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Abstract

The number of patterns discovered by data mining can become tremendous, in some cases exceeding the size of the original database.

Therefore, there is a requirement for querying previously generated mining results or for querying the database against discovered patters. In

this paper, we focus on developing methods for the storage and querying of large collections of sequential patterns. We describe a family of

algorithms, which address the problem of considering the ordering among elements, that is crucial when dealing with sequential patterns.

Moreover, we take into account the fact that the distribution of elements within sequential patterns is highly skewed, to propose a novel

approach for the effective encoding of patterns. Experimental results, which examine a variety of factors, illustrate the efficiency of the

proposed method.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Pattern post-processing; Sequential patterns; Persistency signatures

1. Introduction

Mining from large databases (also referred to as

database mining ) sets new challenges and opportunities

to database technology itself [15]. There is a need for new

query languages and query processing methods that will

address the requirements posed by database mining. Most

of the existing data mining applications, however, assume

a loose coupling between the data-mining environment

and the database [1]. The narrowing of the ‘gap’ between

data mining and databases refers to the problem of

developing data mining algorithms that will present a

tighter coupling with the DBMS [1]. This problem has

started recently to be confronted by introducing new

design specifications of the DBMS (not having to adhere

to third NF, reduction of concurrency control and

recovering overhead, synergy between OLTP and Data

Mining [33]). Moreover, efficient algorithms that exploit

the support and achieve a tighter coupling with existing

DBMS have been proposed [1] (see [34] for a comparison

of several implementations).

Nevertheless, it is important to observe that a major

obstacle in the wide spread use of data mining technology is

not only insufficient performance, but also the absence of a

paradigm for the robust development of data-mining

applications and their integration with the DBMS [15].

Along the lines of the latter observation, Imieliński and

Mannila describe a long term paradigm, called KDDMS

(Knowledge and Data Discovery Management System1),

which is based on developing KDD query languages (see

Section 1.1 for a more detailed description), building

optimizing compilers for ad hoc mining queries and

application programming interfaces (APIs). Although

several KDD query languages have been proposed (e.g.

Mine-Rule [20], MSQL [16], DMQL of DBMiner [11,23]),

few methods have been proposed in the other directions; for

instance, OLE DB for Data Mining [29], the Discovery

Board system [37], or the system proposed in Ref. [21].

1.1. Motivation

A KDD query language allows for the expression of

KDD queries (i.e. a query in a KDDMS), which are

predicate resulting into a set of KDD objects (e.g.
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classification/association rules, discovered clusters) and

database objects (e.g. tuples) [16]. Existing KDD query

languages are usually SQL-like that contains extensions

to handle KDD objects. A KDD object may not exist or

may be pre-generated and stored in a database, like a

rule-base that stores discovered association rules [17].

Since the number of discovered patterns can be

extremely large, KDD querying should facilitate both

the above two cases: the selective generation of patterns

(i.e. the discovery of patterns with user-defined con-

straints) and the management of previously generated

results (i.e. the handling of already mined patterns).

Regarding the former case, techniques for pushing

constraints down to the mining process have been

proposed, mainly for association rules [30].

However, the latter case also presents a main challenge,

since there is an urge need to deal with the large numbers of

discovered patterns. Pattern post-processing is about the

selection of discovered patterns according to user-defined

criteria, the further ‘mine-around’ them, or the querying of the

database against patterns to identify transactions that satisfy

certain criteria. These operations are included in existing

KDD query languages; e.g. the SelectRules or the Typica-

l/Atypical primitives in MSQL [16]. However, for the actual

implementation, little support is provided by existing DBMS

or mining tools for the persistency of the discovered patterns.

There is a need for persistency of patterns because, without

being able to efficiently manage the possible large volumes of

generated patterns (that may be the accumulated outcome of

several mining sessions), the user/analyst has to confront an

overwhelming situation, which does not advocate the KDD

process.2 Therefore, what is required is the ability for the

persistent storage, which will help towards a more systematic

development of data mining applications over DBMSs.

1.2. Contribution and paper organization

In this paper, we are concerned with the development

of methods for the storage and querying of large

collections of discovered sequential patterns [2]. We

focus on the pattern query, that is, the finding of all

sequential patterns that contain an ordered set of user-

defined elements. As described, pattern queries are

essential primitives for selective processing of patterns,

e.g. for further examination/mining, etc. (see Section 3

for the formal definition of pattern query).

The contributions of this paper are summarized as

follows:

† We describe equivalent sets, a method which addresses

the problem of taking into account the ordering of items

within sequences. Although the consideration of ordering

among elements is crucial for sequential patterns (which

are ordered sequences of sets of items [2]), existing work

has not addressed this problem.

† We recognize that signatures constitute a compact and

effective representation of equivalent sets. Therefore, we

develop a family of algorithms (called SEQ) within the

framework of data structures for signatures, which

address the problem of indexing sequential patterns and

processing pattern queries.

† We make the observation that the distribution of

elements within sequential patterns is highly skewed.

Therefore, we propose a novel approach for the effective

encoding of equivalent sets, which is incorporated to the

one of the algorithms of the SEQ family (SEQ(A)).

† We provide extensive experimental results, examining

a variety of factors, which illustrate the performance

of the described methods.

The rest of this paper is organized as follows. Section 2

gives an overview of the related work, whereas the scheme

for the representation of sequential patterns is described in

Section 3. The family of signature-based algorithms is

presented in Section 4. Section 5 contains the experimental

results, and finally Section 6 concludes the paper.

2. Background and related work

2.1. Problem description

We begin by illustrating the problem of indexing

sequential patterns with a small example drawn from the

web usage analysis [5,26,32,31]. Let a web access log

depicted in Fig. 1. The web log represents the history of

user’s visits to a web server, done with a web client program.

Each web log entry represents a single user’s access to a web

page and contains the client’s IP address, the timestamp, the

URL address of the requested object, and some additional

information. Several requests from the same client may have

identical timestamps since they may represent accesses to

different objects of a single web page. Access requests issued

by a client within a single session with a web server constitute

a client’s access sequence (or simply sequence ).

Assume that the log of Fig. 1 is stored in the relation

RðIP; TS;URLÞ; depicted in Fig. 2a (IP is the client’s IP; TS

the time-stamp, and URL address of the requested object).

A pattern query (see Definition 1 for a formal description)

identifies all access sequences, which contain a collection of

given addresses with a specified order. For instance, assume

that we want to find all access sequences stored in the

relation R, which contain A;E; and F in the following order:

{A} ! {E} ! {F}: The SQL query, which implements the

above defined pattern query is depicted in Fig. 2b.

Pattern queries can be useful for web-log analysis, e.g.

for dynamic advertising or web site linkage reorganization.

Other applications include user transactions in e-commerce

sites, in telecommunications or retail records, and in

2 It has to be noticed that the management of data mining results is

considered in Ref. [8] as a necessary step in the whole KDD process.
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production processes. Therefore, a pattern query can

identify all the discovered sequential patterns among user

transactions that contain a purchase of a Cassiopeia palmtop

followed by purchase of a docking cradle for the palmtop.

With the identified sequential patterns that satisfy the query,

we can designate a sales campaign for the two items.

Since SQL language does not contain a sequence search

statement, to specify this kind of query in SQL, multiple

joins or multiple nested subqueries are required, as

illustrated in Fig. 2b. This may presents large query

response times, especially for large databases. The straight-

forward solution of using a sequential scan may require

considerable I/O for large data collections. This is especially

true for transaction data, web access log data, telecommu-

nication data, which are usually large. In general, finding

sequences containing a given subsequence in a relational or

object-relational database is a complex and time-consuming

task. Thus, there is a problem of appropriate optimizing the

database access while performing pattern queries, which is

the objective of this work.

2.2. Related work

Traditional database accessing methods (Bþ-Tree, bit-

map index, etc.) are record-oriented, i.e. they are used to

optimize queries based on exact matches of single records.

Therefore, they are inappropriate for optimizing pattern

queries, which deal with partial matching of multi-record

sequences. Another related area concerns the problems of

indexing for exact and approximate string searching, which

have received considerable attention [27]. Some examples

of indexing methods developed for string matching are

suffix trees [9], suffix array [19], Q-grams [10], and Q-

samples [28]. Also related is the work on episode matching,

with which only insertions in the text are permitted [6,36].

However, the unordered nature of sequence elements and

the freedom to represent their order in the sequence makes

the techniques developed for string and episode matching

inappropriate for optimizing pattern queries.

There is one index structure, called set-based index, that

is eligible to optimize pattern queries. Set-based index

structures have been developed to support queries with set-

valued predicates (the so-called subset, superset and set

equality, queries ) [13,24]. Given a finite set of items I (i.e.

I is the domain of items), a transaction T is a set of items

which is a subset of I. A database D is a set of transactions.

Typical example of a subset query Q is to retrieve all

transactions from D that contain a given query set Q. A

superset query Q is to retrieve all transactions from D those

items are contained in a given query set Q. A set equality

query Q is to retrieve all those transactions from D that

contain exactly a given query set. Finally, a similarity

query Q is to retrieve all transactions from D which are

most ‘similar’ to Q for suitably defined notion of similarity

between sets. These kinds of queries appear in text

retrieval systems [3], keyword-based search in databases

[14] or in object-oriented database systems [18]. There are
Fig. 2. (a) The relation R of web access sequences (b) example of pattern

query.

Fig. 1. An example of a web access log and a web access sequence.
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only few proposals for set-based indexing [7,13,18,24].

Helmer and Moerkotte [13] adopted traditional techniques,

like sequential signature files, signature trees, extensible

signature hashing and inverted files, for indexing set-

valued attributes (i.e. attributes that are sets of items). It

has been observed [13] that the inverted file index structure

dominated other index structures for subset and superset

queries in terms of query processing time. The problem of

applying signature files to retrieving a given set in a large

collections of sets was also analyzed by Kitagawa,

Ishikawa, and Obho [18]. In Ref. [24] a set-based bitmap

index is presented, which facilitates the fast subset

searching in relational databases. The index is based on

the creation of group bitmap keys, which are a special case

of superimposed coding via hashing of transactions’

contents. The superimposition of group bitmap keys results

from the logical OR of all hashed transactions’ contents.

This method requires a post-processing step to remove

false-drops. A false-drops is a set the group bitmap key of

which satisfies the query but the set itself does not, and it

incurs due to superimposition. Experimental results in Ref.

[24] showed that the proposed hash group bitmap index

significantly outperforms traditional index structures

including Bþ-trees and bitmap index for subset queries.

Other solutions to similarity search problem for text

retrieval was proposed in Ref. [7].

All the aforementioned set-based indexing approaches

do not consider the ordering of items within the searched

query set, which is crucial in storing and querying sequential

data. To realize the shortcomings of the set-based indexes

let us take the initial example. A set-based index may be

applied to support the pattern query from Fig. 2b in the

following way. The relation R is transformed into the

relation Rset; depicted in Fig. 3, and a set-based index is

created on the attribute URL: Then, using the index, all

records from Rset containing the searched query item set are

retrieved (the order of items in the item set is omitted).

Additional post-processing verifying step is necessary to

eliminate sequences having incorrect ordering of item sets.

The verifying step may cause the significant overhead

related to reading and verifying a large number of false-

drops from the database (e.g. the sequence 1).

Summarizing, the problem of evaluating queries with

‘sequence-valued’ predicates has been neglected by data-

base community. To the best of our knowledge there is only

one approach dealing with indexing of sequential patterns

[22,38]. More details are given in Section 4.2.

3. Representation of sequential patterns

Let I be a set of items. An itemset is an unordered set of

items from I (we follow the notation of Ref. [2] and we call a

set of items as itemset). A sequential pattern P is defined as

an ordered list of itemsets [2]. Thus, P ¼ kX1;…;Xnl; where

each Xi itemset is called element of P. A sequential pattern

Q ¼ kY1;…;Yml (1 # m # n) is contained by P (we note

Q W P), if there exist a sequence of m integers j1 , · · · , jm

(1 # ji # n) for which Y1 # Xj1
;…; Ym # Xjm

: Therefore,

ordering is considered between items of different itemsets,

but not between items of the same itemset.

Definition 1. (Pattern Query) Given a database D of

sequential patterns and a query sequential pattern Q, a

pattern query finds all members P of D for which it holds

that Q W P (Q is contained by P ).

3.1. Equivalent sets

We assume the existence of an item-mapping function

f ðiÞ that maps each i [ I to an integer value (since I may

contain any type of literals). Henceforth we assume that

literals are mapped to consecutive positive integers starting

from 1, although any other mapping can be followed. For

instance, for I ¼ {A;B;C;D;E} we have f ðAÞ ¼ 1; f ðBÞ ¼

2; f ðCÞ ¼ 3; f ðDÞ ¼ 4 and f ðEÞ ¼ 5:

We also consider an order mapping function f0ðx; yÞ that

transforms a sequential pattern of the form k{x}; {y}l
(x; y [ I) to an integer value. For instance, for f0ðx; yÞ ¼

6·f ðxÞ þ f ðyÞ; we have f0ðA;BÞ ¼ 8: It has to be noticed that

the intuition for the use of f0ðx; yÞ is that it takes into account

the ordering, i.e. f0ðx; yÞ – f0ðx; yÞ: This is the reason why

we use the weighing with the integer (6 in the previous

example) which is by one larger than the largest f ðxÞ value

(i.e. this way f0ðx; yÞ – f0ðy; xÞ and f0ðx; yÞ values are always

larger than f ðxÞ values).

Finally, we denote that in a sequential pattern P ¼

kX1;…;Xnl; x , y (x; y [ I), if x [ Xi; y [ Xj and i , j:

Based on the above, we give the definition for the equivalent

set of a sequential pattern [22].

Definition 2. (Equivalent Set) Given a sequential pattern

P ¼ kX1;…;Xnl; the equivalent set E of P is defined as:

E ¼
[

x[X1;…;Xn

{ f ðxÞ}

0
@

1
A<

[
x;y[X1;…;Xn;x,y

{ f0ðx; yÞ}

0
@

1
A

Fig. 3. The relation Rset of sets of web accesses.
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For instance, let P ¼ k{A;B}; {C}; {D}l be a sequential

pattern. Using the mapping functions that were described

above, we get:

E ¼ { f ðAÞ; f ðBÞ; f ðCÞ; f ðDÞ}

< { f0ðA;CÞ; f0ðB;CÞ; f0ðA;DÞ; f0ðB;DÞ; f0ðC;DÞ}

¼ {1; 2; 3; 4} < {9; 15; 10; 16; 22}

¼ {1; 2; 3; 4; 9; 15; 10; 16; 22}

According to Definition 2, an equivalent set is the union of

two sets: the one resulting by considering each element

separately and the one from considering pairs of elements.

SðEÞ denotes the former set, consisting of f ðxÞ (i.e. single)

elements, and PðEÞ the latter set, consisting of f0ðx; yÞ

(i.e. pairwise) elements. Based on Definition 2, it is easy to

show the following.

Corollary 3. Let two sequential patterns Q;P and the

corresponding equivalent sets EQ and EP: If Q is contained

by P, then EQ # EP:

Therefore, equivalent sets allow us to express a pattern

query problem as the problem of finding all sets of items that

contain a given subset (note that Corollary 3 is not

reversible in general). Also, it is easy to see that if EQ #
EP; then SðEQÞ # EPÞ and PðEQÞ # ðEPÞ:

Evidently, the length lEl of an equivalent set E of a

pattern P depends on the lengths of P’s elements. Due to

the consideration of ordering (the examination of f0 function

for every pair of items between different itemsets) the length

of E grows rapidly.

Lemma 4. Let n be a given number of items and P ¼

kX1;…;Xml a sequential pattern, where lX1 < · · · < Xml ¼
n: The equivalent set Emax with the maximum length is

produced in the case that each Xi is a singleton, i.e. lXil ¼ 1:

In this case it holds that m ¼ n and lEmaxl ¼ n þ ðn=2Þ:

Proof. We will use induction on the number of items n. For

n ¼ 2 the truth trivially holds. We assume that the truth

holds for n. We will prove for n þ 1:

Let i1;…; in be the n items for which (due to induction)

we assume that the maximum equivalent set is produced

when P ¼ k{i1}; {i2};…; {in}l: If inþ1 is the new item, it can

be added in P either by being inserted to one of the n

singleton elements ({ik}; 1 # k # n) of P, or by becoming a

new singleton element3. In the former case (without harm of

the generality) assume that inþ1 is inserted in. The length of

the corresponding equivalent set will be equal to ðn þ 1Þ þ

ðn=2Þ þ ðn 2 1Þ ¼ 2·n þ ðn=2Þ: In the latter case, we will

have P ¼ k{i1}; {i2};…; {in}; {inþ1}l; hence the length of

the equivalent set will be n þ 1 þ ððn þ 1Þ=2Þ: It is easy to

show for n . 2 that n þ 1 þ ððn þ 1Þ=2Þ . 2·n þ ðn=2Þ:

Conclusively, the maximum length of the equivalent set

is produced when each element of P is a singleton. The

value of the length in this case is equal to n þ ðn=2Þ: A

3.2. Signatures

Since the size of equivalent sets increases rapidly with

increasing pattern length (Lemma 4, they can be rep-

resented more efficiently by using superimposed signa-

tures. A signature is a bitstring of F bits (denoted as

signature length ) and is used to indicate the presence of

elements in a set. Each element of a set can be encoded, by

using a hash function, into a signature that has exactly m

out F bits equal to ‘1’ and all other bits equal to ‘0’. The

value of m is called the weight of the signature. The

signature of the whole set is defined as the result of

the superimposition of all element signatures (i.e. each bit

in the signature of the set is the logical OR operation of the

corresponding bits of all its elements). Given two

equivalent sets E1; E2 and their signatures SðE1Þ; SðE2Þ; it

holds that E1 # E2 ) SðE1Þ AND SðE2Þ ¼ SðE1Þ:

Signatures provide a quick filter for testing the subset

relationship between sets. Therefore, if there exist any bits

of SðE1Þ that are equal to ‘1’ and the corresponding bits of

SðE2Þ are not also equal to ‘1’, then E1 is not a subset of E2:

The inverse of the latter statement, however, does not hold

in general and, evidently, false-drops may result from

collisions due to the superimposition. To verify a drop (i.e.

to determine if it is a true- or a false-drop), we have to

examine the corresponding sequences with the containment

criterion. In order to minimize the false drops, it has been

proved [4] that, for sets of length T, the length of the

signatures has to be equal to:

F ¼ m·T =ln2 ð1Þ

Henceforth, based on the approach of Ref. [12] for the case

of set-valued object databases, we assume that m is equal to

one. Given a collection of sequential patterns, in Section 4

we examine effective methods for organizing the

representations of the patterns, which consist of signatures

of equivalent sets.

4. Family of SEQ algorithms

4.1. A Simple sequential algorithm

Let D be the database of sequential patterns to be

indexed. A simple data structure for indexing elements of

D is based on the paradigm of signature-file [4], and is

called SEQ(C) (“SEQ” denotes that the structure is

sequential, and “C” that it uses a complete signature

representation for the equivalent set). It corresponds to the

direct (i.e. naive) use of signatures of equivalent sets, and3 Recall that the elements of P are unordered sets.
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is given for comparison purposes. The construction

algorithm for SEQ(C) is given in Fig. 4a (SðEÞ is the

signature of equivalent set E ).

The algorithm for querying the structure for a given

sequential pattern q, is given in Fig. 4b. Initially (step 1), the

equivalent set, Eq; of q is calculated. Then, each signature in

the structure is examined against the signature SðEqÞ (step 4,

where and denotes the bitwise and of the signatures). The

verification of each drop is applied at steps 5–7. The result,

consisting of the sequential patterns from D that satisfy

query q, is returned in set R.

The cost of the searching algorithm can be decomposed

as follows:

(1) Index scan cost (I/O): to read the signatures from the

sequential structure.

(2) Signature test cost (CPU): to perform the signature

filter test.

(3) Data scan cost (I/O): to read patterns in case of drops.

(4) Verification cost (CPU): to perform the verification of

drops.

The signature test is performed very fast, thus the

corresponding cost can be neglected. Since the drop

verification involves a main memory operation, it is much

smaller compared to the Index and Data Scan costs that

involve I/O. Therefore the latter two costs determine the

cost of the searching algorithm. Moreover, it is a common

method to evaluate indexing algorithms by comparing the

number of disk accesses, e.g. [4,12,35].

For SEQ(C), the calculation of F (signature length) with

Eq. (1) is done using the expected length, l �El; of equivalent

sets (in place of T ). Since l �El grows rapidly, F can take large

values, which increase the possibility of collisions during

the generation of signatures (i.e. elements that are hashed in

the same position within signatures). Collisions result to

false-drops, due to the ambiguity that is introduced (i.e. we

cannot determine which of the elements, that may collide in

the same positions of the signature, are actually present).

Thus, a large Data Scan cost for the verification step incurs.

Moreover, large sizes of equivalent sets increase the Index

Scan cost (because they result into larger F values, thus to

an increase in the size of the index).

Due to the drawbacks described above, in the following

we consider the SEQ(C) method as a base to develop more

effective methods. Their main characteristic is that they do

not handle at the same time the complete equivalent set

(i.e. all its elements) for the generation of signatures, so as to

avoid the described deficiencies of SEQ(C).

4.2. Partitioning of equivalent sets

In Refs. [38,22] a partitioning technique is proposed that

divides equivalent sets into a collection of smaller subsets.

With this method, large equivalent sets are partitioned into

smaller ones. Thus, in the resulting signatures we will have

reduced collision probability, fewer false-drops and reduced

Data Scan cost.

Definition 5. (Partitioning of equivalent sets) Given a user-

defined value b; the equivalent set E of a sequential pattern

P is partitioned into a collection of E1;…, Ek subsets by:

† dividing P into P1;…, Pk subsequences, such

that
Sk

i¼1 Pi ¼ P; Pi > Pj ¼ Y for i – j; and

† having Ei be the equivalent set of Pi; where lEil , b; 1 #

i # k:

According to Definition 5, we start from the first element

of P being the first element of P1: Then, we include the

following elements from P in P1; while the equivalent set of

P1 has length smaller than b: When this condition does not

hold, we start a new subsequence, P2: We continue the same

process, until all the elements of P have been examined. For

instance, let P ¼ k{A;B}; {C}; {D}; {A;F}; {B}; {E}l: Forb

equal to 10, we have: P1 ¼ k{A;B}; {C}; {D}l and P2 ¼

k{A;F}; {B}; {E}l; because in this case lEðP1Þl ¼ 9 and

lEðP2Þl ¼ 9: Notice that the equivalent set of E has length

Fig. 4. SEQ(C) method: (a) construction algorithm. (b) search algorithm.
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equal to 32, which is much larger than the length of the

partitions.

We denote the above method as SEQ(P) (P stands for

partitioning). The construction algorithm for SEQ(P) is

analogous to the one of SEQ(C), depicted in Fig. 4a. After

step 3, we have to insert:

3a. Partition E into E1;…Ek

and step 4 is modified accordingly:

4. forall Ei

4a. F þ ¼ kSðEiÞ; pointerðpiÞl
4b. endfor

The search algorithm for SEQ(P) is based on the

following observation [22]. For each partition of an

equivalent set E, a query pattern q can be decomposed in

a number of subsequences. Each subsequence is separately

examined against the partitions of E. The algorithm is

depicted in Fig. 5.

We assume that an equivalent set is stored as a list that

contains the signatures of its partitions, along with a pointer

to the actual pattern (step 1). At steps 4–16, the query

pattern is examined against each partition and the maximum

query part than can be matched by the current partition is

identified. The part of query q from startPos to endPos is

denoted as q[startPos, endPos ]. At the end of this loop (step

17), if all query parts have been matched against the

partitions of the current equivalent set (this is examined at

step 17, by testing the value of startPos variable), then the

verification step is performed at steps 18–20.

SEQ(P) partitions large equivalent sets in order to reduce

their sizes and, consequently, the Data Scan cost (because it

reduces the possibility of collisions within the signatures,

thus it results into fewer false-drops). However, since a

separate signature is required for each partition of an

equivalent set, the total size of the stored signatures

increases (the length of each signature in this case is

determined by Eq. (1), having in mind that the size of each

partition of the equivalent set is equal to b (Definition 5)).

Thus, the Index Scan cost may be increased4.

4.3. Using approximations of equivalent sets

In this section we propose a different method for

organizing equivalent sets. It is based on the observation

that the distribution of elements within sequential

patterns is skewed, since the items that correspond to

frequent subsequences (called large according to the

terminology of Ref. [2]) have larger appearance

frequency. Therefore, the pairs of elements that are

Fig. 5. SEQ(P) method: search algorithm.

4 Using very small values of b and thus very small signature lengths for

each partition, so as not to increase Index Scan cost, has the drawback of

significantly increasing the false-drops and the Data Scan cost.
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considered during the determination of an equivalent set

are not equiprobable.

Due to the above, some pairs have much higher co-

occurrence probability than others. The length of

equivalent sets can be reduced by taking into account

only the pairs with high co-occurrence probability. This

represents an approximation of equivalent sets, and the

resulting method is denoted as SEQ(A) (“A” stands for

approximation). The objective of SEQ(A) is the reduction

in the lengths of equivalent sets (so as to reduce Data

Scan costs) with a reduction in the sizes of the

corresponding signatures (so as to reduce the Index

Scan costs).

Recall that PðEÞ denotes the part of the equivalent set

E, which consists of the pairwise elements. Also,

suppDðx; yÞ denotes the support of pair ðx; yÞ in D (i.e.

the normalized frequency of sequence ðx; yÞ [2]), where

x; y [ I and the pair ðx; yÞ [ PðEÞ: The construction

algorithm for SEQ(A) is depicted in Fig. 6.

The search algorithm of SEQ(A) is analogous to that of

SEQ(C). However, step 1 of the algorithm depicted in

Fig. 4b has to be modified accordingly (identical

approximation has to be followed for the equivalent set of

a query pattern):

Lemma 6. The SEQ(A) algorithm correctly finds all

sequences that satisfy a given pattern query.

Proof. Let a pattern query Q and its equivalent set EQ:

Also let a sequence S for which Q W S (i.e. Q is

contained by S ) and ES its equivalent set. As described

(see Corollary 3, it holds that EQ # ES; SðEQÞ # SðESÞ

and PðEQÞ # PðESÞ: A

In SEQ(A), let us denote E0
Q and E0

S the equivalent sets of

Q and S, respectively, under the approximation imposed by

this algorithm. From the construction method of SEQ(A) we

have that SðE0
QÞ ¼ SðEQÞ and SðE0

SÞ ¼ SðESÞ: Therefore,

SðE0
QÞ # SðE0

SÞ:

Focusing on the pairwise elements, let an element j [
PðESÞ2 PðE0

SÞ (i.e. j is excluded from PðE0
SÞ due to step 9 of

SEQ(A). We can have two cases:

(1) If j [ PðEQÞ; then j [ PðEQÞ2 PðE0
QÞ (i.e. j is also

excluded from PðE0
QÞ; due to the construction

algorithm of SEQ(A)—see Fig. 6). Therefore,

SEQ(A) removes the same elements from PðE0
QÞ and

PðE0
SÞ: Since PðEQÞ # PðESÞ; by the removal of such j

elements, we will have PðE0
QÞ # PðE0

SÞ:

(2) If j � PðEQÞ; then the condition PðE0
QÞ # PðE0

SÞ is not

affected, since such elements excluded from PðE0
SÞ are

not present in PðEQÞ; and thus in PðE0
QÞ:

From both the above cases we have PðE0
QÞ # PðE0

SÞ:

Conclusively, SðE0
QÞ< PðE0

QÞ # SðE0
SÞ< PðE0

SÞ; which

gives E0
Q # E0

S: Hence, we have proved that Q W S ) E0
Q #

E0
S; which guarantees that SEQ(A) will not miss any

sequence S that satisfies the given pattern query (this can be

easily seen in a way analogous to Corollary 3.

From the above it follows that with the approximation

method of SEQ(A) no loss in precision is triggered

(evidently there is no reason to measure the precision/recall,

since the method is always accurate).5 On the other hand,

SEQ(A) and all other SEQ algorithms are based on

signatures. Therefore, they may incur false-drops, i.e. the

fetching of sequences for which their signatures satisfy

Fig. 6. SEQ(A) method: construction algorithm.

5 Evidently, it easy to see that SEQ(C) and SEQ(P) also do not trigger any

loss in precision.
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the query condition but the actual sequences do not. The

number of false-drops directly affects the Data Scan cost,

since the fetching of a large number of sequences requires

more I/O operations.

The Data Scan cost of SEQ(A) is reduced, compared to

SEC(C), due to the fewer false-drops introduced by the

drastic reduction in the sizes of equivalent sets. This is

examined experimentally in Section 5. It has to be noticed

that the selection of the user-defined parameter k, for the

calculation of the NN set in algorithm of Fig. 6, has to be

done carefully. A small k value will remove almost all pairs

from an equivalent set and in this case the Data Scan cost

increases (intuitively, if the equivalent set has very few

elements, then the corresponding signature will be full of

‘0’, thus the filtering test becomes less effective). In

contrast, a large k value will present a similar behavior as

the SEQ(C) algorithm, since almost all pairs are considered.

The tuning of the k value is examined in Section 5.

Moreover, differently from SEQ(P), the Index Scan cost

for SEQ(A) is reduced, because smaller signatures can be

used for the equivalent sets (due to their reduced sizes) and

no partitioning is required. Therefore, SEQ(A) combines the

advantages of both SEQ(P) and SEQ(C).

5. Performance results

This section contains the experimental results on the

performance of all methods. For purposes of comparison,

we also consider the approach of generating signatures

directly from sequential patterns, i.e. not using equivalent

sets and thus, ignoring the ordering of elements (this method

is denoted as SEQ(U), where U stands for unordered). First,

we describe the data generator that was used for the

experiments, and then we present the comparison among all

methods.

5.1. Data generation

In order to evaluate the performance of the algorithms

over a large range of data characteristics, we generated

synthetic sets of sequential patterns. Our data generator

considers a model analogous to the one described in Ref.

[2]. Following the approach of Refs. [38,22] so as to

examine the worst case for equivalent sets, according to

Lemma 4 we consider sequential patterns with elements

being single items (singletons). Our implementation is

based on a modified version of the generator developed in

Ref. [25], which was used to produce sequential patterns for

the case of web-user traversals (see also Ref. [22]). The

reason is because they actually consist of sequences of

single items.

The generator builds a pool of sequences, each of them

being a sequence of pairwise distinct items from a domain

I. The length of each such sequence is a random variable

that follows Poisson distribution with a given mean value.

A new pool sequence keeps a number of items from the

previous one, determined by the correlation factor. Since

we are interested in the effect of item ordering within

sequences, we modified the generator of Ref. [25] so as to

perform a random permutation of the common items

before inserting them in the new pool sequence. This

results into sequences that contain items with different

ordering, thus examines the impact of this factor. The rest

of each sequence is formed by selecting items from I with

uniform distribution. Each sequence in the pool is

associated with a weight. This weight corresponds to its

selection probability and is a random variable that follows

exponential distribution with unit mean (weights are

normalized in the sequel, so that the sum of the weights

for all paths equals 1). A sequential pattern is created by

picking a sequence from the pool, tossing a L-sided

weighted coin (L is the pool size), where the weight for a

side is the probability of picking the corresponding pool

sequence. In each sequential pattern, a number of random

items from I (i.e. following uniform distribution) are

inserted to simulate the fact that pool sequences are used

as seeds and should not be identical to the actual

sequential patterns. This number is determined by the

length of the sequential pattern, which is a random

variable following Poisson distribution with a given mean

value denoted as S. The total number of generated

sequential patterns is denoted as N. Each result presented

in the following is the average from 5 generated data sets,

and for each data set we used 100 queries for each case

(e.g. query size, number of sequences, etc.).

5.2. Results

First we focus on the tuning of k for SEQ(A). We used

data sets with S set to 10, lIl was set to 1000 and N was equal

to 50,000. We measured the total number of disk accesses

(Index- and Data-Scan cost) with respect to the length of the

query patterns. The results for SEQ(A) with respect to k are

depicted in Fig. 7, where k is given as a percentage of lIl: As

shown, for small values of k (less than 5%), SEQ(A)

requires a large number of accesses, because very small

Fig. 7. Tuning of k.
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equivalent sets are produced that give signatures with

almost all bits equal to ‘0’. Thus, as explained in Section

4.3, the filtering of SEQ(A) becomes low and the Data Scan

cost increases. On the other hand, for large k values (larger

than 20%) very large equivalent sets are produced and

SEQ(A) presents the drawbacks of SEQ(C). The best

performance results when setting k to 10% of lIl; which is

the value used henceforth.

Our next experiments considers the comparison of all

SEQ methods. We used data sets that were similar to the

ones used in the previous experiment. Based on Eq. (1) we

used the following signature sizes: for SEQ(C) equal to 96

bits, for SEQ(P) and SEQ(A) equal to 64 and for SEQ(U)

equal to 32. For SEQ(A), k was set to 10% of lIl and for

SEQ(P), b was set to 44 (among several examined values,

the selected one presented the best performance). We

measured the number of activated sequential patterns in the

database. This number is equal to the total number of drops,

i.e. the sum of actual- and false-drops. Evidently, for the

same query, the number of actual-drops (i.e. the sequential

patterns that actually satisfy the query) is the same for all

methods. Therefore, the difference in the number of

activated sequential patterns directly results from the

difference in the number of false-drops. The results are

illustrated in Fig. 8a (the vertical axis is in logarithmic

scale).6 In all cases, SEQ(A) outperforms all other methods,

indicating that its approximation technique is effective in

reducing the Data Scan cost through the reduction of false-

drops.

Since the query performance depends both on the Data-

and the Index-Scan cost, for the case of the previous

experiment we measured the total number of disk accesses.

The results are depicted in Fig. 8b, with respect to the query

size (i.e. the number of elements in the query sequential

patterns).

Focusing on SEQ(P), we see that for all query sizes it

performs better than or almost the same as SEQ(C).

Especially for medium size queries, the performance

difference between the two methods is larger. This is due

to the reduced Data Scan cost for these cases (fewer

false-drops, as also given in Fig. 8a), resulted from

the partitioning technique. Moving on to SEQ(U), we

observe that for medium query sizes it is outperformed

by SEQ(P), but for very small and large ones it performs

better. These two cases present two different situations

(see also the following experiment):(i) For very small

queries (e.g. of size two) many signatures are activated

and a large part of the database is scanned during

verification. Hence a large Data Scan cost is introduced

for all methods. This can be called as ‘pattern explosion’

problem. (ii) For large queries (with size comparable to

S ) there are not many different sequential patterns in the

database with the same items but with different ordering.

Therefore, ignoring the ordering does not produce many

false-drops. In this case a small number of signatures is

activated (see also as also given in Fig. 8a) and all

methods have a very small and comparable Data Scan

cost. Since at these two extreme cases both SEQ(P) and

SEQ(U) have comparable Data Scan cost, SEQ(P) looses

out due to the increased Index Scan cost, incurred from

the use of larger signatures (SEQ(U) does not use

equivalent sets, thus it uses 32-bit signatures; in contrast

SEQ(P) uses for a 64-bit signature for each partition,

thus the total size is a multiple of 64-bits).

Turning our attention to SEQ(A), we observe that it

significantly outperforms SEQ(C) and SEQ(P) for all query

sizes. Regarding the two extreme cases, for the pattern

explosion problem SEQ(A) does not present the drawback

of SEQ(C) and SEQ(P). In this case it performs similar to

SEQ(U), which uses much smaller signatures. The same

applies for the very large queries. For all the other cases,

SEQ(A) clearly requires much smaller accesses than

SEQ(U).

Our next series of experiments examine the sensitivity

of the methods. We first focus on the effect of S. We

generated data sets with the other parameters being the

same with the previous experiments, and we varied the

length S of sequential patterns (the signature lengths

were tuned against S ). The resulted numbers of disk

accesses are depicted in Fig. 9a, for query size equal to

S=2 in each case. Clearly, the disk accesses for all

Fig. 8. Comparison of methods: (a) number of activated sequential patterns in the database w.r.t. query size. (b) Disk accesses w.r.t. query size.

6 We choose to show the differences in the false-drops through the total

number of drops, since we are interested in the relative overall performance

of the methods and the direct impact on the Data Scan cost.
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methods increase with increasing S. SEQ(A) perform

better than all other methods and is not affected by

increasing S as much as the other methods. SEQ(P)

presents the second best performance. It has to be

noticed that for large values of S, the performance of

SEQ(C) degenerates rapidly.

We also examined the effect of the cardinality of I

(domain of items). For this experiment S was set to 10 and

the average query size was equal to 5. The other parameters

in the generated data sets were the same as those in previous

experiments, and we varied I. The results are illustrated in

Fig. 9b. As shown, for all methods, very small values of lIl
(e.g. 100) require a much larger number of disk accesses.

This is due to the larger impact of ordering, since more

permutations of the same sets of items appear within

sequential patterns. SEQ(A) presents a significantly

improved performance, compared to all other methods,

whereas SEQ(P) comes second best.

Finally, we examined the scalability of the algorithms

with respect to the number N of sequential patterns (denoted

sequences for simplicity). The rest parameters for the

generated data sets were the same with the ones in the

experiments depicted in Fig. 8. In the generated data sets we

varied N. The results depicted in Fig. 10.

As shown, for all methods, the disk accesses increase in

terms of increasing N. SEQ(A) compares favorably with

the remaining algorithms, whereas SEQ(P) comes second

best. As in all previous results, SEC(C) presents the worst

performance.

6. Conclusions

We considered the problem of the efficient storage and

querying of sequential patterns in database systems.

Sequential patterns and pattern queries can constitute

essential primitives for pattern post-processing, which

involves the persistency of discovered patterns, their

selection according to user-defined criteria, or the querying

to identify transactions that satisfy certain criteria. Although

these operations are included in existing KDD query

languages, little support is provided in this direction by

existing DBMS or mining tools. This impacts the tighter

coupling of data mining with DBMSs and the more

systematic development of data mining applications over

database systems.

We described a family of algorithms, which are based on

the notion of equivalent set to address the drawbacks of

existing methods that do not consider the ordering among

the elements of sequential patterns. Moreover, we con-

sidered the fact that the distribution of elements in

sequential patterns is highly skewed and we proposed a

novel encoding scheme, which is able to combine the

advantages of the other described algorithms.

The comparison of all methods is given through

experimental results, which examine a variety of factors.

We tested the impact of query size, the tuning of a parameter

for the method that capitalizes on the skew of element

distribution, the effect of sequential-pattern lengths and the

domain size, and finally the scalability. These results clearly

illustrate the superiority of the proposed method against

others that either do not consider the ordering of elements or

are based on direct (straightforward) representation

schemes. In future work, we will examine the integration

of the developed scheme with tree indexes for signature

data [35].

Fig. 9. Effect of: (a) S. (b) lIl:

Fig. 10. Scalability w.r.t. number of sequences N.
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