C has not obtained the 

corresponding checksum number. 
 

fun noChecksumOwnedByC n = (Mark.Consumer'encrGoods 1 n = []); 
fun foundDecrKey n = (Mark.Consumer'decrKey 1 n <> []); 
val noChecksum = NF("Checksum owned by C!", noChecksumOwnedByC); 
val goodsDelivered = NF("No goods delivered!", foundDecrKey); 
val noCertifiedDeliveryForC = POS(AND(ALONG(noChecksum),EV(goodsDelivered)));
val result = eval_node noCertifiedDeliveryForC InitNode; 
let 
  val fid = TextIO.openOut "CertifiedDelForC.txt" 
  val _ = if (result=true) 
              then TextIO.output(fid, "Non certified delivery for C!") 
              else TextIO.output(fid, "Certified delivery for C!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype CertifiedDelForC.txt

Certified delivery for C! 

Figure 20. Certified delivery from the consumer’s perspective 
 

On the other hand, the code of Figure 21 proves that it is not possible for M to have 

endorsed C’s payment order when he has not have received the corresponding C’s goods 

request. Goods request’s checksum number is in fact included in an encrypted part of C’s 

endorsed payment order, which can be read only by the TTP. The obtained result proves the 

certified delivery guarantee from the merchant’s perspective. 
 

fun noGRequestOwnedByM n = (Mark.Merchant'goodsReq 1 n = []); 
fun foundEndorsedEPO n = (Mark.Merchant'pOrderReq 1 n <> []); 
val noGRequest = NF("", noGRequestOwnedByM); 
val endorsedEPO = NF("No goods delivered!", foundEndorsedEPO); 
val noCertifiedDeliveryForM = POS(AND(ALONG(noGRequest), EV(endorsedEPO))); 
val result = eval_node noCertifiedDeliveryForM InitNode; 
let 
  val fid = TextIO.openOut "CertifiedDeliveryForM.txt" 
  val _ = if (result=true) 
              then TextIO.output(fid,"Non certified delivery for M!") 
              else TextIO.output(fid,"Certified delivery for M!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype CertifiedDelForM.txt

Certified delivery for M! 

Figure 21. Certified delivery from the merchant’s perspective 
 

4.4 Model checking protection of participants’ interests 

39 



We remind that the high-level guarantee of protection of participants’ interests ensures that 

participants get exactly what they are legitimate to get, in all cases of site failures, message 

losses, unilateral aborts and fraudulent behavior.   

For the NetBill payment system, collusions between the TTP and C or between the TTP 

and M are not studied, as a consequence of the adopted trust assumptions. Thus, protection 

of participants’ interests takes the following context: 

C’s protection guarantee - “If M is entitled to a payment, then C actually receives the 

goods, or C can claim them in an offline dispute handling.” 

M’s protection guarantee - “If C actually receives the goods, or C can claim them in an 

offline dispute handling, then M is entitled to a payment.” 
 

fun paymentEntitledForM n = (Mark.Merchant'pOrderReq 1 n = [pORequest(v)] 
                                                      andalso Mark.TTP'TTP 1 n = [COMPLETED]); 
fun noGoodsReceivedByC n = (Mark.Consumer'encrGoods 1 n = [] 
                                                     orelse Mark.Consumer'decrKey 1 n = []); 
fun noGoodsClaimedOfflineByC n = (Mark.Consumer'Consumer 1 n <> [DISPUTED_TR]);
val paymentEntitled = NF("No payment for M!", paymentEntitledForM); 
val noGoodsReceived = NF("Goods received by C!", noGoodsReceivedByC); 
val noGoodsClaimedOffline = NF("Goods claimed offline!", noGoodsClaimedOfflineByC); 
val noProtectionForC = POS(INV(AND(paymentEntitled, 
                                                                    AND(noGoodsReceived,noGoodsClaimedOffline))));
val result = eval_node noProtectionForC InitNode; 
let 
  val fid = TextIO.openOut "ProtectionForC.txt" 
  val _ = if (result=true) 
              then TextIO.output(fid, "No protection of interests for C!") 
              else TextIO.output(fid, "The protocol protects C's interests!") 
in 
  TextIO.closeOut(fid) 
end 

t
 
ype ProtectionForC.txt

The protocol protects C's 
interests! 

 
Figure 22. Protection of consumer’s interests 

  

The code shown in Figure 22 proves C’s protection guarantee as follows. M is entitled 

to a payment, if and only if he has proof that the TTP committed the transaction a) with a 

successful result and b) it did so, in response to a valid electronic payment order. 

On the other hand, C actually receives the goods during the protocol execution, if and 

only if C receives an encrypted version of the ordered goods alongside a key, and the goods 

can be obtained by decrypting the encrypted goods with the owned key. Also, C can claim 
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ordered goods in an offline dispute handling, if C can show that the transaction was 

successfully processed by the TTP, in response to a valid request, but the goods cannot be 

retrieved from the decryption key released with the transaction result and the encrypted 

goods given by M. 

 C’s protection guarantee is violated, when in some state the value 

noProtectionForC becomes true. The result ensures that NetBill protects C’s interests. 

 

4.5 A replay attack counterexample 

As in most well known payment systems, NetBill transactions are amenable to protocol 

level replay attacks that aim in replaying some protocol messages from a previous 

legitimate run. Figure 23 introduces a modified NetBill CP-net that compared to the first 

one shown in Figure 3 provides a basis for proving the double spending possibility and for 

studying potential countermeasures. 
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Figure 23. Top level CP-net with a double spending merchant and two TTP threads 
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We point out the following modifications: 

• An additional substitution transition, named doubleSpendingM, includes the 

state transitions for the new place dsMerchant, which is used to represent a 

protocol replay merchant thread. The mSynch substitution transition synchronizes 

the state transitions of the Merchant and dsMerchant places. 

• Two similar TTP transitions are used instead of the single TTP transition shown in 

Figure 3. Finally, the new ttpSynch transition synchronizes state transitions of 

the TTP1 and TTP2 places, as well as token exchanges between TTP’s 

communication channels and the temporary store places amount1, amount2 and 

decrKeyTTP. 

We omit the details of the new substitution transitions, but we note the addition of 

double charging possibilities by having sent in the conBalance place, two 

accBalance tokens instead of one. 
 

fun ttp1Charged n=(Mark.TopLevel'TTP1 1 n=[COMPLETED]); 
fun ttp2Charged n=(Mark.TopLevel'TTP2 1 n=[COMPLETED]); 
fun consumerTrCompleted n=(Mark.TopLevel'Consumer 1 n  

        =[COMPLETED]); 
fun doubleSpending()=PredNodes(ListDeadMarkings(), 
                                                    fn n => (ttp1Charged n  
                                                                  andalso ttp2Charged n  
                                                              andalso consumerTrCompleted n), 
                                                    NoLimit); 
let 
val fid=TextIO.openOut "DSpendingCounterexample.txt" 
val _ =TextIO.output(fid,"Path to a double spending dead marking: \n")
val _ = EvalArcs(ArcsInPath (1,hd (doubleSpending())), 
                          fn a => STRING.output(fid,st_BE(ArcToBE a))) 
in 
TextIO.closeOut(fid) 
end 

type DSpendingCounterexample.txt 
 
Path to a double spending dead marking: 
"Consumer'C1 1: {p=[],gReq=v,enGoods=v}"  
"Merchant'M1 1: {p=[],enGoods=v,mes=gRequest(v),q=[]}"  
"Consumer'C2 1: {p=[],mes=eGoods(v),q=[],pOrder=v,     
 balance=gValue,balance2=gValue}"  
"Merchant'M6 1: {p=[],mes=pORequest(v),q=[],pOrder=v, 
 key=v}"  
"TTP1'TTP7 1: {p=[],mes=pORequest(v),q=[dKey(v)], 
 balance=gValue}"  
"ttpSynch'TTPF7 1: {balance=gValue,r=[],q=[]}"  
"ttpSynch'TTPF8 1: {timer=false,p=[],q=[],r=[], 
 timer2=false,s=[dKey(v)]}"  
"doubleSpendingM'M6 1: {mes=pORequest(v),p=[],key=v}"  
"TTP2'TTP7 1: {p=[dKey(v)],mes=pORequest(v),q=[dKey(v)], 
    balance=gValue}"  
"TTP2'TTP12 1: {q=[dKey(v)],p=[trResult("Success"),dKey(v)], 
 balance=gValue}" 
"Consumer'C10 1: {q=[]}"  
"ttpSynch'TTPF20 1: {s=[],q=[dKey(v)],mes=query(e),r=[],  
    st=COMPLETED,st2=COMPLETED}"  
"doubleSpendingM'M7 1: {}"  
"Consumer'C14 1: {timer=false,mes=trResult("Success"), 
 q=[dKey(v)]}"  
"mSynch'M9 1: {st2=ABORTED,timer=false, 
 q=[trResult("Success"),dKey(v), trResult("Success")
 dKey(v)],p=[],st=COMPLETED}" 

Figure 24. Counterexample that represents a protocol replay attack 
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Figure 24 shows the generation of a counterexample that represents a protocol replay 

attack. Under the assumptions of no self-loop terminal markings and no livelocks, we 

examine all dead markings, such that the states of both TTP places are COMPLETED and 

the state of the Consumer place does not allow C to set a transaction dispute. Since the 

resulted list is not empty, we use function ArcsInPath to generate a path from marking 1 

to one of the markings included in the list. 

Protocol level replay scenarios can be used to simulate undesirable fraudulent behavior, 

in order to design appropriate double spending prevention schemes. In NetBill ([12]), 

double spending prevention is based on a globally unique epo (electronic payment order) 

identifier that is first sent by M to C, together with the encrypted version of the ordered 

goods. The received epo identifier is then included in the payment order signed by C and 

eventually received by the TTP. A message freshness indication (a timestamp marking the 

time at the end of goods delivery) allows the TTP to discard stale epo identifiers from time 

to time.  

Other common freshness mechanisms are based on the use of nonces. Because nonces 

are unpredictable and are used in only one context, they ensure that a message cannot be 

reused in later transactions. 

 

4.6 Model checking concurrent payment transactions and protocol-level intruder attacks  

Model checking the described transaction guarantees in concurrent payment systems has 

the following difficulties: 

• The time needed to develop a model increases with respect to the number of 

concurrent payment transactions, due to the complexity of the thread synchronizing 

substitution transitions (see for example transitions ttpSynch and mSynch in 

Figure 23). 
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• Concurrent payments are likely to result in computationally expensive state spaces.    

If we are interested in deriving a transaction guarantee counterexample, we can exploit 

the CPN Tools state space branching options for the partial generation of the model’s state 

space. We stop after having derived a representative counterexample.  

If we are interested in generating the whole state space, we observe that the different 

orders of firing transitions of participants’ threads result in different markings and paths in 

the model’s state space. In order to prevent unnecessary interleaving, we have to define an 

equivalence relation for any two occurrence sequences, with respect to the checked 

transaction guarantee. Then, there is no need to include all of the unnecessary interleaving 

of participants’ threads in the generated state space graph. One possibility is to employ an 

appropriate token-passing scheme, in order to allow only the transitions of one participant’s 

thread to be enabled at a given time. 

In [3], the authors use a token-passing scheme to model check a key exchange 

cryptographic protocol (the TMN protocol), against possible intruder attacks. In a payment 

system, an intruder attack [6] may also target the system’s security guarantees (integrity, 

authorization, non-repudiation, confidentiality etc), but our modeling approach focuses in 

model checking the described transaction atomicity guarantees. A payment transaction 

guarantee that is amenable to different forms of intruder attacks is the distributed payment 

atomicity.  

 

4.7 Colored Petri Net model checking alternatives  

Payment transaction guarantees may also be checked by detailed examination of the 

protocol’s dead markings, but this is not true for all of them. If we consider the money 

conservation guarantee, we model check that having moved to a non-legitimate state, the 

system guarantees that eventually either, M has the money and C does not, or C has the 
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money and M does not. By examination of the protocol’s dead markings we cannot 

guarantee that all transitions to non-legitimate states eventually result in legitimate ones. 

An alternative CP-net analysis is the invariant analysis. Place invariant analysis aims to 

formulate some equations, which we postulate to be satisfied independently of the steps that 

occur. Each invariant property is then transformed to an equivalent place flow that is 

checked by considering individual transitions one at a time. This implies that for each 

transition, we need only look at its immediate surroundings. Transition invariants are 

similar to place invariants, but they are used to determine occurrence sequences that have 

no total effect, i.e., they have the same start and end markings. 
 
5. Related work  

Part of our work refers to model checking fault tolerance with respect to the described 

payment transaction guarantees. In related work, we refer to the analysis reported in [8] for 

verifying the redundancy mechanisms employed in fault-tolerant control systems. Two 

different formalisms are interchangeably used to specify a system: the Calculus of 

Communicating Systems (CCS)/Meije process algebra [4] and a Labeled Transition System 

(LTS) representation developed with the ATG tool [40]. The JACK verification 

environment [10] is then used to generate the whole system’s LTS from the provided 

network of subsystems. Fault tolerance properties like for example the fail-stop, the fail-

silence, the fail-safety and other properties are then expressed in Action-based Computation 

Tree Logic (ACTL) [31] and are checked by the AMC model checker, which is available in 

JACK. 

The most important similarity between the work reported in [8] and the approach of the 

present article is the fact that both works model explicitly the occurrence of faults as 

opposed to other works in the literature of fault tolerant systems, which in fact model only 

the failure behavior itself. However, [8] does not address the possibility of message losses 
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due to communication failures and also does not meet the problem of verifying trust 

assumptions and fraud scenarios that are prominent in electronic payment systems. 

Regarding the adopted approach, we underline the obvious advantages of the CPN Tools 

alternative, which offers a single integrated environment for model building and simulation, as 

well as, for expressing and verification of the target system properties. In contrast to the process 

algebraic approach of [8], the CP-net formalism provides an explicit representation of both 

states and events and a formal semantics that builds upon true concurrency and sets the 

ground for a compact description of control and synchronization that is integrated with the 

description of data manipulation.  

Another interesting model checking approach is the one described in [42]. In that work, 

the authors attempt a finite-state analysis of two contract signing protocols. The correctness 

properties of interest do not include the atomicity guarantees addressed in the present 

article, but are related to the fair exchange, the accountability and the abuse-freeness of the 

examined protocols. 

Model checking is based on Murφ [16], a tool that employs its own high-level language 

for the description of nondeterministic finite-state machines. While there is no explicit 

notion of process, it is implicitly modeled by a set of related rules and communication 

between processes is modeled by shared variables. The Murφ system can then check, by 

explicit state enumeration, if every reachable state of the model satisfies a given set of 

invariants. This approach seems adequate for correctness properties that are characterized 

as “monotonic”, i.e. properties that if they cease to hold at some point, this does not change 

in the remainder of the run. However, Murφ and the model checking by state invariants 

underlie the restrictions discussed in section 3.1, when trying to express nested reachability. 

This fact is also recognized by the authors of [42], who call “non-monotonic” all properties, 

which do not hold on intermediate states (as the money conservation guarantee that we 
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proved in the NetBill case). In effect, they recognize that with tools like Murφ it is only 

possible “to formalize and check an approximation to a non-monotonic property”. In their 

proposal they conjectured the states that invalidate the checked property and eventually 

verified this conjecture by analyzing in Murφ a modified protocol environment. The CP-net 

approach discussed in present article does not underlie the described restrictions in 

expressing complex correctness properties. Invariant analysis is not excluded, but in CP-

nets this analysis concerns the place or transition invariants and it is not based on explicit 

state enumeration, with the associated state space explosion risks.    

In the field of e-commerce transactions, CP-nets have also been used in [33] and [34], 

which describe a formal analysis of the Internet Open Trading Protocol (IOTP). Protocol 

verification is based on the methodology of [9] and aims to prove that the protocol 

specification satisfies the requirements of its users, as they are described in the so-called 

protocol’s service specification. However, the forenamed protocol verification approach 

does not aim to prove potential transaction atomicity guarantees as we do, by taking into 

account site failure, message loss and participants’ fraud possibilities. 
 

6. Conclusion 

This work’s contribution is a systematic approach in the development and validation of 

high-level CP-net models of electronic payment systems. We proposed the use of four 

different types of places and an automata-driven model building technique. The developed 

models are appropriate for model checking all levels of transaction atomicity guarantees, as 

well as potential protocol-level intrusion attacks. In the obtained model checking results we 

take into account all cases of site failures, message losses, unilateral transaction aborts and 

fraudulent participant behavior. 
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Our experience suggests that when systematic model development is focused in the 

verification of the considered payment transaction guarantees, it exploits the strengths of 

Colored Petri Nets and avoids their pitfalls. For a real-scale protocol like NetBill, our 

approach resulted in a model of manageable size in terms of both its usability within the 

advanced graphical environment of CPN Tools and its generated state space. Although we 

were aware that in CPN Tools current representation and storage of the generated states is 

far from being optimal - compared to other mature tools like SPIN - we noted that a 

computer with a Pentium IV processor (2.4 GHz) and 500 MB RAM generated the model’s 

state space in only 30 seconds. Also, the graph of the strongly connected components, 

which is utilized in CTL model checking, was generated in only 2 seconds. In effect, this 

allowed us to exploit the strengths of CTL in expressing the considered transaction 

guarantees in the form of state space queries, each of which was answered in a couple of 

seconds.  

The overall approach can be used in studying an important class of open problems in 

electronic commerce ([45]), like for example the atomicity mechanisms needed in 

distributed purchase transactions ([46]), the development of “non-blocking” payment 

systems or systems with semi-trusted or no trusted parties and so on. We referred to some 

of these challenges, but we also underline the potentiality of our approach for model 

checking transaction guarantees of different types of systems (contract signing systems, 

electronic auction systems, orchestrated web services for transactional workflows [35] etc). 
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In CP-nets the states are represented by means of places (which are drawn as ellipses). By 

convention we write the names of the places inside the ellipses. Each place has an 

associated data type determining the kind of data that the place may contain (by convention 

the type information is written in italics, next to the place). The type declarations implicitly 

specify the operations that can be performed on the values of the types. A state of a CP-net 

is called a marking and consists of a number of tokens positioned on the individual places. 

Each token carries a data value, which belongs to the type of the corresponding place. 

A marking of a CP-net is a function, which maps each place into a multi-set of tokens of 

the correct type. We refer to the token values as token colors and to their data types as color 

sets. The types of a CP-net can be arbitrarily complex, e.g., a record where one field is a 

real, another a text string and a third a list of integers. 

The actions of a CP-net are represented by means of transitions, which are drawn as 

rectangles. An incoming arc indicates that the transition may remove tokens from the 

corresponding place while an outgoing arc indicates that the transition may add tokens. The 

exact number of tokens and their data values are determined by the arc expressions, which 

are positioned next to the arcs. Arc expressions may contain variables as well as constants. 

To talk about the occurrence of a transition, we need to bind incoming expressions to 

values from their corresponding types. Let us assume that we bind the incoming variable v 

of some transition T to the value d. The pair (T, <v =d >) is called binding element and this 

binding element is enabled in a marking M, when there are enough tokens in its input 

places. In a marking M, it is possible to enable more than one binding elements of T. If the 

binding element (T, <v =d >) occurs, it removes tokens from its input places and adds 

tokens to its output places. In addition to the arc expressions, it is possible to attach a 

boolean expression with variables to each transition. The boolean expression is called a 
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guard and specifies that we only accept binding elements, for which the boolean expression 

evaluates to true. 
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