

DETECTION OF STREAM SEGMENTS IN SYMBOLIC
MUSICAL DATA

Dimitris

Rafailidis*
Alexandros

Nanopoulos*
Emilios

Cambouropoulos#
Yannis

Manolopoulos*

* Dept of Computer Science, Aristotle Univ. of Thessaloniki, {draf, ananopou, manolopo}@csd.auth.gr
Dept. of Music Studies, Aristotle University of Thessaloniki, emilios@mus.auth.gr

ABSTRACT

A listener is thought to be able to organise musical notes
into groups within musical streams/voices. A stream
segment is a relatively short coherent sequence of tones
that is separated horizontally from co-sounding streams
and, vertically from neighbouring musical sequences. This
paper presents a novel algorithm that discovers musical
stream segments in symbolic musical data. The proposed
algorithm makes use of a single set of fundamental
auditory principles for the concurrent horizontal and
vertical segregation of a given musical texture into stream
segments. The algorithm is tested against a small
manually-annotated dataset of musical excerpts, and results
are analysed; it is shown that the technique is promising.

1. INTRODUCTION

Voice separation algorithms [6, 8, 12, 13, 14, 16, 17, 18]
attempt to model computationally the segregation of
polyphonic music into separate voices; music segmentation
algorithms [1, 4, 5, 7, 15] on the other hand, segment
music voices/streams into smaller coherent groups. A
common assumption underlying computational models of
musical structure is that, firstly voices (or at least the
melody) have to be identified and, then, segmentation can
be applied to individual voices. For instance, Temperley
[17] states that ‘once the voices of a texture are identified,
the grouping problem becomes more tractable. …
polyphonic grouping cannot be done without first grouping
the notes into contrapunctal lines.’ (pp.81, 83).

In the current paper, the concept of stream segment is
introduced, i.e. a relatively small number of tones grouped
together into a coherent ‘whole’ perceived independently
from other adjacent tones. Such stream segments may be
organised into longer streams in case streams are relatively
stable for a period of time, or may remain independent
structural units. The advantage of adopting the concept of
stream segments is that they are meaningful in any type of
music, not only when music has a relatively ‘fixed’ number
of voices, as in fugues, choral music, string quartets (see
example of stream segments in Figure 1). The proposed
algorithm makes use of a single set of auditory principles
for the concurrent horizontal and vertical segregation of a
musical texture into stream segments.

An algorithm capable of detecting stream segments
can be very useful as it enables the organisation of tones
into coherent groups that are musically meaningful,
allowing thus more efficient and higher quality analytic
processing. Most music analytic methodologies (from
traditional harmonic analysis to pc-set theory and
semiotic analysis) rely on an initial breaking down of the
music into relevant (hierarchic) groups/segments/spans
(we would say stream segments). In terms of MIR, for
instance, a melodic pattern should be identified not spread
across different voices or melodic boundaries (perceptally
implausible), but within meanigful musical units, or
cover-song detection algorithms may be enhanced if they
can identify pertinent structural similarities between
stream segments (e.g. between melodic segments rather
than accompanimental segments).

Figure 1 Excerpt from Mozart’s Sonata K332, Allegro Assai. Potential stream segments are circled (other options: third

segment broken into two pseudopolyphonic voices, and last two segments seen as a single homophonic segment).

2. STREAM SEGMENTS

Most voice separation algorithms such as algorithms [6, 8,
12, 13, 14, 16, 17, 18] model computationally the
segregation of polyphonic music into separate voices. Such
algorithms commonly assume that ‘voice’ is a monophonic
sequence of successive non-overlapping musical tones.
Karydis et al. [12] adopt a perceptual view of musical
‘voice’ that corresponds to the notion of auditory stream and
develop a computational model that automatically splits a
musical score into different voices/streams (fewer voices
than the maximum number of notes in the greatest chord can
be detected manually in [13]).

An underlying assumption of such algorithms is that a
fixed number of voices/streams evolve throughout an
individual piece of music (sometimes a voice may pause for a
certain period and, then, reappear again later - see more on
voice and stream in [3]). Most of these algorithms are tested
against groundtruth that consists of musical pieces that have
a ‘fixed’ number of voices/streams, such as fugues, choral
music, string quartets, songs (melody and accompaniment).

The above assumption, however, is limiting. There exists
a significant amount of music that is not composed of a
steady number of voices/streams. In many musical works,
homophonic, polyphonic, heterophonic elements are mixed
together not allowing a listener to trace musical streams
throughout the duration of a piece. This fact has led us to
hypothesize a novel music theoretic concept, which we will
refer to as a stream segment (we are not aware of any
equivalent music theoretic notion). A stream segment is a
relatively short coherent sequence of tones that is separated
horizontally from co-sounding streams and, vertically from
neighbouring musical sequences.

Grouping relies essentially on fundamental cognitive
mechanisms that enable a listener to perceive individual
entities as gestalts/wholes [2, 9, 10]. Such mechanisms are
based on the principles of proximity and similarity: proximal
or similar entities in terms of time, space, pitch, dynamics,
timbre to be grouped perceptually together. Such principles
are applied locally (e.g. a large pitch interval in-between
smaller ones signifies a potential local boundary) or at a
higher-level (e.g. a repeating pitch pattern gives rise to a
higher level structural unit delimited by pattern boundaries)
[4]. In this paper we will discuss segmentation only in
relation to the application of gestalt principles at the local
level.

In the temporal domain, the most important perceptual
principles are the following:
T1 – Synchronous Note Principle: ‘Notes with synchronous

onsets and same IOIs (durations) tend to be merged into a
single sonority.’ ([12], p.446)

T2 – Principle of Temporal Continuity: ‘Continuous or
recurring rather than brief or intermittent sound sources’
evoke strong auditory streams ([10], p.12).

In essence, these two principles indicate that concurrent
sounds and sounds following closely one another tend to be
merged into the same group/stream, and that asynchronous
overlapping tones and sounds occurring at a distance from
one another tend to be perceived as belonging to different
groups.

In the pitch domain, the most important principles are:
P1 – Principle of Tonal Fusion: The perceptual

independence of concurrent tones is weakened when they
are separated by intervals (in decreasing order: unisons,
octaves, perfect fifths…) that promote tonal fusion [10].

P2 – Pitch Co-modulation Principle: ‘The perceptual union
of concurrent tones is encouraged when pitch motions are
positively correlated.’ ([10], p.31)

P3 – Pitch Proximity Principle: ‘The coherence of an
auditory stream is maintained by close pitch proximity in
successive tones within the stream.’ ([10], p.24)

The first two of these principles apply in the case of
synchronous concurrent tones, whereas the third principle
applies for successive non-overlapping tones.

By combining the principles we get the following:
a. (T1 & P1 & P2) Synchronous notes tend to be merged;
merging is stronger when the notes are separated by
intervals that promote tonal fusion and when the pitch
motions of concurrent notes are positively correlated,
b. (T2 & P3) Successive notes tend to be grouped together
when they follow each other closely and the pitch intervals
separating them are relatively small.
In all other cases, groupings are discouraged and potential
segmentation boundaries are introduced.

3. THE ALGORITHM

Following the above discussion a stream segment detection
algorithm has been developed. The algorithm is based on
the k-nearest neighbor clustering algorithm, where the
distances between notes are computed based on four of the
above auditory perceptual organisation principles (only the
Tonal Fusion principle is not taken into account at this
stage). The algorithm accepts as input a musical piece in
symbolic format (quantised piano-roll) and outputs a list of
musical stream segments.

The stream segment detection algorithm is illustrated in
Figure 3. Procedure Segment gets the list of notes N of
the examined piece, and three parameters, k (number of
nearest neighbors), cL (chain length; see below), and w
(window length; see below). It first computes the distance
matrix D between each pair of notes. For the computation of
D, we examine three cases: (i) If two notes, ni and nj, fully
coincide, they are checked by a procedure called
verifyCoincide, which examines whether the vertical
structure in the temporal neighborhood of these notes is
strong or not (this case examines notes in accordance to the
Synchronous Note and the Pitch Co-Modulation principles).

In particular, for each coinciding notes ni and nj,
verifyCoincide forms two separate ‘chains’ centered at
ni and nj, which contain preceding and following notes that
coincide with each other and have the smallest absolute pitch
difference with the center notes. Procedure
verifyCoincide tries to form chains with length up to
cL. Figure 2a illustrates an example of two such chains
with length 3, centered at notes n2 and n5. If two such chains
can be formed this means that there exists vertical
homophonic structure, as several nearby notes coincide.
Additionally, verifyCoincide examines the direction in
the movement of chains, by checking the deviation in the
pitch differences between the corresponding chain elements.
This way, cases like the one depicted in Figure 2b, where the
two chains containing concurrent notes move in non-parallel
directions, are distinguished and merging is avoided
according to the Pitch Co-modulation Principle.

Figure 2 Parallel (a) and non-parallel (b) note chains.

(ii) The second case in the computation of distance matrix D,
examines asynchronous notes that overlap in time; such
notes are considered to have infinite distance. (iii) The final
case examines notes that neither overlap nor coincide and
their distance is set equal to their normalized pitch
difference (normPD) plus their normalized IOI (normIOI),
divided by two (in accordance to the Temporal Continuity
and Pitch Proximity Principles). A normalized pitch
difference (IOI, respectively) is taken by dividing with the
maximum occurring pitch difference (IOI, respectively)
between notes occurring within the same time window of
length less than w.

Next, clustering is performed with procedure
kNNCluster. This procedure implements the k-nearest
neighbor clustering algorithm [11], which finds for each
note, the list of its k-nearest neighbors (sorted in increasing
order of distance). The kNNCluster procedure is able to
detect clusters of various shapes and sizes. It assigns to each
pair of notes ni and nj, a mutual neighborhood value (MVN)
that is equal to p + q, where p is the position of nj in the list
of ni and q is the position of ni in the list of nj. If nj or ni do
not belong to the list of each other, then MVN equals
infinity. Therefore, if MVN is small, then the corresponding
notes are close to each other. For this reason, the procedure
joins in the same cluster, notes with MVN = 2, 3, …, 2k.

The main characteristic of our stream segment detection
algorithm (procedure Segment) is that it places a pair of

objects (notes) in the same cluster, if they are mutual k-
nearest neighbors. Due to this characteristic, as will be
verified experimentally, this algorithm is able to detect
segments of various shapes and sizes, as it is based only on
the coherency within clusters. In contrast to several other
clustering algorithms, the proposed algorithm does not
require that the number of final clusters be determined a
priori. This is very suitable for the case of musical stream
segment detection as the number of clusters is difficult to be
defined correctly in advance. The complexity of the
algorithm is O(N2) for N notes.

Procedure Segment(N, k, cL, w)
foreach ni ∈ N
 foreach nj ∈ N
 if coincide(ni,nj,cL)
 if verifyCoincide(ni,nj)
 D(ni,nj) = 0;
 else if nonoverlap(ni,nj)

 D(ni,nj) = 0.5*(normPD(ni,nj) +
 normIOI(ni,nj));

 else
 D(ni,nj) = ∞;
kNNCluster(N, D, k);

end;
Procedure kNNCluster(N, D, k)

foreach ni ∈ N
 L(ni) = kNN(k, N, D);
foreach ni ∈ N
 foreach nj ∈ N
 if nj ∈ L(ni) and ni ∈ L(nj)
 MVN(ni,nj) = pos(nj,L(ni)) +

pos(ni,L(nj));
 else
 MVN(ni,nj) = ∞;
for m = 2 to 2*k
 find all ni,nj∈N with MVN(ni,nj)==m
 assign ni,nj to the same cluster

end;

Figure 3 Algorithmic description of the proposed method.

Regarding the tuning of parameters, for several types of
musical pieces, like sonatas, mazurkas, waltzes, parameter
cL takes small values (not more than 2), whereas for others,
like fugues, it takes relatively high values (around 10). The
reason is that cL is responsible for detecting vertical
structure. Thus, in musical genres that contain vertical
homophonic structures (like sonatas, mazurkas, waltzes), a
relatively low value suffices. In contrast, for genres for
which this does not hold (polyphonic music like fugues), a
higher value is required to avoid false drops.

The tuning of parameter k depends on the
characteristics of each particular piece, thus has to be tuned
accordingly. In our experiments, values within the range 1
to 5 were adequate. In contrast, when considering the
stream segment detection algorithm for voice/stream
separation (for instance, in Figure 6 the algorithm finds two
streams, i.e. melody and accompaniment), higher k values
should be used. The reason is that, in order to detect entire
voices, which can be considered as concatenations of

smaller segments, a higher k value enables the algorithm to
combine more small segments into larger ones, and
eventually to voices/streams. For the detection of smaller,
localized segments, small values of k, as those mentioned
previously, have to be used. Finally, the length of window w
is set constant to a value equal to half a second, in order to
capture local variance of pitch and IOI differences.

4. EXPERIMENTS AND RESULTS

The proposed algorithm has been tested on a small set of
musical extracts for piano.1 The dataset has been annotated
by a music theory research student that was instructed to
indicate non-overlapping low-level groups of notes that may
be perceived as ‘wholes’ (not to indicate phrases, themes) -
the example of figure 1 was discussed before preparing the
groundtruth. This small dataset acted as groundtruth for
testing the algorithm in this first experiment. Seven extracts
were selected from different musical styles: from the
openings of Bach’s Fugue No.14 in F# major, WTCI,
BWV859, Chopin’s Mazurkas Op6, No.2 & Op.7, No.5 and
Waltz Op.69, No.2 and Beethoven’s Sonatas Op.2, No.1,
Op.13 (Pathétique) & Op.31, No.3 (overall 1500 notes). The
small size of this dataset allowed a more detailed qualitative
analysis as well (see discussion below and Figures 4, 5, 6
and 7), in addition to a quantitative analysis.

We studied experimentally the performance of the
proposed method (henceforth denoted as kNNClust). For
comparison purposes, we also examined a segmentation
method that is based on a hierarchical clustering algorithm
(henceforth denoted as HierarchicalClust). We considered
the following variations of hierarchical clustering: single
link, complete link, and Ward’s. We found significant
differences in the performance of the variations. Thus, we
examined all of them, and for each measurement we present
the best result among them. Hierarchical methods run on the
same distance matrix produced by Procedure Segment,
whereas the number of clusters was tuned to give the best
results for these methods.

For each music piece and for each segmentation method,
we measured accuracy against the groundtruth in terms of
the Jaccard Coefficient. Let f11 denote the number of notes
that belong to the same segment in the groundtruth and have
been assigned to the same segment by the segmentation
method. In the same manner, f10 denotes the number of notes
that belong to the same segment in the groundtruth but have
not been assigned to the same segment by the segmentation
method, whereas f01 denotes the number of notes that do not
belong to the same segment in the groundtruth but have been
assigned to the same segment by the segmentation method.
The Jaccard Coefficient is computed as the ratio:
f11/(f10+f01+f11)

1 These pieces were downloaded in Melisma format from the Kern
collection (http://kern.humdrum.org)

Segments vary significantly in size, i.e., the number of
notes they contain. Jaccard Coefficient tends to penalize
excessively incorrect assignments of notes to larger
segments and, in contrast, it tends to underestimate errors
in smaller segments. To cope for this factor and, thus, to
treat equally segments of various sizes, we examined a local
Jaccard Coefficient, by computing the f11, f10, and f01
numbers only for notes that belong within a time-window.
As mentioned, in the proposed method we use a time
window to measure normalized pitch and IOI distances.
Therefore, we naturally select the length of this window
when measuring the local Jaccard Coefficient. Comparison
results between kNNClust and HierarchicalClust in terms of
the local Jaccard Coefficient are presented in Table 1.
Clearly, due to its special characteristics, the proposed
method kNNClust compares favorably against
HierearchicalClust.

Title kNNClust HierClust
Beethoven, Sonata, Op31, No3 0.96 0.82
Beethoven, Sonata, Op2 No1 0.82 0.59
Beethoven, Sonata, Op13, No8 0.84 0.60
Chopin, Mazurka, Op7, No5 0.86 0.62
Chopin, Mazurka, Op6, No2 0.83 0.75
Chopin, Waltz Op.69, No.2 0.94 0.51
Bach, Fugue No14 BWV859 0.84 0.73

Table 1 Accuracy (0 worst, 1 best) by local Jaccard Coefficient.
The algorithm was also tested on a dataset of complete

pieces similar to the dataset used as groundtruth in [12]. In
this dataset only voices/streams are annotated - not stream
segments. A different measure was, therefore, used to
evaluate the performance of the algorithm, that rated how
well the detected stream segments fall within the
voices/streams of the groundtruth, i.e. stream segments are
penalised if they are shared across different streams (stream
segments are detected for each piece using similar
parametric settings as in the previous test). We measured
the voice-crossing penalty as the ratio of the number of
note pairs that were assigned to the same segment whilst
they belong to different voices, divided by the number of
note pairs that were assigned to the same segment. The
voice-crossing penalty is presented in Table 2. In all cases,
the measured error is low.

Title kNNClust
Bach, Fugue No. 7 in E-flat major, BWV 852 0.09
Bach, Fugue No. 11 in F major, BWV 856 0.10
Bach, Fugue No. 1 in C major, BWV 846 0.14
Bach, Fugue No. 14 in F#minor, BWV 859 0.09
Joplin, Harmony Club Waltz 0.02
Chopin, Mazurka in C Major, Op7, No5 0.00
Chopin, Mazurka in C-sharp Minor, Op6, No2 0.02
Chopin, Waltz in D-flat Major, Op. 64, No. 1 0.09

Table 2 Results for voice-crossing penalty (0 best, 1
worst).

The results were examined in detail (qualitative analysis)
in order to understand the kinds of mistakes produced by the
algorithm. In the example of Figure 4, the algorithm detects
coherent groups of notes such as melodic segments,
harmonic accompanimental fragments, homophonic
passages. Sometimes the algorithm over-segments, e.g. right
hand in mm. 1-2, 10-11, 18-19 (these can be seen as single
segments due to motivic similarity), or left hand in mm. 8,
18-19 (isolated chords). In m.10, the first note should be
grouped with the following notes due to motivic repetition
(NB. the current algorithm does not incorporate procedures
for detecting parallelism). In the example of Figure 5, it is
interesting that the algorithm groups together in stream
segments the rhythmically independent notes that are
‘sandwiched’ in-between the homophonic top and lower
notes (note that the algorithm ‘mistakenly’ does not group
the top notes with the lower notes at the end of the passage).
In Figure 6, the accompaniment should be segmented at the
beginning of m.9 (not beginning of m.8) due to the fact that
mm.9-12 are essentially a repetition of mm.5-8 (note that the
algorithm does not detect repetitions). There are also
mistakes at the edges of stream segments as in the ending of
the first segment. Finally, in Figure 7, the algorithm
‘correctly’ groups together different contrapunctal lines in
m.10 (perceptually they may be seen as a single stream), but
makes serious mistakes in m.9 where independent voices are
merged in the same segments (this type of mistake is under
investigation).

5. CONCLUSIONS AND FUTURE WORK

This paper introduces the notion of stream segment, i.e., a
relatively short coherent sequence of tones that is separated
horizontally from co-sounding streams and, vertically from
neighbouring musical sequences. A novel algorithm has
been proposed that discovers musical stream segments in
symbolic musical data based on a set of fundamental
auditory principles. The algorithm has been tested against a
small manually-annotated dataset of musical excerpts, and
the results have been analysed; it was shown that the
technique generates promising results.

The proposed concept is new in the sense that it views
streaming and segmentation as linked to the same
fundamental perceptual principles and that a single
algorithm can generate ‘stream segments’. Further study,
however, is required to make this concept clearer and to
provide a crisp definition. Links to appropriate music
theoretic notions are important, along with detailed
theoretical and empirical analyses of a large number of
actual musical examples. Such analyses can form the
necessary ground truth on which alrgorithms are tested.
Ambiguity, overlapping between stream segments,
hierarchic segmentations have to be considered in the future
studies of stream segments. We hope that this paper will
initiate further research on this topic.

6. REFERENCES
[1] Barry, D., Gainza, M., & Coyle, E. (2007) Music Structure

Segmentation using the Azimugram in conjunction with
Principal Component Analysis, Proc. 123rd Audio
Engineering Society Convention, Jacob Javitz Centre,
Manhattan, New York.

[2] Bregman, A (1990) Auditory Scene Analysis: The Perceptual
Organisation of Sound. The MIT Press, Cambridge (Ma).

[3] Cambouropoulos, E. (2006) ‘Voice’ Separation: theoretical,
perceptual and computational perspectives. In Proceedings of
ICMPC’06, 22-23 August, Bologna, Italy.

[4] Cambouropoulos E. (2006) Musical Parallelism and Melodic
Segmentation: A Computational Approach. Music Perception
23(3):249-269.

[5] Cambouropoulos E. (2001). The Local Boundary Detection
Model (LBDM) and its application in the study of expressive
timing. In Proc. of ICMC01, Havana, Cuba.

[6] Cambouropoulos, E. (2000) From MIDI to Traditional
Musical Notation. In Proceedings of the AAAI Workshop on
Artificial Intelligence and Music, Austin, Texas.

[7] Chew, E. and Wu, X. (2004) Separating voices in polyphonic
music: A contig mapping approach. In Computer Music
Modeling and Retrieval: Second International Symposium
(CMMR 2004), pp. 1-20.

[8] Conklin, D. and Anagnostopoulou, C. (2006). Segmental
Pattern Discovery in Music. INFORMS Journal of
Computing,18(3), pp. 285-293.

[9] Deutsch, D. (1999) Grouping Mechanisms in Music. In D.
Deutsch (ed.), The Psychology of Music (revised version).
Academic Press, San Diego.

[10] Gowda, K.C. and G. Krishna, G. (1978) Agglomerative
clustering using the concept of mutual nearest neighborhood.
Pattern Recognition, 10:105-112.

[11] Huron, D. (2001) Tone and Voice: A Derivation of the Rules
of Voice-Leading from Perceptual Principles. Music
Perception, 19(1):1-64.

[12] Karydis, I., Nanopoulos, A., Papadopoulos, A.N. &
Cambouropoulos, E., (2007) VISA: The Voice
Integration/Segregation Algorithm. In Proceedings of
ISMIR’07, pp. 445-448, Vienna, Austria

[13] Kilian J. and Hoos H. (2002) Voice Separation: A Local
Optimisation Approach. In Proceedings of ISMIR’02, pp.39-
46.

[14] Kirlin, P.B. and Utgoff, P.E. (2005) VoiSe: Learning to
Segregate Voices in Explicit and Implicit Polyphony. In
Proceedings of ISMIR’05, Queen Mary, Univ. of London, pp.
552-557.

[15] Levy, M. and Sandler, M. (2006). Extraction of High-Level
Musical Structure from Audio Data and its Application to
Thumbnail Generation. In Proc. ICASSP 2006

[16] Madsen, S. T. and Widmer, G. (2006) Separating Voices in
MIDI. In Proceedings ICMPC06, Bologna, Italy.

[17] Szeto, W.M. and Wong, M.H. (2003) A Stream Segregation
Algorithm for Polyphonic Music Databases. In Proceedings of
IDEAS’03.

[18] Temperley, D. (2001) The Cognition of Basic Musical
Structures. The MIT Press, Cambridge (Ma).

Figure 4 Stream segments detected by algorithm in the opening of Beethoven’s Sonata Op.31, No.3 (see text for details).

Figure 5 Stream segments detected by algorithm in the opening of Chopin’s Mazurka Op.6, No.2 (see text for details)

Figure 6 Stream segments detected by algorithm in the opening of Chopin’s Mazurka Op.7, No.5 (see text for details)

Figure 7 Stream segments detected by algorithm in the opening of Bach’s Fugue in F# major No.14, WTCI, BWV859 (see text

for further details)

