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ABSTRACT 

A listener is thought to be able to organise musical notes 
into groups within musical streams/voices. A stream 
segment is a relatively short coherent sequence of tones 
that is separated horizontally from co-sounding streams 
and, vertically from neighbouring musical sequences. This 
paper presents a novel algorithm that discovers musical 
stream segments in symbolic musical data. The proposed 
algorithm makes use of a single set of fundamental 
auditory principles for the concurrent horizontal and 
vertical segregation of a given musical texture into stream 
segments. The algorithm is tested against a small 
manually-annotated dataset of musical excerpts, and results 
are analysed; it is shown that the technique is promising. 

1. INTRODUCTION 

Voice separation algorithms [6, 8, 12, 13, 14, 16, 17, 18] 
attempt to model computationally the segregation of 
polyphonic music into separate voices; music segmentation 
algorithms [1, 4, 5, 7, 15] on the other hand, segment 
music voices/streams into smaller coherent groups.  A 
common assumption underlying computational models of 
musical structure is that, firstly voices (or at least the 
melody) have to be identified and, then, segmentation can 
be applied to individual voices. For instance, Temperley 
[17] states that ‘once the voices of a texture are identified, 
the grouping problem becomes more tractable. … 
polyphonic grouping cannot be done without first grouping 
the notes into contrapunctal lines.’ (pp.81, 83).  

In the current paper, the concept of stream segment is 
introduced, i.e. a relatively small number of tones grouped 
together into a coherent ‘whole’ perceived independently 
from other adjacent tones. Such stream segments may be 
organised into longer streams in case streams are relatively 
stable for a period of time, or may remain independent 
structural units. The advantage of adopting the concept of 
stream segments is that they are meaningful in any type of 
music, not only when music has a relatively ‘fixed’ number 
of voices, as in fugues, choral music, string quartets (see 
example of stream segments in Figure 1). The proposed 
algorithm makes use of a single set of auditory principles 
for the concurrent horizontal and vertical segregation of a 
musical texture into stream segments.  

An algorithm capable of detecting stream segments 
can be very useful as it enables the organisation of tones 
into coherent groups that are musically meaningful, 
allowing thus more efficient and higher quality analytic 
processing. Most music analytic methodologies (from 
traditional harmonic analysis to pc-set theory and 
semiotic analysis) rely on an initial breaking down of the 
music into relevant (hierarchic) groups/segments/spans 
(we would say stream segments).  In terms of MIR, for 
instance, a melodic pattern should be identified not spread 
across different voices or melodic boundaries (perceptally 
implausible), but within meanigful musical units, or 
cover-song detection algorithms may be enhanced if they 
can identify pertinent structural similarities between 
stream segments (e.g. between melodic segments rather 
than accompanimental segments).  

 
Figure 1 Excerpt from Mozart’s Sonata K332, Allegro Assai. Potential stream segments are circled (other options: third 

segment broken into two pseudopolyphonic voices, and last two segments seen as a single homophonic segment). 



  
 

2. STREAM SEGMENTS 

Most voice separation algorithms such as algorithms [6, 8, 
12, 13, 14, 16, 17, 18] model computationally the 
segregation of polyphonic music into separate voices. Such 
algorithms commonly assume that ‘voice’ is a monophonic 
sequence of successive non-overlapping musical tones. 
Karydis et al.  [12] adopt a perceptual view of musical 
‘voice’ that corresponds to the notion of auditory stream and 
develop a computational model that automatically splits a 
musical score into different voices/streams (fewer voices 
than the maximum number of notes in the greatest chord can 
be detected manually in [13]). 

An underlying assumption of such algorithms is that a 
fixed number of voices/streams evolve throughout an 
individual piece of music (sometimes a voice may pause for a 
certain period and, then, reappear again later - see more on 
voice and stream in [3]). Most of these algorithms are tested 
against groundtruth that consists of musical pieces that have 
a ‘fixed’ number of voices/streams, such as fugues, choral 
music, string quartets, songs (melody and accompaniment). 

The above assumption, however, is limiting. There exists 
a significant amount of music that is not composed of a 
steady number of voices/streams. In many musical works, 
homophonic, polyphonic, heterophonic elements are mixed 
together not allowing a listener to trace musical streams 
throughout the duration of a piece. This fact has led us to 
hypothesize a novel music theoretic concept, which we will 
refer to as a stream segment (we are not aware of any 
equivalent music theoretic notion). A stream segment is a 
relatively short coherent sequence of tones that is separated 
horizontally from co-sounding streams and, vertically from 
neighbouring musical sequences. 

Grouping relies essentially on fundamental cognitive 
mechanisms that enable a listener to perceive individual 
entities as gestalts/wholes [2, 9, 10]. Such mechanisms are 
based on the principles of proximity and similarity: proximal 
or similar entities in terms of time, space, pitch, dynamics, 
timbre to be grouped perceptually together. Such principles 
are applied locally (e.g. a large pitch interval in-between 
smaller ones signifies a potential local boundary) or at a 
higher-level (e.g. a repeating pitch pattern gives rise to a 
higher level structural unit delimited by pattern boundaries) 
[4]. In this paper we will discuss segmentation only in 
relation to the application of gestalt principles at the local 
level.  

In the temporal domain, the most important perceptual 
principles are the following:  
T1 – Synchronous Note Principle: ‘Notes with synchronous 

onsets and same IOIs (durations) tend to be merged into a 
single sonority.’ ([12], p.446)  

T2 – Principle of Temporal Continuity: ‘Continuous or 
recurring rather than brief or intermittent sound sources’ 
evoke strong auditory streams ([10], p.12). 

In essence, these two principles indicate that concurrent 
sounds and sounds following closely one another tend to be 
merged into the same group/stream, and that asynchronous 
overlapping tones and sounds occurring at a distance from 
one another tend to be perceived as belonging to different 
groups.  

In the pitch domain, the most important principles are: 
P1 – Principle of Tonal Fusion: The perceptual 

independence of concurrent tones is weakened when they 
are separated by intervals (in decreasing order: unisons, 
octaves, perfect fifths…) that promote tonal fusion [10]. 

P2 – Pitch Co-modulation Principle: ‘The perceptual union 
of concurrent tones is encouraged when pitch motions are 
positively correlated.’ ([10], p.31) 

P3 – Pitch Proximity Principle: ‘The coherence of an 
auditory stream is maintained by close pitch proximity in 
successive tones within the stream.’ ([10], p.24) 

The first two of these principles apply in the case of 
synchronous concurrent tones, whereas the third principle 
applies for successive non-overlapping tones. 

By combining the principles we get the following:  
a. (T1 & P1 & P2) Synchronous notes tend to be merged; 
merging is stronger when the notes are separated by 
intervals that promote tonal fusion and when the pitch 
motions of concurrent notes are positively correlated,  
b. (T2 & P3) Successive notes tend to be grouped together 
when they follow each other closely and the pitch intervals 
separating them are relatively small.  
In all other cases, groupings are discouraged and potential 
segmentation boundaries are introduced.  

3. THE ALGORITHM 

Following the above discussion a stream segment detection 
algorithm has been developed. The algorithm is based on 
the k-nearest neighbor clustering algorithm, where the 
distances between notes are computed based on four of the 
above auditory perceptual organisation principles (only the 
Tonal Fusion principle is not taken into account at this 
stage). The algorithm accepts as input a musical piece in 
symbolic format (quantised piano-roll) and outputs a list of 
musical stream segments. 

The stream segment detection algorithm is illustrated in 
Figure 3. Procedure Segment gets the list of notes N of 
the examined piece, and three parameters, k (number of 
nearest neighbors), cL (chain length; see below), and w 
(window length; see below). It first computes the distance 
matrix D between each pair of notes. For the computation of 
D, we examine three cases: (i) If two notes, ni and nj, fully 
coincide, they are checked by a procedure called 
verifyCoincide, which examines whether the vertical 
structure in the temporal neighborhood of these notes is 
strong or not (this case examines notes in accordance to the 
Synchronous Note and the Pitch Co-Modulation principles). 



  
 

In particular, for each coinciding notes ni and nj, 
verifyCoincide forms two separate ‘chains’ centered at 
ni and nj, which contain preceding and following notes that 
coincide with each other and have the smallest absolute pitch 
difference with the center notes. Procedure 
verifyCoincide tries to form chains with length up to 
cL.  Figure 2a illustrates an example of two such chains 
with length 3, centered at notes n2 and n5. If two such chains 
can be formed this means that there exists vertical 
homophonic structure, as several nearby notes coincide. 
Additionally, verifyCoincide examines the direction in 
the movement of chains, by checking the deviation in the 
pitch differences between the corresponding chain elements. 
This way, cases like the one depicted in Figure 2b, where the 
two chains containing concurrent notes move in non-parallel 
directions, are distinguished and merging is avoided 
according to the Pitch Co-modulation Principle. 

 
Figure 2 Parallel (a) and non-parallel (b) note chains. 

(ii) The second case in the computation of distance matrix D, 
examines asynchronous notes that overlap in time; such 
notes are considered to have infinite distance. (iii) The final 
case examines notes that neither overlap nor coincide  and 
their distance is set equal to their normalized pitch 
difference (normPD) plus their normalized IOI (normIOI), 
divided by two (in accordance to the Temporal Continuity 
and Pitch Proximity Principles). A normalized pitch 
difference (IOI, respectively) is taken by dividing with the 
maximum occurring pitch difference (IOI, respectively) 
between notes occurring within the same time window of 
length less than w. 

Next, clustering is performed with procedure 
kNNCluster. This procedure implements the k-nearest 
neighbor clustering algorithm [11], which finds for each 
note, the list of its k-nearest neighbors (sorted in increasing 
order of distance). The kNNCluster procedure is able to 
detect clusters of various shapes and sizes. It assigns to each 
pair of notes ni and nj, a mutual neighborhood value (MVN) 
that is equal to p + q, where p is the position of  nj in the list 
of ni and q is the position of  ni in the list of nj. If nj or ni do 
not belong to the list of each other, then MVN equals 
infinity. Therefore, if MVN is small, then the corresponding 
notes are close to each other. For this reason, the procedure 
joins in the same cluster, notes with MVN = 2, 3, …, 2k. 

The main characteristic of our stream segment detection 
algorithm (procedure Segment) is that it places a pair of 

objects (notes) in the same cluster, if they are mutual k-
nearest neighbors. Due to this characteristic, as will be 
verified experimentally, this algorithm is able to detect 
segments of various shapes and sizes, as it is based only on 
the coherency within clusters.  In contrast to several other 
clustering algorithms, the proposed algorithm does not 
require that the number of final clusters be determined a 
priori. This is very suitable for the case of musical stream 
segment detection as the number of clusters is difficult to be 
defined correctly in advance. The complexity of the 
algorithm is O(N2) for N notes. 

 
Procedure Segment(N, k, cL, w) 
foreach ni ∈ N 
  foreach nj ∈ N 
    if coincide(ni,nj,cL) 
      if verifyCoincide(ni,nj) 
  D(ni,nj) = 0; 
    else if nonoverlap(ni,nj) 

      D(ni,nj) = 0.5*(normPD(ni,nj) +  
     normIOI(ni,nj)); 

    else 
      D(ni,nj) = ∞; 
kNNCluster(N, D, k); 

end; 
Procedure kNNCluster(N, D, k) 

foreach ni ∈ N 
  L(ni) = kNN(k, N, D); 
foreach ni ∈ N 
  foreach nj ∈ N 
    if nj ∈ L(ni) and ni ∈ L(nj) 
    MVN(ni,nj) = pos(nj,L(ni)) +  

pos(ni,L(nj)); 
  else 
    MVN(ni,nj) = ∞; 
for m = 2 to 2*k 
  find all ni,nj∈N with MVN(ni,nj)==m 
  assign ni,nj to the same cluster 

end; 

Figure 3 Algorithmic description of the proposed method. 

Regarding the tuning of parameters, for several types of 
musical pieces, like sonatas, mazurkas, waltzes, parameter 
cL takes small values (not more than 2), whereas for others, 
like fugues, it takes relatively high values (around 10). The 
reason is that cL is responsible for detecting vertical 
structure. Thus, in musical genres that contain vertical 
homophonic structures (like sonatas, mazurkas, waltzes), a 
relatively low value suffices. In contrast, for genres for 
which this does not hold (polyphonic music like fugues), a 
higher value is required to avoid false drops.  

The tuning of parameter k depends on the 
characteristics of each particular piece, thus has to be tuned 
accordingly. In our experiments, values within the range 1 
to 5 were adequate. In contrast, when considering the 
stream segment detection algorithm for voice/stream 
separation (for instance, in Figure 6 the algorithm finds two 
streams, i.e. melody and accompaniment), higher k values 
should be used. The reason is that, in order to detect entire 
voices, which can be considered as concatenations of 



  
 

smaller segments, a higher k value enables the algorithm to 
combine more small segments into larger ones, and 
eventually to voices/streams. For the detection of smaller, 
localized segments, small values of k, as those mentioned 
previously, have to be used. Finally, the length of window w 
is set constant to a value equal to half a second, in order to 
capture local variance of pitch and IOI differences. 

4. EXPERIMENTS AND RESULTS 

The proposed algorithm has been tested on a small set of 
musical extracts for piano.1 The dataset has been annotated 
by a music theory research student that was instructed to 
indicate non-overlapping low-level groups of notes that may 
be perceived as ‘wholes’ (not to indicate phrases, themes) - 
the example of figure 1 was discussed before preparing the 
groundtruth. This small dataset acted as groundtruth for 
testing the algorithm in this first experiment. Seven extracts 
were selected from different musical styles: from the 
openings of Bach’s Fugue No.14  in F# major, WTCI, 
BWV859,  Chopin’s Mazurkas Op6, No.2 & Op.7, No.5 and 
Waltz Op.69, No.2 and Beethoven’s Sonatas Op.2, No.1, 
Op.13 (Pathétique) & Op.31, No.3 (overall 1500 notes). The 
small size of this dataset allowed a more detailed qualitative 
analysis as well (see discussion below and Figures 4, 5, 6 
and 7), in addition to a quantitative analysis. 

We studied experimentally the performance of the 
proposed method (henceforth denoted as kNNClust). For 
comparison purposes, we also examined a segmentation 
method that is based on a hierarchical clustering algorithm 
(henceforth denoted as HierarchicalClust). We considered 
the following variations of hierarchical clustering: single 
link, complete link, and Ward’s. We found significant 
differences in the performance of the variations. Thus, we 
examined all of them, and for each measurement we present 
the best result among them. Hierarchical methods run on the 
same distance matrix produced by Procedure Segment, 
whereas the number of clusters was tuned to give the best 
results for these methods. 

For each music piece and for each segmentation method, 
we measured accuracy against the groundtruth in terms of 
the Jaccard Coefficient. Let f11 denote the number of notes 
that belong to the same segment in the groundtruth and have 
been assigned to the same segment by the segmentation 
method. In the same manner, f10 denotes the number of notes 
that belong to the same segment in the groundtruth but have 
not been assigned to the same segment by the segmentation 
method, whereas f01 denotes the number of notes that do not 
belong to the same segment in the groundtruth but have been 
assigned to the same segment by the segmentation method. 
The Jaccard Coefficient is computed as the ratio: 
f11/(f10+f01+f11) 
                                                        
1 These pieces were downloaded in Melisma format from the Kern 
collection (http://kern.humdrum.org) 

Segments vary significantly in size, i.e., the number of 
notes they contain. Jaccard Coefficient tends to penalize 
excessively incorrect assignments of notes to larger 
segments and, in contrast, it tends to underestimate errors 
in smaller segments. To cope for this factor and, thus, to 
treat equally segments of various sizes, we examined a local 
Jaccard Coefficient, by computing the f11, f10, and f01 
numbers only for notes that belong within a time-window. 
As mentioned, in the proposed method we use a time 
window to measure normalized pitch and IOI distances. 
Therefore, we naturally select the length of this window 
when measuring the local Jaccard Coefficient. Comparison 
results between kNNClust and HierarchicalClust in terms of 
the local Jaccard Coefficient are presented in Table 1. 
Clearly, due to its special characteristics, the proposed 
method kNNClust compares favorably against 
HierearchicalClust. 

 
Title kNNClust HierClust  
Beethoven, Sonata, Op31, No3 0.96 0.82 
Beethoven, Sonata, Op2 No1 0.82 0.59 
Beethoven, Sonata, Op13, No8 0.84 0.60 
Chopin, Mazurka, Op7, No5 0.86 0.62 
Chopin, Mazurka, Op6, No2 0.83 0.75 
Chopin, Waltz Op.69, No.2 0.94 0.51 
Bach, Fugue No14 BWV859 0.84 0.73 

Table 1 Accuracy (0 worst, 1 best) by local Jaccard Coefficient. 
The algorithm was also tested on a dataset of complete 

pieces similar to the dataset used as groundtruth in [12]. In 
this dataset only voices/streams are annotated - not stream 
segments. A different measure was, therefore, used to 
evaluate the performance of the algorithm, that rated how 
well the detected stream segments fall within the 
voices/streams of the groundtruth, i.e. stream segments are 
penalised if they are shared across different streams (stream 
segments are detected for each piece using similar 
parametric settings as in the previous test). We measured 
the voice-crossing penalty as the ratio of the number of 
note pairs that were assigned to the same segment whilst 
they belong to different voices, divided by the number of 
note pairs that were assigned to the same segment. The 
voice-crossing penalty is presented in Table 2. In all cases, 
the measured error is low. 

 
Title kNNClust 
Bach, Fugue No. 7 in E-flat major, BWV 852 0.09 
Bach, Fugue No. 11 in F major, BWV 856 0.10 
Bach, Fugue No. 1 in C major, BWV 846 0.14 
Bach, Fugue No. 14 in F#minor, BWV 859 0.09 
Joplin, Harmony Club Waltz 0.02 
Chopin, Mazurka in C Major, Op7, No5 0.00 
Chopin, Mazurka in C-sharp Minor, Op6, No2 0.02 
Chopin, Waltz in D-flat Major, Op. 64, No. 1 0.09 

Table 2  Results for voice-crossing penalty (0 best, 1 
worst). 



  
 

The results were examined in detail (qualitative analysis) 
in order to understand the kinds of mistakes produced by the 
algorithm. In the example of Figure 4, the algorithm detects 
coherent groups of notes such as melodic segments, 
harmonic accompanimental fragments, homophonic 
passages. Sometimes the algorithm over-segments, e.g. right 
hand in mm. 1-2, 10-11, 18-19 (these can be seen as single 
segments due to motivic similarity), or left hand in mm. 8, 
18-19 (isolated chords). In m.10, the first note should be 
grouped with the following notes due to motivic repetition 
(NB. the current algorithm does not incorporate procedures 
for detecting parallelism). In the example of Figure 5, it is 
interesting that the algorithm groups together in stream 
segments the rhythmically independent notes that are 
‘sandwiched’ in-between the homophonic top and lower 
notes (note that the algorithm ‘mistakenly’ does not group 
the top notes with the lower notes at the end of the passage). 
In Figure 6, the accompaniment should be segmented at the 
beginning of m.9 (not beginning of m.8) due to the fact that 
mm.9-12 are essentially a repetition of mm.5-8 (note that the 
algorithm does not detect repetitions). There are also 
mistakes at the edges of stream segments as in the ending of 
the first segment. Finally, in Figure 7, the algorithm 
‘correctly’ groups together different contrapunctal lines in 
m.10 (perceptually they may be seen as a single stream), but 
makes serious mistakes in m.9 where independent voices are 
merged in the same segments (this type of mistake is under 
investigation). 

5. CONCLUSIONS AND FUTURE WORK 

This paper introduces the notion of stream segment, i.e., a 
relatively short coherent sequence of tones that is separated 
horizontally from co-sounding streams and, vertically from 
neighbouring musical sequences.  A novel algorithm has 
been proposed that discovers musical stream segments in 
symbolic musical data based on a set of fundamental 
auditory principles. The algorithm has been tested against a 
small manually-annotated dataset of musical excerpts, and 
the results have been analysed; it was shown that the 
technique generates promising results. 

The proposed concept is new in the sense that it views 
streaming and segmentation as linked to the same 
fundamental perceptual principles and that a single 
algorithm can generate ‘stream segments’. Further study,  
however, is required to make this concept clearer and to 
provide a crisp definition. Links to appropriate music 
theoretic notions are important, along with detailed 
theoretical and empirical analyses of a large number of 
actual musical examples. Such analyses can form the 
necessary ground truth on which alrgorithms are tested. 
Ambiguity, overlapping between stream segments, 
hierarchic segmentations have to be considered in the future 
studies of stream segments. We hope that this paper will 
initiate further research on this topic.  
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Figure 4 Stream segments detected by algorithm in the opening of Beethoven’s Sonata Op.31, No.3 (see text for details). 

 
Figure 5 Stream segments detected by algorithm in the opening of Chopin’s Mazurka Op.6, No.2 (see text for details) 

 
Figure 6 Stream segments detected by algorithm in the opening of Chopin’s Mazurka Op.7, No.5 (see text for details) 

 

 
Figure 7 Stream segments detected by algorithm in the opening of Bach’s Fugue in F# major No.14, WTCI, BWV859 (see text 

for further details) 
 


