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Abstract—Top-k dominating queries combine the advantages
of top-k queries and skyline queries, and eliminate their disadvan-
tages. They return k objects with the highest domination score,
which is defined as the number of dominated objects. As a top-k
query, the user can bound the number of returned results through
the parameter k, and like a skyline query a user-selected scoring
function is not required. Top-k dominating queries have been
studied by different perspectives, such as in indexed and non-
indexed multi-dimensional data using efficient exact computation
algorithms, in uncertain data using randomized algorithms with
accuracy guarantees, and in data streams. In addition, top-
k dominating queries have been studied over distance-based
dynamic attribute vectors, defined over a metric space, using
efficient progressive algorithms. Top-k dominating queries have
become an important tool for decision support, data mining, web
search, and multi-criteria retrieval applications.

I. INTRODUCTION

During the last years, preference-based queries have at-
tracted significant attention. In particular, two query types have
gained increasing importance and have been studied exten-
sively: i) top-k queries and ii) skyline queries. In a top-k query,
a user provides a ranking score function (usually monotone)
to order the objects by their scores and, thus, retrieve the
top-k best objects. The skyline is composed of the objects
that are not dominated, based on a domination relationship
involving the values in each dimension. More formally, the
object p = (p.x1, p.x2, . . . , p.xd) ∈ D dominates another
object q = (q.x1, q.x2, . . . , q.xd) ∈ D, i.e., p ≺ q, when:
∀i ∈ {1, . . . , d} : p.xi ≤ q.xi ∧ ∃i ∈ {1, . . . , d} : p.xi < q.xi.
This means that p is as good as q in all dimensions, and it
is strictly better than q in at least one dimension. Then, the
domination score of p, dom(p) is defined as: dom(p) = |{q ∈
S : p ≺ q}|. A top-k dominating query returns the k objects
with the maximum domination scores in D. For example, the
work in [11] exploits this concept for ranking web services.

The most important advantage of a top-k query is that the
number of results is bounded (which is not true for skyline
queries), whereas the most important advantage of a skyline
query is that no parameters and user-defined scoring functions
are required. Top-k dominating queries combine the advan-
tages of top-k queries and skyline queries, eliminating their
disadvantages by assigning to each object an intuitive score
based on dominance. This score is reflecting the importance
of every object in the dataset in a natural way.

These concepts are better explained by an example. The
objects of the dataset D are the two-dimensional points pi for
i=1,. . .,15. Without loss of generality, we assume that there

is preference in small values in all dimensions. Then, the
rectangular area that has a greater or equal x value and a
greater or equal y value in comparison to the coordinates of a
specific point p, it is called the domination region of p. The
domination region contains all points that p dominates. For
example, the domination region of p6 in Figure 1 contains
6 points, thus dom(p6) = 6. By using domination regions,
we can calculate all domination scores of the points pi, i.e.,
dom(p1) = 10, dom(p2) = 12, dom(p3) = 5, dom(p4) = 10,
dom(p5) = 0, dom(p6) = 6, dom(p7) = 5, dom(p8) = 1,
dom(p9) = 4, dom(p10) = 0, dom(p11) = 1, dom(p12) = 1,
dom(p13) = 2, dom(p14) = 1, dom(p15) = 0. Therefore, a
top-3 dominating query must return the points p2, p1, p4. Note
that p1 and p2 are skyline points, but p4 is not.

 

p1 

O 

Dominance 

Region of p6 

p2 

p3 

p4 

p5 

p6 

p7 

p8 

p9 

p11 

p10 

p12 

p15 

p13 

p14 

x 

y 

Fig. 1. An example of a dominating query.

II. A SKYLINE-BASED TOP-k DOMINATING GENERAL
ALGORITHM (STD)

The first approach for processing top-k dominating queries
has been presented in [9], where the top-k dominating queries
have been defined as a variation of skyline queries. A Skyline-
Based Top-k Dominating Algorithm (STD) has been proposed,
which uses the Branch-and-Bound Skyline Algorithm (BBS)
of [9]. The main steps taken by STD are the following:

• Compute the skyline S of the dataset D

• For each object p ∈ S count the number of objects it
dominates (i.e., its score dom(p))
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Fig. 2. Example of a top-k dominating query with the STD algorithm.

• Sort the objects in S by their domination scores and
report the object q with the maximum domination
score (top-1). The domination scores are kept in a
sorted list.

• Then, the exclusive domination region R of q is
selected and a local skyline query constrained in R
is performed. The exclusive domination region of an
object q of S is the region which contains the objects
dominated only by q and not by any other object of
the skyline S. After the execution of the constrained
skyline query in R, q is removed.

• The domination values of all skyline objects in R are
computed and the sorted list is updated.

• The process is repeated for the next top object in the
list, until all top-k dominating objects are reported.

We illustrate the previous steps for the dataset depicted
in Figure 1. The skyline S of D is S={p1, p2, p13}. The
domination scores of all points in S are computed and inserted
in a sorted list: {< p2, 12 >,< p1, 10 >,< p13, 2 >}.
Then, the exclusive domination region R of p2 is selected (see
Figure 2a), p2 is reported as top-1, and then is removed. The
constrained skyline in R contains only p4, where the domi-
nation score of p4 is dom(p4)=10. The sorted list is updated:
{< p1, 10 >,< p4, 10 >,< p13, 2 >}. Both points p1, p4 are
reported as top-2 and top-3, as they have equal domination
scores, whereas all other points in the constrained skylines
of their exclusive domination regions have less scores. More
specifically, the exclusive domination region of p1 is equal
with its full domination region, and the exclusive domination
region of p4 is empty (Figure 2b).

The STD algorithm can be viewed as skyline “peeling”,
since it computes local skylines among objects that have the
highest domination score. Moreover, due to its generality it
can be applied in any dataset whereas the computation of the
skylines inside STD can be performed by any known off-the-
shelf skyline algorithm (i.e., not only the BBS [9]).

III. TOP-k DOMINATING ALGORITHMS ON
MULTI-DIMENSIONAL DATA

In this section we present algorithms for the efficient
processing of top-k dominating queries on indexed multi-
dimensional datasets.

A. Methods based on R-Trees and aggregate R-Trees

The STD algorithm can be applied easily in multi-
dimensional data. An R-Tree based implementation and exten-
sive experiments can be found in [9]. However, the skyline-
based approach may perform many unnecessary score count-
ing, since the skyline could be much larger than k (especially
if data have many dimensions).

In [6], [7] another characteristic of a top-k dominating
query is revealed. It is in fact an aggregate query, when the
data are indexed by using hierarchical index structures (such
as R-trees [3]), since computing the domination score dop(p)
of a multi-dimensional object p ∈ D is an aggregation in D.
Therefore, the authors replace the R-tree by an aggregate R-
tree (aR-tree [5], [8]), and present their methods for the top-k
dominating query processing. The aR-tree augments to each
non-leaf entry of the R-tree an aggregate measure of all data
objects in the subtree pointed by it. It has been used to speed
up the evaluation of spatial aggregate queries, where measures
in a spatial region are aggregated. As the domination score
of an object p is computed by the number of objects that p
dominates, a simple count aggregation measure is required for
equipping the aR-tree. Therefore, each non-leaf entry stores
the count of data objects in its subtree.

Four specialized aR-tree-based algorithms named Sim-
ple Counting Guided (SCG), Lightweight Counting Guided
(LCG), Upper-bound Based Traversal (UBT), and Cost-Based
Traversal (CBT) have been proposed. These algorithms have
been compared with STD implemented with a spatial aggre-
gation technique (for fairness in comparison), and with an
optimized version of STD named Iterative Top-k Dominating
Algorithm (ITD).



The algorithms studied in [6], [7] use specific score bound-
ing functions applied on the nodes of the aR-tree. For an aR-
tree entry e (i.e., a minimum bounding box) whose projection
on the i-th dimension is the interval [e[i]−, e[i]+], its lower
corner is denoted by e− = (e[1]−, e[2]−, . . . , e[d]−) and its
upper corner is denoted by e+ = (e[1]+, e[2]+, . . . , e[d]+),
where d is the number of dimensions in the dataset D. Both
e− and e+ do not correspond to actual data objects but they
allow us to express domination relationships among objects
and minimum bounding boxes conveniently. Figure 3 depicts
some examples. The object p1 dominates the region of entry e1,
thus it dominates all data objects that are indexed under e1 (full
domination). The object p1 dominates e+1 but not e−1 , thus it
dominates some but not all data objects that are indexed under
e1 (partial domination). Finally, the entire domination region of
object p3 is disjoint with the region of entry e1, thus it cannot
dominate any object indexed under e1 (no domination).

Fig. 3. Example of domination relationship among aR-tree entries.

For any aR-tree entry e, the values dom(e+) and dom(e−)
correspond to the tight-most lower and upper score bounds
respectively, for any object indexed under e.

1) Iterative Top-k Dominating Algorithm (ITD): The It-
erative Top-k Dominating Algorithm (ITD [6], [7]) is an
optimized version of STD, applied with two optimizations
that greatly reduce the I/O cost when the data are indexed
with an aR-tree. The first optimization is called “batch count-
ing”. Instead of iteratively applying separate range queries
to compute the scores of the skyline objects, ITD executes
them in a recursive batch counting procedure (Batch-Count)
on the aR-Tree. More specifically, when a Batch-Count must
be conducted for a node z of the aR-tree, then:

• For all entries e of node z, we check:

• If z is a non-leaf node, and exists an object p of the
current candidates that dominates e+ but not e−, then
the Batch-Count procedure is called recursively for the
child node of z.

• Else z is a leaf node, then all domination scores of the
objects p in the current candidate set that dominate e−,
are updated by the count of entry e, i.e., dom(p) =
dom(p) + count(e).

This procedure calculates only the non-calculated domi-
nation values of the skyline objects and only in the exclusive
domination regions, recursively, thus avoids recalculations. The

second optimization is that the set structure which keeps all
current candidate objects is sorted by a space-filling curve
(Hilbert ordering) before applying the batch counting to in-
crease the compactness of the MBR of a batch. These two
optimizations are greatly reducing the I/O cost of STD. The
example of Figure 2 illustrates also the processing of ITD.

However, the skyline based solutions becomes inefficient
for datasets with large skylines. Moreover, as the dimension-
ality of the dataset D increases, the skyline S may become
as big as D. An important study in [13] reports that there
is a specific dimension (not large), called the “eliminating
dimension”, where all domination values in D become zero,
thus the skyline of D contains all objects of D (S=D).

Motivated by these observations, the following proposed
algorithms in [6], [7] solve the problem directly, without
depending on skyline computations.

2) Simple Counting Guided Algorithm (SCG): In the aR-
tree the score of any object p indexed under an entry e is
upper-bounded by dom(e−). By using this property, the main
idea of SCG ([6], [7]) is to traverse the aR-tree nodes in a
descending order of their upper-bound scores. The rationale
is that objects with high scores can be retrieved early and,
thus, accesses to aR-tree nodes that do not contribute to the
result can be avoided. To organize the entries to be visited in
descending order of their scores, a max-heap structure H is
used. The top-k dominating objects are managed by a min-
heap structure W as the algorithm progresses, while g is the
current k-th score in W used for pruning (any object p with
a domination score dom(p) < g must not be appeared in the
query results).

More specifically, the algorithm takes the following steps:

• The upper bound scores dom(e−) of the aR-tree root
entries are computed in batch (using the Batch-Count
procedure of ITD), and are inserted into the max-heap
H .

• While the score dom(e−) of H’s top entry e is higher
than g, the top entry is deheaped, and the node z
pointed by e is visited.

• If z is a non-leaf node, its entries are enheaped, after
Batch-Count is called to compute their upper score
bounds.

• If z is a leaf node, the scores of the objects in it are
computed in batch and the top-k set W is updated, if
applicable.

In the sequel, we illustrate the execution of SCG. For
simplicity, we perform a top-1 dominating query. Figure 4
illustrates the processing. In the aR-tree there are 5 leaf
nodes and their corresponding entries in the root node are
e1, e2, e3, e4, e5. First, the upper bound scores for the root
entries are computed with the batch-counting procedure, i.e.,
dom(e−1 ) = 14, dom(e−2 ) = 9, dom(e−3 ) = 7, dom(e−4 ) = 3,
dom(e−5 ) = 3. Since e1 has the highest upper bound score,
the leaf node pointed by e1 will be accessed next. The scores
of entries in e1 are computed in batch, i.e., dom(p1) = 10,
dom(p2) = 12, dom(p4) = 10. Since p2 has the higher
domination score of all remaining entries (p1, p4, e2, e3, e4, e5),
it is guaranteed to be the top-1 result.
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Fig. 4. Example of SCG Algorithm.

3) Lightweight Counting Guided Algorithm (LCG): The
Lightweight Counting Guided Algorithm (LCG [6], [7]) is
an optimized version of SCG. The main idea of the algo-
rithm is to replace the tight upper score bound dom(e−)
by a looser and cheaper to compute bound domu(e). The
algorithm processes exactly as SCG with the difference that
the Batch-Count procedure is replaced by a Light-Batch-Count
procedure, which is a variation of Batch-Count. In specific,
when bounds for a set of non-leaf entries are counted, the
algorithm avoids expensive accesses at aR-tree leaf nodes, by
using entries at non-leaf nodes to derive looser bounds. The
example of Figure 4 illustrates also the processing of LCG,
with the difference that the following looser bounds are used:
domu(e1) = 15, domu(e2) = 9, domu(e3) = 9, domu(e4) =
3, domu(e5) = 3. The bound are calculated without processing
the pi objects but by using only the aggregation count of
nodes ei. For example, the domu(e1) value is equal to 15
because e1 fully or partially dominates all other ei regions, i.e.,
domu(e1) = count(e1)+count(e2)+count(e3)+count(e4)+
count(e5) = 15. The domu(e3) value is equal to 9 because
e3 fully or partially dominates only the regions e4, e5 regions,
i.e., domu(e3) = count(e3) + count(e4) + count(e5) = 9.

4) Upper-bound Based Traversal Algorithm (UBT): The
Counting-Guided approaches, may access some aR-tree nodes
more than once due to the application of counting operations
for the visited entries. In [6], [7] Priority-Based Traversal
Algorithms are proposed, where the general idea is that instead
of computing upper bounds of visited entries by explicit
counting to defer score computations for entries, and maintain
lower and upper bounds for them during the tree is traversed.
Score bounds for visited entries are gradually refined when
more nodes are accessed, until the result is finalized with
the help of them. For this method to be effective, the tree
is traversed with a carefully designed priority order aiming at
minimizing I/O cost.

The general Priority-Based Traversal Algorithm (PBT),
during traversal, maintains a set S of visited aR-tree entries,
and loose upper domu(e) and lower doml(e) score bounds

for the entries e that have been seen so far. The top-k
dominating objects are managed by a min-heap structure W
as the algorithm progresses, while g is the current k-th score
in W used for pruning. More specifically, the algorithm works
as follows:

• First, the root node is loaded, and its entries are
inserted into S after upper score bounds have been
derived from information in the root node.

• While S contains non-leaf entries, the non-leaf en-
try ez with the highest priority is removed from
S, the corresponding tree node z is visited, and: i)
the domu, doml scores of existing entries in S that
partially dominating ez are refined using the contents
of z, ii) the domu, doml values for the contents of z
are computed and inserted into S.

• W is updated with objects/entries of higher doml than
g.

• Finally, entries are pruned from S if: i) they cannot
lead to objects that may be included in W and ii)
they are not partially dominated by entries leading to
objects that can reach W .

The Upper-bound Based Traversal Algorithm (UBT) is the
PBT algorithm with a priority traversal order guided by the
highest upper bound score (domu) entries ez . Such an order
would visit the objects that have high probability to be in the
top-k dominating results early.

We illustrate the execution of UBT in the example of Figure
4. We denote the score bounds of an entry e by the interval
dom(e) = [doml(e), domu(e)]. UBT accesses the root node
and its entries are inserted into S after their lower/upper bound
scores are derived: dom(e1) = [0, 15], dom(e2) = [0, 9],
dom(e3) = [0, 9], dom(e4) = [0, 3], dom(e5) = [0, 3]. The
entry e1 has the highest domu score in S, thus is removed and
its child node z is accessed. The score bounds for p1, p2, p4
are computed and the process is repeated until p2 is reported
as the top-1 result.

5) Cost-Based Traversal Algorithm (CBT): A closer look
into UBT reveals that the upper score bounds alone may not
offer the best priority order for traversing the tree. S can grow
very large if there are many partial domination relationships
between its entries. To minimize the partially dominating entry
pairs in S, the visited nodes are prioritized based on their level
at the tree. In addition, between entries at the highest level in
S, the one with the highest upper bound is chosen to find the
objects with high scores early. This variation of UBT is the
Cost-Based Traversal Algorithm (CBT).

B. Top-k Dominating Algorithms on non-indexed data

In [7] there is also a study for the evaluation of top-k
dominating queries on non-indexed data, assuming that data
objects are stored in random order in a disk file.

A practically viable solution is to first bulk-load an aR-tree
from the dataset and then compute top-k dominating objects
using the previous proposed algorithms. The bulk-loading step
requires externally sorting the objects, which is known to scale
well for large datasets. However, external sorting may incur
multiple I/O passes over data.



In [7] two algorithms, named Coarse-grained Filter Al-
gorithm and Fine-grained Filter Algorithm, are proposed to
determine the top-k dominating objects with only a constant
number of data passes, by using a filter-refinement framework.

These algorithms require 3 passes over data. The first pass
is the counting pass, which employs a memory grid structure
to keep track of object count in cells, while scanning over the
data. This structure is then used to derive lower/upper bound
scores of objects in the next pass. The second pass is the filter
pass, which applies pruning rules to discard unqualified objects
and keep the remaining ones in a candidate set. The refinement
pass, being the final pass, performs a scan over the data to
count the exact domination scores of all candidate objects.
Eventually, the top-k dominating objects are returned.

C. Progressive Algorithms for Subspace Top-k Dominating
Queries

The previous approaches are characterized by several lim-
itations, such as: i) they lack progressiveness (they report
the k best objects at the end of the processing), ii) they
require a multi-dimensional index or they build a grid-based
index on-the-fly, which suffers from performance degradation,
especially in high dimensionalities, and iii) they do not support
vertically decomposed data. Motivated by these observations,
the following proposed algorithms in [12] can handle effi-
ciently any subset of the dimensions in a progressive manner.
More specifically, four algorithms have been proposed in [12]:
Basic Scan Algorithm (BSA), Union Algorithm (UA), Reverse
Algorithm (RA), Differential Algorithm (DA), out of which the
best overall performance is shown by DA.

R-trees and their variants have been extensively used in
the literature to support a broad range of queries over multi-
dimensional data sets, including the top-k dominating queries
([6], [7], [9], [8]). Their major limitation is that since all dimen-
sions are used to organize the dataset, subspace search requires
a series of projection operations which affects efficiency due to
increased I/O activity. Moreover, the resulting indexing scheme
becomes inefficient even for processing queries involving the
whole set of dimensions, due to the dimensionality curse.

Alternative approaches have been proposed organizing each
dimension separately, resulting in a column-oriented (i.e.,
vertically decomposed) physical data organization. Column-
oriented storage shows significant performance improvements
in specific types of operations and moreover, offers a com-
pletely independent treatment of dimensions, thus supporting
flexible query processing involving a subset of dimensions.
This way, the rest of the dimensions do not participate in
query processing, and thus, query evaluation becomes more
efficient. A column-oriented organization is a natural and
intuitive choice taking into account that it is impossible to
provide a full-dimensional indexing scheme for every 2d − 1
possible subsets of dimensions.

The architecture of the physical organization of the pro-
posed methods in [12] is depicted in Figure 5. Each dimension
is organized separately by a B+-tree, which facilitates random
as well as sorted access (any one-dimensional access method
with random and sorted access support may be used as well).
Each B+-tree indexes the attribute values of the specific
dimension. A user may select any subset of dimensions,

whereas query execution is supported by the use of an LRU
buffer. An additional B+-tree is used (instead of another B+-
tree a hashing scheme could also be applied), called Set-B+,
which is used by the top-k query algorithm for intermediate
computations. At the beginning of any top-k query, the Set-
B+ is empty. During execution, the IDs of scanned objects are
inserted into the Set-B+ and several counters are updated. By
using this approach, all intermediate results are kept on disk
(if needed) and there is no need of additional main memory
storage. The Set-B+ shares the same LRU buffer with all other
data B+-trees.
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Fig. 5. Data organization utilized by BSA, UA, RA, DA.

The proposed algorithms in [12] are using the concept
of terminating objects. A terminating object is an object
whose attribute values on all dimensions of interest have been
retrieved (scanned) via sorted access on their indexes. The
main idea of the proposed algorithms is to scan on B+-trees
of the selected dimensions from the beginning in a round-
robin manner, to discover the terminating objects one by
one, to estimate and calculate (if necessary) their domination
scores that are maintained in a max-heap, and to extract them
progressively one by one from the max-heap when their scores
are definitely greater than the rest objects. The main difference
between the proposed algorithms is the way that they compute
the exact domination scores of the detected terminating objects.

An example of detection of terminating objects is depicted
in Figure 6, after the organization of the dataset of our main
example. Two B+-trees are used, one for the x dimension and
one for the y dimension. The objects are sorted by their values
in each B+-tree. During the round-robin scan, the first detected
terminating object is p2, requiring 4 value accesses. The second
detected terminating object is p4 and requires another 3 value
accesses. This process continuous until all relevant objects are
reported.

x  p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

 5 11 16 28 33 37 46 50 58 65 72 85 93 103 108 

y p13 p2 p4 p14 p1 p9 p6 p7 p12 p3 p11 p15 p8 p10 p5 

 16 22 30 36 45 49 58 65 65 72 74 80 82 95 105 
 

 

t1 t2 t3 

Fig. 6. Example of query execution for BSA, UA, RA, DA.

Due to the sorted order of values in the B+-trees, all objects
with the same value in a specific dimension appear sequentially



in the leaf level. This group of objects is called an equality
group (the equality group of an object p is denoted Ep). In the
example of Figure 6 the objects p7, p12 have the same y value
(65), thus they lie in the same equality group (Ep7 = Ep12 =
{p7, p12}).

The sorted order position of a terminating object p is its
position in the dimension that was detected and is denoted
as pos(p). In the example of Figure 6 we have pos(p2) = 2,
pos(p4) = 4, pos(p1) = 5. The position of any object p in any
dimension i is denoted as Lposi(p). In the example of Figure
6 we have Lposx(p1) = 1, Lposy(p4) = 3. In case the object
lies in an equality group the left-most position is considered.
In the example of Figure 6 we have Lposy(p12) = 8.

1) Basic Scan Algorithm (BSA): The Basic Scan Algorithm
is based on the following fundamental properties:

(a) If p is an object in a dimension with an equality group
Ep, then p may be dominated only by objects that are before
Ep in the sorted order of that dimension, and it may dominate
objects that are after Ep. If there are other objects in Ep, they
may dominate p, or they may be dominated by p, or they may
not dominate each other.

(b) According to the previous property, if in a dimension an
object p has been detected as a terminating object, it cannot
dominate more than N − pos(p) + |Ep| − 1 objects, where
N = |D| the total number of the objects in the dataset D.

This important property allows an immediate estimation of
the domination score estdom(p) = N − pos(p) + |Ep| − 1
of any terminating object p at the moment it was detected.
BSA keeps all discovered terminating objects in a max-heap
H prioritized on their estimated domination scores. During
processing, only the exact domination values of the top esti-
mated objects are calculated, updating the heap as necessary.
The following fundamental property provides the condition
for a terminating object to be reported as the next top result,
enabling the progressive behavior of the algorithm.

(c) If t1, t2 are the top-2 terminating objects in the heap H ,
and dom(t1) ≥ estdom(t2) (or dom(t1) ≥ dom(t2) in case
t2 has an exact score), then t1 can be immediately reported as
the next top result.

Assembling all together, after initializing the heap H , the
LRU-Buffer and the Set-B+, the main algorithmic procedure
of BSA is the following:

• If H is empty then scan and detect the next two
terminating objects, else only the next one, give them
their estimated scores and insert them into H .

• Extract the top-1 object t1 from H and if it has not
an exact domination score then calculate it (dom(t1)).
Get also the top-2 object t2 from H (without extrac-
tion and calculation).

• If dom(t1) ≥ estdom(t2) (or dom(t1) ≥ dom(t2) in
case t2 has an exact score), then report t1 as the next
top dominating result, else go to the first step.

• The process is repeated until all top-k dominating
objects are reported.

The exact domination score of a terminating object t in
BSA is computed based on the domination check between t

and all objects that are in the same equality group with t and
after t in the dimension that t was detected. The domination
check is performed by retrieving all attribute values of these
objects using random accesses. Subsequent algorithms change
the way that exact scores are computed toward performance
improvement.

Let us present an example of BSA execution by applying
a top-1 dominating query to the data depicted in Figure 6.
Initially, the first two terminating objects are detected and
enheaped, by visiting the objects in the B+-trees for dimen-
sions x and y with the (round-robin) order: p1, p13, p2, p2.
Thus, p2 is the first terminating object (detected after 4 value
accesses) and is enheaped with an estimated domination value
of estdom(p2) = N −pos(p2)+ |Ep2 |−1 = 15−2+1−1 =
13. Then, the second terminating object p4 (detected after
3 more value accesses by visiting p3, p4, p4) is enheaped
with an estimated domination value of estdom(p4) = N −
pos(p4) + |Ep4 | − 1 = 15 − 4 + 1 − 1 = 11. In the
next step, p2 is extracted from the top of the heap (as it
has the maximum score), and its exact domination score is
computed by checking whether it dominates the following ob-
jects p4, p14, p1, p9, p6, p7, p12, p3, p11, p15, p8, p10, p5, requir-
ing another 13 sequential value accesses in the y dimension and
13 random value accesses in the x dimension (to retrieve both
coordinates and check domination). As p2 does not dominate
p1, its final exact domination score is dom(p2) = 12. It holds
that dom(p2) = 12 > 11 = estdom(p4), thus the object p2
can be immediately reported as the top-1 dominating object.
BSA requires 4+3+13+13=29 total value accesses.

2) Union Algorithm (UA): Although BSA is progressive,
it performs a significant number of random accesses for dom-
ination checking, and this may lead to a significant I/O cost.
The Union Algorithm (UA) alleviates this problem as it does
not require any explicit domination checks among data objects.
UA is a variation of BSA. The fundamental difference is that
UA uses a different mechanism for exact domination value
computation. It takes advantage from an important property
(union property) that can calculate the domination score of a
terminating object t by using the objects that have already been
retrieved before t in the selected dimensions, and not after t
(that BSA does).

Union Property: If t is a terminating object, and we collect
in a set Ut all objects that lie before the equality groups of t
in the selected dimensions, and we collect also in a set UEt

all the equivalent objects to t (i.e., UEt is the intersection of
all the equality groups of t in the selected dimensions), then
it holds that: dom(t) = N − |Ut| − |UEt| − 1.

This comes from the fact that t cannot dominate the
following: i) objects that have a better value in at least one
dimension (i.e., lie before the equality group of t), ii) objects
that have the same attribute values in all selected dimensions
(equivalent objects), and iii) itself.

Therefore, the exact domination score of a terminating
object t in UA is computed based to the union property. The
main idea is to compute the sets Ut and UEt, by scanning the
B+-trees again from the beginning in all selected dimensions,
and stop when the equality group of t has been reached.
It is important to note that during the round-robin scan for
the retrieving of t, all scanning pointers stop at pos(t) (or



pos(t) − 1), thus to detect the Lpos positions of the equality
groups of t and at the same time to compute the sets Ut

and UEt, we scan again from the beginning each dimension
separately. It is also important to note that the required sets
Ut, UEt are not implemented as separate structures and no
additional space is required. This is because we are not
interested in the specific final objects that are contained, but
only in their size (e.g., |Ut|, |UEt|), and this is conducted with
specific counters and counting in the Set-B+.

In our running example that was used also for BSA (Figure
6), the only difference is that when p2 is extracted from the
top of the heap, the calculation phase of the UA algorithm
computes the size of its union set |Up2 | = |{p1, p13}| = 2 and
of the set of its equivalent objects |UEp2 |=0, by making 4 total
value accesses from the beginning. Therefore, the domination
score of p2 is calculated as follows: dom(p2) = 15 − 2 −
0− 1 = 12. Now the algorithm terminates performing in total
4+3+4=11 value accesses (less and not random).

3) Reverse Algorithm (RA): Although UA eliminates the
drawbacks of BSA, it has a serious limitation: when the
extracted terminating objects have high positions (especially in
anti-correlated data), or there are a lot of selected dimensions,
the total number of required value accesses in set calculations
is significantly increased and this may produce additional I/O
cost. The Reverse Algorithm (RA), takes advantage of the
fact that all positions of the detected terminating object t
in the selected dimensions are less than or equal to pos(t).
Therefore, instead of scanning the B+-trees from the beginning
(as UA does), RA scans backwards from pos(t) and stops
when the equality group of t has been retrieved completely
in each selected dimension (i.e., its Lpos positions reached).
Initially, the set Ut contains all objects found so far during
the round-robin scan to the position pos(t), and during the
reverse scanning, all detected objects are definitely lying after
(or inside) the equality groups of t, thus they removed from
Ut. Therefore, when the reverse scanning is completed Ut will
have the appropriate number of objects. It is important to note
again that we are not interested in the specific final objects
that are contained in |Ut|, |UEt|, but only in their size (e.g.,
|Ut|, |UEt|), and this is conducted with specific counters and
counting in the Set-B+.

In our running example (Figure 6), the only difference is
that when p2 is extracted from the top of the heap, the calcula-
tion phase of the RA algorithm computes the size of its union
set |Up2 | = |{p1, p13}| = 2 and of the set of its equivalent
objects |UEp2 | = 0, by making only 2 value accesses from
pos(p2) = 2 backwards. Therefore, the domination score of
p2 is calculated as follows: dom(p2) = 15− 2− 0− 1 = 12.
Now the algorithm terminates performing in total 4+3+2=9
value accesses.

4) Differential Algorithm (DA): The Differential Algorithm
(DA) is based on the idea that when there is a need to compute
the exact domination score of a terminating object t, we can
select a previously determined convenient terminating object
tp (best object) whose exact domination score has been already
computed. Forward and backward scans are performed taking
into consideration the position of tp. Therefore, if object t is
positioned after tp in a selected dimension, then the algorithm
scans forward from tp to t in the B+-tree of this dimension
and increases specific counters into the Set-B+ structure for

the visited objects, otherwise it scans backwards and decreases
specific counters into the Set-B+ structure for the visited
objects. Finally, the exact domination value of the terminating
object t is computed using the updated visits set counters and
the same formula as in UA. The positions of t and tp that are
checked are their Lpos positions which are also stored in the
Set-B+ structure during processing.

For example let us considered that the algorithm has al-
ready computed the exact domination score of p4 (dom(p4) =
10) and has been set it as the current best object (Figure
6). To compute the exact score of terminating object p1,
we initially set dom(p1) = dom(p4) = 10 and we scan
backwards in dimension x (as Lposx(p1) < Lposx(p4)) till
p1 is found. During scan only one object (p3) was found
exclusively on x dimension, thus we subtract 1 from the score
(dom(p1) = 9). Now we scan forward in dimension y (as
Lposy(p1) > Lposy(p4)) till p1 is found. During scan only
one object (p14) was newly found on y dimension, thus we add
1 to the score (dom(p1) = 10). Thus the final exact domination
score of p1 is dom(p1) = 10.

The selection of best terminating object tp during process-
ing is based on the minimum absolute difference of positions.
Therefore, when a newly discovered terminating object t
minimizes the absolute difference of Lpos positions with the
current best object tp, then it becomes the new best object.
Using this technique the total number of value accesses is
further decreasing.

To further decrease the number of value accesses and the
corresponding I/O operations, a collection of pruning rules
has been designed toward performance boost, which can be
applied in BSA, UA, RA, DA. Three types of pruning rules
are proposed in [12], according to their applicability to the
algorithm parts: i) Discard Rules (DRs), which update all
objects that can be discarded during the scanning for the
next candidate terminating object, ii) Early Pruning Rules
(EPRs), which are applied before the computation of the exact
domination value of the selected terminating object, and iii)
Internal Pruning Rules (IPRs), which are applied during exact
score computation. For further details see [12].

IV. METRIC-BASED TOP-k DOMINATING ALGORITHMS

All previous algorithms address the problem in settings
where data objects are multi-dimensional objects. However,
there are domains where we only have access to the distance
between two objects. In cases like these, attributes reflect
distances from a set of input objects and are dynamically
generated as the input objects change. Consequently, prior
works from the literature cannot be applied, despite the fact
that the domination relation is still meaningful and valid. In
[14] there is a first study for processing top-k dominating
queries over distance-based dynamic attribute vectors, defined
over a metric space. Four progressive algorithms are proposed:
Skyline-Based Algorithm (SBA), Aggregation-Based Algo-
rithm (ABA), Pruning-Based Algorithms (PBA1) and (PBA2),
from which PBA2 shows the best overall performance.

Let D be a dataset in which a distance function d() has
been defined which quantifies the dissimilarity between data
objects in D (D is a metric space). Let also Q be a set
of query objects Q = {q1, q2, . . . , qm}. For any two objects



p, r ∈ D, p dominates r, if and only if p has an equal or
smaller distance than r to all query objects qi ∈ Q, and p
has a smaller distance than r to at least one query object.
In case the objects p and r have exactly the same distance
from qi, i.e., d(p, qi) = d(r, qi), ∀i = 1, . . . ,m, they are called
equivalent. The set of objects in D which are not dominated
by any other object (according to the distances from Q) is
called the metric space skyline with respect to Q, denoted as
MSS(Q). A Metric-Based Top-k Dominating Query returns
the k objects with the maximum domination scores dom in D
respecting the previous defined domination relationship, and is
denoted as MSD(Q, k).

 p1

 q1  q2

 p2

 p3

Fig. 7. Example of a metric-based top-3 dominating query.

Figure 7 shows a top-3 dominating query in a metric space
with 25 2-dimensional objects, under the Euclidean distance.
Two query objects q1 and q2 are also depicted. Object p1 is
definitely the top-1 object, as it is the nearest neighbor of both
query objects q1, q2. Since no other object lies inside either cir-
cle C1(q1, d(q1, p1)) or circle C2(q2, d(q2, p1)), p1 dominates
all other objects and its domination score is dom(p1) = 24.
The second nearest neighbor of q1 is p2, whereas that of
q2 is p3. Since d(p2, q1) < d(p3, q1) (p3 lies outside circle
C3(q1, d(p2, q1))) and d(p2, q2) > d(p3, q2) (p2 lies outside
circle C4(q2, d(p3, q2))), p2 and p3 do not dominate each other.
However, p2 and p3 dominate all other objects since there
are no objects lying inside the corresponding dotted circles
(except p1). Thus their domination score is dom(p2) = 22 and
dom(p3) = 22, whereas remaining objects have a domination
score less than 22. Therefore, the set {p1, p2, p3} is the final
answer to the top-3 dominating query based on query objects
q1 and q2.

The data organization used by the algorithms in [14] is de-
picted in Figure 8. Among the available metric-based indexes
the M-tree [1] has been selected which is well appreciated due
to its simplicity, its resemblance to the B-tree, its excellent
performance and its ability to handle dynamic datasets (i.e.,
insertions and deletions). However, the proposed methods are
orthogonal to the indexing scheme used, as long as incremental
k-nearest-neighbor queries are supported. In addition to the M-
tree, an auxiliary B+-tree (denoted as AuxB+-tree) is being
used, which serves as a temporary index for intermediate
computations (similar with the Set-B+). Both the M-tree and
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Fig. 8. Data organization used by metric-based top-k dominating algorithms.

the AuxB+-tree are supported by an LRU buffer which reduces
I/O cost due to locality of references.

A. Skyline-Based Algorithm (SBA)

The Skyline-Based Algorithm (SBA) is based directly on
the observation of [9] that the top-1 dominating object belongs
to the skyline. The process of SBA is the following:

• The skyline S of D with respect to Q is computed
(MSS(Q)).

• The top-1 dominating object p in D from S is
computed, by computing the domination scores of all
objects in S.

• p is reported and removed from the dataset D, and the
process is repeated until all top-k objects have been
reported. Then we re-insert them to D.

For the metric-space skyline query MSS(Q), the state-
of-the-art algorithm B2MS2 proposed in [2] is used, imple-
mented to manage M-tree nodes.

SBA reports the top-k results in a progressive manner.
However, this method has two important limitations: i) it per-
forms many unnecessary score computations, since the skyline
is often larger than k and ii) when there is a large number
of query objects, the skyline grows significantly and in some
cases approaches the data set cardinality. These characteristics
may lead to significant performance degradation.

B. Aggregation-Based Algorithm (ABA)

The Aggregation-Based Algorithm (ABA) takes advan-
tages of the properties of the sum-aggregate nearest-neighbor
queries studied in [10]. A sum-aggregate nearest neighbor
query, denoted as ANN(Q, k), contains the k objects with
the minimum aggregate distance (computed based on the
sum of distances from Q). An important property is that the
first sum-aggregate nearest-neighbor of Q is always a metric
space skyline object, i.e., ANN(Q, 1) ∈ MSS(Q). Therefore,
the skyline computation is not required and this enables an
alternative methodology which is the main process of the ABA
algorithm:

• Initially, the top-1 sum-aggregate nearest-neighbor ob-
ject p of Q is computed, i.e., p = ANN(Q, 1).



Since p is a skyline object, there is no object that
dominates p. Therefore, there are no objects inside
p’s dominator region and additionally p dominates all
other objects lying into its domination region. This
ensures that the top-1 dominating object cannot lie
into the dominator/domination regions of p.

• Thus, the top-1 dominating object is searched in the
rest of the dataset (remaining region C). Candidates
are collected in set C by performing simple range
queries centered at the query objects q1, q2, . . . , qm
with radius d(p, q1), d(p, q2), . . . , d(p, qm) respec-
tively.

• The dominating scores of all objects in C are com-
puted and the top-1 dominating object t is retrieved.

• t is reported and removed from the dataset D, and the
process is repeated until all top-k objects have been
reported. Then we re-insert them to D.

For the aggregate nearest neighbor query ANN(Q, 1) we
use the MBM algorithm of [10] which is the state-of-the-art
algorithm for ANN queries with the sum-aggregate function.
The main difference is that we implemented the MBM method
to manage M-tree nodes instead of R-tree nodes supported
by the original proposal. The range queries are efficiently
supported by the M-tree structure. The candidate objects of
the set C and their domination scores are kept and updated
into the AuxB+-tree.

For a better view of those candidates let us consider the
example of Figure 9 for a Top-1 dominating query with two
query objects q1, q2. After p = ANN(Q, 1) is retrieved,
the candidates are the objects contained inside the circles
with centers the query objects and radii their corresponding
distances from p (shaded area). In our case, there are no objects
inside the circle intersection area Rin (dominator region of p),
as p cannot be dominated. Moreover, there are no objects inside
the elliptic area, since p is the first sum-aggregate nearest-
neighbor of Q. Additionally, p dominates all objects outside
the two circles Rout (domination region of p).

 

 p 

 q1 

 q2 
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Rin 
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Fig. 9. Example for ABA algorithm.

ABA reports the top-k results in a progressive manner.
It benefits from the fact that in most cases it is expected

that the cost of the ANN query plus the cost of the simple
range queries, is lower than the cost of a complete skyline
computation (as performed by SBA). The limitations of ABA
are as follows: i) it recalculates up to k times the domination
scores of some nearest neighbor candidate objects of C, ii)
when the cardinality of Q increases we must perform a large
number of range queries, which deteriorates the performance
of the algorithm, and when the query objects are far from
each other, the range queries may return a large number
of candidates, thus C grows significantly leading to high
computational costs.

C. Pruning-Based Algorithms

Based on the significant limitations of SBA and ABA,
we focus into a third alternative. The key idea behind the
Pruning-Based Algorithms (PBA1, PBA2) is to incrementally
retrieve the nearest neighbors of the query objects in a round-
robin fashion, to compute the domination scores of common
neighbors, and, under certain conditions, to extract the top-k
results in a progressive manner. The algorithmic process of
PBA1 is similar to the RA algorithm which already described.
The difference is that instead of scanning the B+-trees values
(since we don’t have multiple B+-trees but a single M-
tree), the retrieving of the nearest neighbors from each query
object is done dynamically by an incremental nearest neighbor
retrieval process which is efficiently supported by the M-tree
implementation of [1].

Now the notion of a terminating object in the metric space
is equivalent to the notion of a “common neighbor object”,
which is an object that has been discovered in the nearest
neighbor order lists of all query objects during the incremental
NN retrieval (not necessarily with the same position order).

Again we have an upper bound for the domination score
of a retrieved object oi, which is used as an estimation of
its score denoted as estdom(oi). This bound is based on the
property: If an object oi has been retrieved as the (ri,j)-th
nearest-neighbor of query object qj (where ri,j is the rank
position of oi in the nearest neighbor order list of qj), then:
dom(oi) ≤ N − maxj(ri,j) + eq(oi), where eq(oi) is the
number of all equivalent objects to oi.

Therefore, after initializing the heap H , the LRU-Buffer
and the AuxB+-tree, the main algorithmic process of both
PBA1, PBA2 is the following:

• If H is empty then retrieve the next two common
neighbor objects (by using a round-robin incremental
nearest neighbor retrieval from the query objects), else
only the next one, give them their estimated scores and
insert them into H .

• Extract the top-1 object t1 from H and if it has not
an exact domination score then calculate it (dom(t1)).
Get also the top-2 object t2 from H (without extrac-
tion and calculation).

• If dom(t1) ≥ estdom(t2) (or dom(t1) ≥ dom(t2) in
case t2 has an exact score), then report t1 as the next
top dominating result, else go to the first step.

• The process is repeated until all top-k dominating
objects are reported.



For the exact domination score computation again the union
property is used, thus: If t is a common neighbor object, and
we count in |Ut| all objects that have distances strictly smaller
than t in the selected dimensions, and we count also in |UEt|
all the equivalent objects to t, then it holds that: dom(t) =
N − |Ut| − |UEt| − 1.

To compute |Ut| and |UEt|, the algorithm PBA1 (similar
with RA) scans backwards into the nearest neighbor list of
each query object, until the object t is detected. But PBA2
goes one step further. As all these objects are already retrieved
and inserted into the AuxB+-tree, the required counting can be
successfully performed inside the AuxB+-tree by using some
additional counters, without materializing the sets Ut, UEt and
without scanning again the nearest neighbor lists.

The methodology of algorithms PBA1 and PBA2 enable
the usage of several pruning heuristics, which reduce the run-
time costs further. Three different types of pruning heuristics
have been proposed in [14]: i) Discard Heuristics - DH, which
can discard objects that have not been retrieved yet, ii) Early
Pruning Heuristics - EPH, which can prune objects before
the calculation of their exact domination scores, and iii) an
Internal Pruning Heuristic - IPH, which can prune objects
during the procedure of the exact domination score calculation.
For further details see [14].

V. VARIATIONS OF TOP-k DOMINATING QUERIES

In [16] there is a study of the problem of computing top-k
dominating queries efficiently on uncertain data. A threshold-
based probabilistic top-k dominating algorithm is proposed
with an accuracy guarantee.

In [4] there is a first study of top-k dominating query
processing algorithms in a streaming environment. Three exact
algorithms (BFA, EVA, ADA) and two approximate algorithms
that trade accuracy for speed (AHBA and AMSA) are pro-
posed. AHBA offers probabilistic guarantees regarding the
accuracy of the result based on the Hoeffding bound, whereas
AMSA performs a more aggressive computation resulting in
more efficient processing.

In [15] there is a study of how to rank spatial objects
with respect to their non-spatial attributes within their spatial
neighborhoods. To enable a general ranking, a ranking function
that inherits the advantages of domination relationship and
integrates them with spatial proximity is used. The result is
a top-k neighborhood domination query. An effective index
structure, and a branch and bound algorithm that executes the
ranking efficiently via the index is proposed.

VI. CONCLUSIONS

Top-k dominating queries combine the advantages of reg-
ular top-k and skyline queries, by bounding the size of the
result without the need for user-defined scoring functions. In
the last years, they became an active research area due to their
importance in several modern applications. In this paper, we
presented efficient algorithms that answering top-k dominating
queries: i) in general and multi-dimensional data, ii) in indexed
and non-indexed data, iii) in data that lying into a metric
space and in dynamic environments. There is also a growing
interest for studying top-k dominating queries in streaming
environments, in uncertain data and other variations.

An interesting and challenging direction for future research
is to enable domination-based preference queries in distributed
computing platforms such as Hadoop and Spark.
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