
Chapter 9
Adaptive Query Processing in Distributed
Settings

Anastasios Gounaris, Efthymia Tsamoura, and Yannis Manolopoulos

Abstract. In this survey chapter, we discuss adaptive query processing (AdQP) tech-
niques for distributed environments. We also investigate the issues involved in ex-
tending AdQP techniques originally proposed for single-node processing so that
they become applicable to multi-node environments as well. In order to make it
easier for the reader to understand the similarities among the various proposals, we
adopt a common framework, which decomposes the adaptivity loop into the moni-
toring, analysis, planning and actuation (or execution) phase. The main distributed
AdQP techniques developed so far tend to differ significantly from their centralized
counterparts, both in their objectives and in their focus. The objectives in distributed
AdQP are more tailored to distributed settings, whereas more attention is paid to is-
sues relating to the adaptivity cost, which is significant, especially when operators
and data are moved over the network.

9.1 Introduction

The capability of database management systems to efficiently process queries,
which are expressed as declarative statements, has played a major role in their suc-
cess over the last decades. Efficiency is guaranteed due to several sophisticated op-
timization techniques, which heavily rely on the existence of metadata information
about the data to be processed, such as the distribution of values and the selectiv-
ity of the relational operators. Since the late 1970s and the introduction of System
R [58], static optimization of query plans and subsequent execution has been the
main choice for database system developers. However, when the metadata required
are not available or accurate at compile time, or when they change during execution,
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the query processor needs to revise the current execution plan on the fly. In this case,
query processing is called adaptive.

In adaptive query processing (AdQP), there is a feedback loop, similar to the one
appearing in autonomic systems, according to which the query processor monitors
its execution properties and its execution environment, analyzes this feedback, and
possibly reacts to any changes identified with a view to ensuring that either the
current execution plan is the most beneficial or a modification of the current plan
can be found that is expected to result in better performance.

Although AdQP is particularly relevant to wide area settings, in which query
statistics are more likely to be limited or potentially inaccurate, and the computa-
tional properties, such as the processing capacity of hosting machines, are volatile,
most AdQP proposals have focused either on completely centralized query process-
ing or on centralized processing of data retrieved or stemming from remote sources
and data streams, respectively. In such settings, there is typically a single physical
machine used for query execution, which is predefined, and thus the focus is mostly
on adapting to changing properties of the data processed, e.g., cardinalities of inter-
mediate results and operator selectivities. This is, of course, of high importance for
distributed query processing (DQP), as crucial information about the data may be
missing at compile time. However, of equal significance are adaptations to changing
properties of a potentially arbitrary set of resources that DQP may employ and of
their communication links. Currently, AdQP with respect to changing resources is
not addressed as satisfactorily as with respect to changing data properties.

In this survey chapter, we systematically discuss AdQP techniques that are tai-
lored to distributed settings both with respect to the data sources and the process-
ing nodes. We also investigate the issues involved in extending AdQP techniques
originally proposed for single-node processing so that they become applicable to
multi-node environments as well. In order to make it easier for the reader to under-
stand the similarities among the various proposals, we adopt a common framework,
which decomposes the adaptivity loop into its constituent phases mentioned above,
i.e, monitoring, analysis, planning and actuation phase. The later corresponds to the
phase, in which the adaptivity decisions are executed by the system.

Structure. The structure of this chapter is as follows. In the remainder of this
section we briefly discuss preliminary concepts of distributed query processing and
optimization (Section 9.1.1), and related work (Section 9.1.2). In Section 9.2, we
present the framework that forms the basis of our analysis. The next section contains
a short review of traditional AdQP for centralized settings and explains the reasons
why such techniques cannot be applied to wide-area environments in a straightfor-
ward manner. The discussion of the AdQP techniques for distributed settings, which
is the core part of this chapter, is in Sections 9.4-9.6. Existing work in distributed
AdQP techniques can be classified in three broad categories. Techniques that do not
rely on the existence of traditional query plans fall into the first category, which is
examined in Section 9.4. The second category comprises approaches that perform
load management at the operator level (Section 9.5), whereas, in Section 9.6, we
discuss distributed AdQP techniques where the adaptivity occurs at a higher level.
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The final section (Section 9.7) contains an assessment of the current status in the
area, along with directions for future work, and concludes the chapter.

9.1.1 Distributed Query Processing Basics

Distributed query processing consists of the same three main phases as its central-
ized counterpart, namely parsing (or translation), optimization and execution. Dur-
ing parsing, the initial query statement, which is expressed in a declarative language
such as SQL, is translated into an internal representation, which is the same for both
centralized and distributed queries [42].

Query optimization is commonly divided into two parts, query rewriting and cost-
based plan selection. Query rewriting is typically carried out without any statisti-
cal information about the data and independently of any previous physical design
choices (e.g., data locations, existence of indices) apart from the information about
data fragments. In distributed queries over non-replicated fragmented data, the rel-
evant data fragments are identified during this procedure as well [51]. Secondly,
cost-based optimization is performed. The search strategy typically follows a dy-
namic programming approach for both centralized and distributed queries [43, 46]
provided that the query is not very complex in terms of the number of different
choices that need to be examined; in the latter case the plan space is reduced with
the help of heuristics. Traditional cost based optimization is capable of leading to
excellent performance when there are few correlations between the attributes, ade-
quate statistics exist and the environment is stable.

The optimized plan is subsequently passed on to the query execution engine,
which is responsible for controlling the data flow through the operators and imple-
menting the operators. Although in both traditional disk-based queries and contin-
uous queries over data streams the operators are typically those that are defined by
the relational algebra (or their modifications [69]), the execution engine may dif-
fer significantly. In disk-based queries, the pull-based iterator model of execution
is preferable [31], according to which each operator adheres to a common interface
that allows pipelining of data, while explicitly defining the execution order of query
operators and ensuring avoidance of flooding the system with intermediate results in
case of a bottleneck. On the other hand, continuous queries over data streams may
need to operate in a push-based mode [8]. The main difference between the push
and pull model of execution lies in the fact that, in the push model, the processing is
triggered by the arrival of new data items. This property may give rise to issues that
are not encountered in pull-based systems, which have full control on the production
rate of intermediate results. For example, push-based query processors may need to
resort to approximation techniques when data arrival rates exceed the maximum rate
in which the system can process data. We do not deal with approximation issues in
this chapter; we refer the interested reader to Chapter 7 of this book. However, it
is worth mentioning that AdQP in push-based systems considers additional issues,
such as adaptations to the data arrival rates.
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In conventional static query processing, the three phases of query processing
occur sequentially, whereas, in AdQP, query execution is interleaved with query
optimization in the context of a single query with a view to coping with the unpre-
dictability of the environment, and evolving or inaccurate statistics. According to a
looser definition of AdQP, the feedback collected from the query execution of previ-
ous queries impacts on the optimization of future queries (e.g, [61]); we do not deal
with such flavors here. Note that the need for on-the-fly re-optimizations is mitigated
with the help of advanced optimization methodologies, such as robust optimization
(e.g., [3, 12]). Also, other topics related to AdQP are discussed in Chapter 10 (on
combining search queries and AdQP).

9.1.2 Related Work

A number of surveys on AdQP have been made available [35, 26, 4, 18]. However,
none of them focuses on distributed queries over distributed resources, although the
work in [18] is closer in spirit to this chapter in the sense that it adopts the same
describing framework. Static DQP is described in [51, 42], whereas the work in
[31] discusses query processing issues in detail.

9.2 A Framework for Analysis of AdQP

AdQP can be deemed as the main means of self-optimization in query processing,
and, as such, it relates to autonomic computing. According to the most commonly
used autonomic framework, which is introduced in [41], at the conceptual level,
autonomic managers consist of four parts, namely monitoring, analysis, planning
and execution, whereas they interface with managed elements through sensors and
effectors. In line with this decomposition, a systematic discussion about distributed
AdQP distinguishes between monitoring, analysis, planning and execution. Note
that these parts need not necessarily correspond to distinct implemented components
at the physical level.

Monitoring involves the collection of measurements produced by the sensors. In
the context of query processing, the types of measurements include data statistics
(e.g., cardinalities of intermediate results), operator characteristics (e.g., selectiv-
ities) and resource properties (e.g., machine CPU load). The feedback collected
is processed during the analysis phase with a view to diagnosing whether there
is an issue with the current execution plan. If this is the case, then an adaptation
is planned, which can be thought of as an additional query plan along with opera-
tions that ensure final result correctness. Execution is concerned with the actuation
of the planned adaptations. Planned adaptations are executed either immediately in
simple scenarios, or, in more complex cases (e.g., when internal state of some oper-
ators must be modified first), after certain procedures have been followed.
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In this chapter, we follow the approach in [18] and we provide a summary of the
measurements collected, and the analysis, planning and actuation procedures that
are encapsulated in each of the main AdQP techniques presented. Note that these
aspects of AdQP may be arbitrarily interleaved with query processing. For exam-
ple, in some techniques, measurements’ collection occurs after query processing
has been suspended (e.g., due to materialization points), whereas other techniques
continuously generate monitoring information during query execution. Also, analy-
sis and planning may be tightly connected, since, in some cases the analysis of the
feedback is done in a way that identifies better execution plans as well. Due to this
fact, we prefer to examine analysis along with planning. Note that other variants
of this framework, such as the one in [27], may regard planning and execution as
a single response phase, whereas, during monitoring, preliminary analysis may be
performed to filter uninteresting feedback.

9.3 AdQP in Centralized Settings

The role of this section is twofold. Firstly, it provides a short review of the main
techniques employed in centralized AdQP, which is thoroughly investigated in sur-
veys such as the one in [18]. Secondly, it discusses the feasibility of applying such
techniques in distributed settings.

9.3.1 Overview of Techniques

In broad terms, the objective of conventional AdQP is to take actions in light of new
information becoming available during query execution in order to achieve better
query response time or more efficient CPU utilization. Although AdQP can be ap-
plied to plans consisting of any type of operators, there exist operators that naturally
lend themselves to adaptivity in the sense that they facilitate plan changes at run-
time. Such operators include symmetric hash joins and the proposals that build on
top of them (e.g, XJoins [63]), multi-way pipelined joins (e.g., [65]) and eddies [2].
All the operators mentioned above can be complemented with additional operators
that encapsulate autonomic aspects within their design; for example, certain opera-
tor implementations provide built-in support to adapt to the amount of the memory
available (e.g., [52]).

Eddies constitute one of the most radical adaptive techniques on the grounds that
they do not require explicit decisions on the ordering of commutative and asso-
ciative operators (e.g., selections and joins). This results in a much simpler query
optimization phase. Eddies have been proposed in order to enable fine-grained adap-
tivity capabilities during query execution; actually, they allow each tuple to follow a
different route through the operators. More specifically, in eddies, the order of com-
mutative and associative operators is not fixed and adaptations are performed by
simply changing the routing order. To this end, several routing policies have been
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proposed. The eddy operator is responsible for taking the routing decisions accord-
ing to the policy adopted and monitoring information produced by the execution
of tuples. As an example, assume that a long-running query over three relations of
equal size is processed with the help of two binary joins. At the beginning, the se-
lectivity of the first join is much lower than the selectivity of the other and the eddy
will route most of the tuples to the most selective one. Later, the second join be-
comes more selective (e.g., due to the existence of a time-dependent join attribute);
the eddy will be capable of swapping the order of join execution. Any static opti-
mization decision on the join ordering would fail to construct a good plan in such
a scenario where a different ordering yields better results in different time periods
during query execution.

Hybrid approaches that combine eddies with more traditional optimization have
been proposed as well. For example, in [49] and [48], a methodology is proposed
where multiple plans exist and the incoming tuples are routed to these plans with
the help of an eddy. Each such plan is designed for a particular subset of data with
distinct statistical properties. In general, several extensions to the original eddy op-
erator have been made (e.g., [56], [16], [10], [14]).

Another notable centralized AdQP technique has been proposed in [6], which
adaptively reorders filtering operators. This proposal takes into account the correla-
tion of predicates and can be used to enhance eddies routing policies. It has also been
extended to join queries [7]. In general, join queries are treated in a different manner
depending on whether they are fully pipelined and whether adaptations impact on
the state that is internally built within operators because of previous routing deci-
sions. Non-pipelined join queries were among the first types of queries for which
AdQP techniques have been proposed. Such techniques are typically based on the
existence of materialization points and the insertion of checkpoints, where statistics
are collected and the rest of the adaptivity loop phases may take place if significant
deviations from the expected values are detected (e.g., [40]). Two specific types
of generalizations of these works are referred to as progressive optimization [47]
and proactive optimization [5], respectively. Adaptive routing history-dependent
pipelined execution of join queries is one of the most challenging areas in AdQP,
where proposals exist that either use conventional query plans (e.g., [39]) or eddies
(e.g., [16]).

9.3.2 On Applying Conventional AdQP Techniques in Distributed
Settings

Undoubtedly, distributed AdQP techniques can benefit from the adaptive techniques
proposed for a centralized environment. In DQP, each participating site receives
a sub-query, which can be executed in an adaptive manner with the help of the
techniques described previously. However, these adaptations, which are restricted to
sub-queries only, are not related to each other, and, as such, they are not guaranteed
to improve the global efficiency of the execution. For example, suppose that a set
of operators in a query plan are sent to multiple machines simultaneously according
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to the partitioned parallelism paradigm [19]. The execution of a query operator in
a plan may benefit from partitioned parallelism when this operator is instantiated
several times across different machines with each instance processing a distinct data
partition. An eddy running on each of those machines could be very effective in
detecting the most beneficial operator order at runtime; nevertheless, nothing can be
done if the workload allocated to each of these machines is not proportional to their
actual capacity.

In general, when AdQP techniques that were originally proposed for single-node
queries are applied to full DQP, their efficiency is expected to degrade significantly
due to the following reasons.

• Firstly, adaptations may impact on the state built within operators, as explained
in [16, 73]. State movements in DQP incur non-negligible cost due to data trans-
mission over the network. If this cost is not taken into account during the plan-
ning phase, then, the associated overhead may outweigh any benefits. Centralized
AdQP techniques that manipulate the operator state in order to improve perfor-
mance do not consider such costs, whereas, if state movement is avoided, then
the adaptivity effects may be limited [16]. This situation calls for new AdQP
techniques tailored to distributed settings.

• Secondly, several of the AdQP techniques mentioned above involve a final stitch-
up (or clean-up) phase, which is essential for result correctness (e.g., [39]). As
with state movement, when such a phase is applied to distributed plans, then
additional overhead is incurred, which needs to be carefully assessed before pro-
ceeding with adaptations.

• Thirdly, direct applications of centralized AdQP techniques result in techniques
in which there is a single adaptivity controller responsible for all the adaptivity
issues. Obviously, this may become a bottleneck if the number of participating
machines and/or the volume of the feedback collected is high. Scalable solutions
may need to follow more decentralized approaches, which has not been examined
in single-node settings.

• Finally, the optimization criteria may be different, since issues, such as load bal-
ancing, economic cost, energy efficiency are more likely to arise in DQP. These
issues are closely related to load allocation across multiple machines, which is
an aspect that does not exist in centralized environments.

Overall, the focus of distributed AdQP is different due to the fact that overhead
and scalability issues are more involved, while load management is performed at a
different level. The techniques described in the sequel address some of these issues.

9.4 AdQP for Distributed Settings: Extensions to Eddies

The original eddies implementation in [2] and its variants mentioned in Section 9.3
cannot be applied to a distributed setting in a straightforward manner. This is due to
the fact that the eddy architecture is inherently centralized in the sense that all tuples
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Fig. 9.1 Example of a distributed eddy architecture. The dashed lines show the statistics flow
among the eddy operators, while the solid lines show the tuple flow.

must be returned to a central eddy; obviously, this paradigm leads to a single-point
bottleneck, unnecessary network traffic and delays when operators are distributed.
This section presents solutions to these problems.

9.4.1 Techniques

In [62], a distributed eddy architecture is proposed, which does not suffer from the
limitations mentioned above. More specifically, in [62], each distributed operator is
extended with eddy functionality. Moreover, a distributed eddy reaches routing de-
cisions independently of any other eddies. Each operator places the received tuples
in a first-come first-served queue. After a tuple has been processed, it is forwarded
to the local eddy mechanism, which decides on the next operator that the tuple may
be passed to based on the tuple’s execution history and statistics. The operators in
the distributed eddy framework learn statistics during execution and exchange such
information among them periodically, e.g., after some units of time have passed or
after having processed a specific amount of tuples. As in traditional eddies, routing
decisions need not take place continuously; on the contrary, they may be applied to
blocks of tuples in order to keep the associated overhead low [15]. Figure 9.1 shows
an example of a distributed eddy architecture in a shared-nothing cluster of three sites.

The differences between centralized and distributed eddies are not only at the
architectural level. The distributed eddies execution paradigm may be employed to
minimize the result response time or to maximize the tuple throughput. For both ob-
jectives, it can be easily proved that the optimal policy consists of multiple execution
plans that are active simultaneously, in the spirit of [17]; note that AdQP techniques
typically consider the adaptation of a single execution plan that is active at each
time point. However, analytical solutions to this problem are particularly expensive
due to the combinatorial number of alternatives, and, in addition, they require the
existence of perfect statistical knowledge; assuming the existence of perfect
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Table 9.1 Adaptive control in Distributed Eddies [62].

Measurement: The eddy operators exchange statistics periodically regarding (i) the selectiv-
ity, (ii) the cost and (iii) the tuple queue length of the operators they are responsible for.

Analysis-Planning: The routing is revised periodically employing routing policies tailored
to distributed settings. The routing decisions are made for groups of tuples.

Actuation: The planned decisions take effect immediately; no special treatment is needed
since operators’ internal state is not considered.

knowledge in a centralized statistics gathering component is not a realistic approach.
So, the efficiency of distributed eddies relies on the routing policies. Interestingly,
the most effective routing policies are different from those proposed in [2].

More specifically, several new routing policies are introduced in [62], in addition
to those proposed for centralized eddies. Basic routing policies for centralized ed-
dies include back-pressure, which considers operator load, and lottery, which favors
the most selective operators. In the selectivity cost routing policy in [62], both the
selectivity and the cost of the operators are considered in a combined manner. Al-
though the above policy considers two criteria, it does not consider the queuing time
spent while a tuple waits for processing in an operator’s input queue. Thus tuples are
routed to an operator regardless of its current load. In order to overcome this weak-
ness, the selectivity cost queue-length policy takes into account the queue lengths
of the operators as well. Contrary to the spirit of centralized eddies, the policies
mentioned above are deterministic rather than probabilistic; note that this property
is orthogonal to adaptivity. Finally, two more policies are proposed that route tuples
in a probabilistic way that is proportional to the square of the metrics estimated by
the selectivity cost and the selectivity cost queue-length policies, respectively. Ac-
cording to the experiments of the authors of [62], taking the square of the metrics
exhibited better performance than taking the metrics alone.

Overall, during the monitoring phase, the raw statistics that need to be collected
from each operator include its average tuple queue length, its selectivity and its
processing cost. The routing policies effectively plan any adaptations. The actuation
cost incurred when an alternative routing is adopted is negligible; the tuples are
simply routed according to the new paths. Cases where the adaptation overhead
cost is non-negligible, e.g., where operators create and hold internal state, which is
affected by adaptations, are not investigated. The high-level summary of distributed
eddies in [62] is given in Table 9.1.

The work of Zhou et al. in [72] extends the distributed eddies architecture pro-
posed in [62] with SteMs [56]. SteMs add extra opportunities for adaptivity, since,
apart from operator ordering, they can also change the join algorithm implemen-
tation (e.g., index-based vs. hash join) and the data source access methods (e.g.,
table scan vs. indexed access based on an attribute’s column) at runtime. The lo-
cal eddy operators utilize the traditional back-pressure and the lottery-based routing
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Table 9.2 Adaptive control in [72].

Measurement: The eddy operators exchange statistics periodically. The exchanged statistics
include (i) the average tuple queue length of the operators and (ii) the number of output tuples
that are generated by the operators for the number of input tuples supplied to them.

Analysis-Planning: The routing is revised periodically. The back-pressure and the lottery
based routing policies are employed for batches of tuples.

Actuation: The planned decisions take effect immediately; no special treatment is needed
since operators’ internal state is not considered.

strategies proposed for centralized settings [2]. In a distributed setting, the former
routing strategy is used to accommodate the network transmission speeds and site
workload conditions, while the latter reflects the remote operators’ selectivity. Note
that, as in [62], statistics are exchanged among the remote eddies at periodic time
intervals, while routing decisions are made for groups of tuples. The statistics re-
quired by an eddy operator in [72] include (i) the average tuple queue length of the
operators, and (ii) the number of output tuples that are generated by the operators.
As in [62], the overhead incurred when an alternative routing is enforced, is negli-
gible (see Table 9.2). Finally, FREddies is a distributed eddies framework for query
optimization over P2P networks [36], which shares the same spirit as [62, 72].

9.4.2 Summary

The proposals described above are an essential step towards the application of ed-
dies in DQP. However, a common characteristic is that the techniques in this cate-
gory tend to avoid costly adaptations that involve manipulation of operators’ internal
state in order to diminish the risk of causing performance regression. A side-effect
of such a reserved policy is that further opportunities to improve the performance
of AdQP may be missed, as shown by successful relevant examples of AdQP tech-
niques in centralized settings (e.g., [16, 21]. Another observation is that more re-
search is needed in order to understand what type of routing policies is more efficient
in distributed settings, and what are the benefits of probabilistic versus deterministic
routing and of routing policies that are closer in spirit to flow algorithms [17].

9.5 AdQP for Distributed Settings: Operator Load
Management

Load management can be performed at several levels; at operator-level load man-
agement, the main unit of load is an operator instance. In intra-operator load man-
agement, the different operator instances correspond to the same logical operator,
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which implies that partitioned parallelism is employed and adaptivity is concerned
with only a part of the query plan. On the other hand, inter-operator load manage-
ment deals with adaptations that consider the whole plan, and operator instances
may correspond to different logical operators.

9.5.1 Intra-Operator Load Management

Horizontal partitioning is a common approach to scale operators in a shared-nothing
cluster [19]. In horizontal partitioning, an operator is divided into multiple instances.
Each such instance is placed on a different site and processes different subsets of the
input data. The operators on the different sites can work in parallel. Thus the result
of the operator is given by aggregating the partial results that were produced by the
different operator instances. For example, the result of an equi-join operator A��B is
given by the union of the partial results Ai ��Bi, i= 1, . . . ,P, where P is the degree of
parallelism, i.e., the number of operator instances that work in parallel on different
data. Ai and Bi correspond to the subsets of data that are processed at the i− th site
and are partitioned according to the join attribute.

9.5.1.1 Background

A straight-forward way to enable query plans to benefit from partitioned parallelism
without modifying the operators, such as joins and aggregates, is through the in-
sertion of exchanges [30]. The exchange operator is one of the most notable non-
intrusive attempts to parallel operator evaluation. The operator does not modify or
filter any tuples but aims to distribute tuples across different operator instances. The
exchange operator is logically partitioned into two components that may be hosted
on different sites. The consumer component resides at a consumer operator instance
and waits for tuples coming from the upstream producer operator instances. The
producer component encapsulates the routing logic: it is responsible for routing the
tuples to the consumer operator instances. The most common routing policies are
hash-based, value range-based and round-robin.

Figure 9.2(top) shows an example of the partitioned execution of the hash-join
A �� B in a shared-nothing cluster of four sites using an exchange operator. The
tuples from the left relation A are used to build the hash-table, while the tuples from
B probe the hash-table. As the different operator instances in sites 1 and 2 work
in parallel, the time needed to complete the evaluation of the join operator equals
the time needed by the slowest operator instance. Consequently, load imbalances
can degrade the overall query performance. Load balancing aims to minimize the
overall query response time by “fairly” redistributing the processing load among
the consumer sites. By fairly is meant that the amount of work to be done on each
site must be proportional to the capabilities of the site. In a volatile environment, the
capabilities of participating machines or the relative size of the probing partitions
may change at runtime. However, modifications to the routing policy so that the
partitioning reflects better the current conditions lead to incorrect results, unless
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Fig. 9.2 Top: example of executing a hash-join over a shared-nothing cluster using the
exchange operator. Bottom: example of state relocation.

these modifications are followed by the relocation of the corresponding buckets in
the hash tables. This phenomenon is common to any partitioned operator that builds
and maintains internal state during its execution. An example of state relocation is
shown in Figure 9.2(bottom), where parts of the hash-table in Site 1 are moved to
the hash-table of Site 2 if the routing policy changes at runtime and more tuples are
routed to Site 2.

9.5.1.2 The Flux Approach

Flux [59] is an operator that can be deemed as an extension to the proposals of
the exchange and river [1] mechanisms, accounting for adaptive load balancing
of stateful operators, such as windowed equi-joins and group-bys. Two policies
are proposed for adaptive load balancing in clusters for settings with ample and
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limited main memory, respectively. The first policy aims to transfer load (which
entails state relocation as well) from an overloaded consumer operator instance to
a less loaded consumer operator instance taking into account only the processing
speed and idle times of consumers, while the second policy extends the former by
considering memory management as well. The goal of the load balancing policy in a
cluster with ample main memory is to maximize tuple throughput, through the min-
imization of utilization imbalances and the number of states moved. On the other
hand, the constrained memory load-balancing policy tries to balance memory use
across the cluster to avoid or postpone pushing states into disk.

In Flux, instead of having only one state partition per consumer instance, each
consumer instance holds multiple “mini”-partitions. This is an effective mechanism
for enabling fine-grained balancing [20]. In order to perform load balancing the
following functionality is added. First, the consumer components maintain execu-
tion statistics tracked over monitoring periods. The maintained statistics differ with
respect to the execution environment, i.e., whether the cluster has ample main mem-
ory or not. In the first case, the statistics are (i) the number of tuples processed per
partition at the consumer side and (ii) the amount of time the consumer operator
instance has spent idle, i.e., the amount of time the consumer component, which
resides on the corresponding consumer operator instance, waits for input to arrive.
From these statistics, the actual utilization of each node is derived. In the second
case, i.e., when the aggregate main memory in the cluster is limited, the runtime
statistics are (i) the available main memory at each consumer side, and (ii) the size
of the partitions, along with indications of whether they are memory-resident or not.
Second, the adaptations are coordinated by a global controller. The controller is re-
sponsible for collecting the runtime statistics from the consumer components and
issuing movement decisions for load balancing.

In both policies mentioned above, load balancing is performed periodically and
proceeds in rounds, where each round consists of two phases: a statistics collection
phase and a state relocation phase. The duration of the state relocation phase impacts
on the length of the next monitoring period with a view to avoiding scenarios where
most of the time is spent shifting state partitions around. Also, in order to minimize
the number of partition moves, for a given pair of sites, only one state partition
is considered for movement, namely the one that reduces the utilization imbalance
between the donor site and the receiver, provided that several threshold requirements
are met.

The steps that take place when state partitions are relocated from one site to an-
other are roughly the following: quiescing the partition to be moved, transferring
the state partitions to the corresponding consumer sites and restarting the partition
input stream. During quiescing, the consumer and the producer exchange messages
in order to ensure that all in-flight tuples have been processed, and, as such, the con-
sistency of the results is guaranteed. In addition, during the state movement period,
each producer component marks the candidate state partition as stalled and buffers
the incoming tuples for that state. After the state movement is performed success-
fully, all buffered tuples are redirected to the consumer operator instances that are
selected to be the new hosts and the producer components resume directing tuples.
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Table 9.3 Adaptive control in Flux [59].

Measurement: The following statistics are reported periodically from the local consumer
components to the central controller: (i) the number of tuples processed per partition at the
consumer side, (ii) the amount of time the consumer instance has spent idle, (iii) the available
main memory at the consumer side, and (iv) the size of the partitions.

Analysis-Planning: Load balancing is coordinated by a central controller, which detects im-
balances based on the measurements received. In case of imbalances, the controller forms
pairs of sites that will exchange state partitions based on their utilization (in non memory-
constrained clusters) or their excess memory capacity (in memory-constrained clusters) with
the help of several thresholds.

Actuation: The steps are the following: (i) stall the input to the state partitions to be relocated,
(ii) wait for in-flight tuples to arrive, (iii) transfer the state partitions to the corresponding
consumer sites, and (iv) resume processing. The time spent for state movement will be used
to define the next monitoring period length.

The policy for load balancing in a memory-constrained environment is similar
to the one described above. However, in such an environment, state-movement is
guided by the excess memory capacity criterion. The excess memory capacity at
a consumer site is defined as the difference between the total memory size of the
local states and the total available main memory. Similar to the previous policy, the
state partitions selected to be moved are those that reduce the imbalance in excess
capacity between pairs of sites. Flux can also perform secondary memory manage-
ment, in the sense that each consumer site may autonomously decide to push and
load state partitions into and from disks, respectively, in a round-robin fashion. The
full details of the Flux adaptive load balancing approach can be found in [59]; a
summary is presented in Table 9.3. Note that Flux can be complemented with fault
tolerance capabilities [60].

9.5.1.3 Improvements on the Flux Approach

Paton et al. proposed some modifications to the original Flux operator in [54]. In
one of the proposed variants, the execution proceeds as in the original Flux operator
but state partitions are replicated instead of simply being moved. This entails higher
memory requirements but, at the same time, manages to reduce the number of future
state movements. In another variant, which assumes operators building hash tables,
each hash-table bucket is randomly assigned to three sites. At hash-table build or
probe phase, a tuple is sent to the two most lightly loaded of the three candidate
sites that are associated with the bucket that the tuple is hashed to. During the probe
phase, if a probe tuple matches a build tuple, the join algorithm generates a result
from the probe occurred at the least loaded site, unless the matching (build) tuple
is stored only on the other two sites. This variant reduces the adaptation overhead,
which is mainly due to state movements, but incurs significant amounts of extra
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Table 9.4 Adaptive control in [45].

Measurement: The following statistics are reported periodically from the local sites to the
central controller: (i) that available main memory on the site, (ii) the size of partitions and (ii)
the corresponding number of tuples that are generated from each partition.

Analysis-Planning: State relocation decisions are triggered by the central controller, when
the available main memory imbalances exceed a user-defined threshold, based upon the pro-
ductivity of each partition and the memory available.

Actuation: Similar to Flux [59] followed by a disk cleanup procedure in order to produce
results from the disk resident state partitions.

work. Also, in [54], more advanced mechanisms for the actuation phase are investi-
gated, which aim to cancel planned adaptations when the expected benefit does not
outweigh the adaptation overhead.

Liu et al. have proposed techniques that deal with load balancing and secondary
memory management of partitioned, stateful operators in an integrated manner [45].
As in Flux, the state relocation decisions are guided by a single controller, which
periodically collects run-time statistics that are locally monitored at the remote sites
during fixed-length time periods and triggers run-time adaptations. The criteria that
guide the load balancing process are (i) the available main memory at each site, (ii)
the partition sizes and (iii) the number of generated tuples from each partition.

State relocation is triggered by the controller when the available main memory
imbalances among the sites exceed a user-defined threshold [45]. In that case, the
most productive partitions from the site with the least available memory are moved
to the site with the most available memory. Regarding secondary memory man-
agement, two different approaches can be followed. One local approach is to push
the less productive partitions at each site into disk, when the amount of available
memory is less than a user-defined threshold. Another global approach is to find
the overall less productive partitions among all the sites and to push them into disk.
The steps that take place during state relocation are similar to those in Flux with the
addition of a disk cleanup procedure to produce results from the disk resident state
partitions. The main characteristics of the integrated approach in [45] are summa-
rized in Table 9.4.

The work in [32] extends Flux by supporting multiway windowed stream joins that
are not necessarily equi-joins; moreover it focuses on the combination of load balanc-
ing and the so-called diffusion overhead. Load balancing is considered by allocating
tuples to the less loaded machines. Diffusion overhead corresponds to tuple repli-
cations and intermediate join result transferring, which is needed to ensure correct
result generation. Two algorithms are presented, which rely on partial tuple duplica-
tion. The first adaptively chooses a master stream, based on which the other streams
are transferred, while the second builds upon a greedy solution of the weighted set
cover problem [13]. The advantage of both approaches is that the routing is not based
on the value of the tuples. Table 9.5 summarizes the main characteristics.



226 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Table 9.5 Adaptive control in [32].

Measurement: The following statistics are reported periodically from the local processing
sites and the aggregation site to the controller: (i) the usage and the capacity of the local CPU,
memory and bandwidth resources (ii) the results throughput. The controller also monitors (iii)
the input data streaming rates.

Analysis-Planning: The controller, apart from dynamically routing input tuples, dynamically
selects the master stream and adapts its window segment length.

Actuation: The algorithm provides for special treatment of the intensionally duplicated tu-
ples in order to ensure result correctness.

[66] addresses the same problem as in [32]. In [66], the notion of Pipelined State
Partitioning (PSP) is introduced, where the operator states are partitioned into dis-
joint slices in the time domain, which are subsequently distributed across a cluster.
Compared to [32], the approach in [66] does not duplicate any tuples and benefits
from pipelined parallelism to a larger extent.

9.5.1.4 Summary

The previous discussion shows that, for the problem of intra-operator load balanc-
ing in DQP, several solutions with different functionality have been proposed. These
solutions also differ in the trade-off between running overheads (which denote the
unnecessary overheads when no adaptations are actually required) and actuation
costs, which may accompany the execution of adaptivity decisions. The original
Flux proposal is a typical example of an approach with low overhead but potentially
high actuation cost, whereas other proposals in [54] mitigate the latter cost at the
expense of higher overheads. Regarding the risk of causing performance regression
due to costly adaptations, a limitation of the techniques mentioned above is that they
do not consider the cost of moving operator state during the planning phase explic-
itly. The work in [29] fills this gap and revisits the problem of [59] by following a
control-theoretical approach, which is capable of incorporating the overhead associ-
ated with each adaptation along with the cost of imbalance into the planning phase
of the adaptivity loop. Initial results are shown to be promising, when machines ex-
perience periodic load variations. This is because the system does not move operator
state eagerly, which is proven to be a more efficient approach [28].

9.5.2 Inter-Operator Load Management

While the techniques discussed in the previous section perform load balancing at
intra-operator level, the approaches in this section perform load management at
inter-operator level. In particular, two representative families of techniques that
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correspond to different approaches to inter-operator load management are presented.
The former, which is exemplified by [70], discusses cooperative load management
with a view to achieving load balancing, whereas the latter, exemplified by [9], is
concerned with a setting where each node acts both autonomously and selfishly.
However, both groups of techniques deal with the problem of dynamically real-
locating operators to alternative hosts without performing secondary memory man-
agement. Since no secondary memory management is done, the steps that take place
during the operator relocation process are the following: (i) stalling the inputs of the
operators to be moved and local buffering of the operators’ input data, (ii) move-
ment of the operators (along with the data inside their internal states) to their new
locations and (iii) restarting of their execution. These steps constitute the typical
operator migration procedure.

9.5.2.1 Cooperative Load Management

The work in [70], which is part of the Borealis project, assumes that data streams
are processed on several sites, each of which holds some of the operators. Load bal-
ancing in [70] is treated as the problem not only of ensuring that the average load
(e.g., CPU utilization) of each machine is roughly equal, but also of minimizing
the load variance on each site and maximizing the load correlation among the pro-
cessing sites. The rationale of the approach is described in the following example.
Suppose that there exist load measurements of two operators hosted on the same
site that have been taken during the last k monitoring periods; these measurements
form two time-series. If both time series have a small correlation coefficient ([53]),
then, allocating these operators on the same site is a good idea because it means
that when one operator is relatively busy, the other is not. By putting these operators
on the same site, the load variance of the host is minimized with a view to min-
imizing end-to-end latency. The average end-to-end latency degrades when highly
correlated operators are co-located, since the operators may be simultaneously busy.
In addition, if the load time series of two sites have a large correlation coefficient,
then, their load levels are naturally balanced. Following the above rationale, the pro-
posal in [70] tries to balance the load of a distributed environment by placing lowly
correlated operators (in terms of load) at the same site, while maximizing the load
correlation among the processing sites.

Under the proposed load balancing scheme, adaptations are performed periodi-
cally. The site and operator loads are locally monitored over fixed-length time pe-
riods and are reported to a single controller, which takes load balancing decisions.
The load of an operator during a monitoring period is defined as the fraction of the
CPU time needed by that operator in order to process incoming tuples (that arrived
during that monitoring period) over the length of the monitoring period. The load
of a site during this period is defined as the sum of the loads of all its hosted op-
erators. Note that the controller keeps only the site and operator load statistics of
the k most recent monitoring periods. Several algorithms are proposed in [70] for
load balancing. However, all of them follow the same pattern: given a site pair, they
decide which operators to transfer between the sites. The site pairs are decided by
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Table 9.6 Adaptive control in Borealis [70].

Measurement: The sites periodically report the site/operator load statistics to the central
controller. The controller retains the k most recent load statistics for each site/operator.

Analysis-Planning: The variance and the correlation is computed. Operator relocation is
triggered periodically by the central controller. The operator redistribution algorithm first
detects pairs of sites and then defines the operators to be moved.

Actuation: The re-distribution decisions are enforced through operator migration, which in-
curs non-negligible cost. This cost is only implicitly taken into account.

the controller based on their average load (the mean value of a site’s load time se-
ries) following a procedure similar (to an extent) to the one used in Flux[59]. The
proposed load balancing algorithms aim to optimize different objectives, i.e., the
amount of load (operators) that is moved between a pair of nodes or the quality of
the resulting operator mapping. The former technique considers operator migration
cost implicitly. A summary of the adaptivity characteristics is given in Table 9.6.

In the context of the same project, a technique for failure recovery, which is
equipped with dynamic load balancing characteristics has been proposed [37]. The
proposed technique aims to provide low-latency recovery in case of a node’s failure
using multiple servers for collectively taking over the required actions. In particular
the data that is produced and the data that is in the internal states of query frag-
ments is backuped on a selected site. A site’s failure is masked by other sites, which
host backups and collectively rebuild the latest aggregate state of the failed server.
However, new queries that may be submitted for execution or changes in the input
streaming rates may change the sites’ load and consequently the failure-recovery
time. To solve this problem, the proposal in [37] may adaptively relocate the query
fragment backups and move them from heavily loaded sites to less loaded ones.

Wang et al., in [67], deal with a problem that is similar to the one in [70]. The
distinct feature of this work is that operator placement decisions are based on mech-
anisms inspired by the physical world. In the physical world, each physical object
tries to minimize its energy, whereas its behavior is driven by several types of poten-
tials and the potential energy of an object depends on the location of other objects.
In [67], each query operator is considered as a physical object, the potential energy
of which reflects its output latency and depends on the site and on the network load
conditions. The operator/site load is estimated as in [70], while the network load ac-
counts for the overhead incurred by the network transmissions. As in [70], operator
redistribution is performed by a single controller at periodic time intervals. All exe-
cution sites monitor the operator/site and network load conditions over fixed-length
time periods and send the appropriate statistics to this controller. The controller per-
forms load balancing utilizing heuristics that approximate the optimal solution. In
order to minimize the overhead that is incurred during operator movement, only
the most loaded operators are considered for redistribution. The fact that network
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Table 9.7 Adaptive control in Medusa [9].

Measurement: Each site monitors its load.

Analysis-Planning:
The operator relocation process is triggered asynchronously when (i) a site becomes over-
loaded and (ii) another site (not-overloaded) is willing to accept (part of) its load in exchange
of payment. The overloaded sites select a maximal set of operators that are more costly to
process locally. Each not overloaded site, in turn, continuously accumulates load offers and
periodically accepts subsets of offered operators.

Actuation: Typical operator migration, where operator migration overhead is considered
small.

conditions are considered helps in mitigating the risk of performing non-beneficial
adaptations, which is more likely to occur in [70].

9.5.2.2 Non-cooperative Load Management

The problem of load management in the Medusa project, which is a predecessor of
Borealis, is treated under a different perspective, according to which the distributed
systems are regarded as computational economies and the participants provide com-
putational resources and accept to host and execute operators from other participants
at a specified price [9]. Another difference with the load balancing techniques that
are presented so far is that there is no single controller that decides which operators
should be transferred to other hosts. In contrast, the hosts decide independently on
the amount of load to transfer or accept.

In Medusa, the hosts aim to select an appropriate operator set in order to maxi-
mize the difference between the payment they receive and the cost incurred locally
when processing this operator set. They negotiate with other hosts the amount of
load to transfer or receive and the corresponding payment through contracts. The
operator relocation process is not triggered at predefined time periods, but when,
firstly, a site becomes overloaded and, secondly, another (not-overloaded) site is
willing to accept at least part of the former’s site load in exchange of a payment.
To this end, the overloaded sites select a maximal set of operators that they are
more costly to process locally than to offload, and offer them to another site. Each
site continuously accumulates load offers and may periodically accept subsets of
offered operators, on the grounds of higher unit-price offers. As such, the negotia-
tion is asynchronous. If a new site accepts some of the offered operators, operator
migration takes place. Note that in [9], a negotiation scheme is also proposed for
non fixed-price contracts, due to the implications the fixed-price contracts may lead
to. Table 9.7 summarizes the main characteristics of this adaptive load management
approach.
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9.5.2.3 Summary

This section discussed two different approaches to inter-operator load management.
For cooperative scenarios, the solutions presented are interesting but still suffer from
significant limitations, such as centralized control mechanism and increased risk
to cause performance degradation due to the fact that the adaptation costs are not
considered during planning explicitly. On the other hand, in non-cooperative sce-
narios an interesting alternative is proposed, according to which each node decides
autonomously. Although the latter approach is more scalable, an issue that merits
further investigation is to assess the messaging overhead in both approaches: in de-
centralized settings, nodes exchange messages in order to reach decisions as part of
a negotiation protocol, whereas in centralized settings, nodes transmit monitoring
information.

9.5.3 More Generic Solutions

Intra-operator and inter-operator load management techniques can be combined to-
gether. An example appears in [27], which considers partitioned pipelined queries
running on distributed hosts. Intra-operator load management is responsible for
balancing the load across partitioned operator instances in a way that reflects the
runtime machine capacities. Inter-operator load management is responsible for de-
tecting bottlenecks in the pipelines and removing them by increasing the degree
of partitioned parallelism of the operators that form the bottlenecks. Another in-
teresting feature of the same work is that operator state is not removed from any
machine. Moreover, slow machines, for which the proportion of the workload as-
signed is decreased, do not participate in building operator state at the new sites.
The responsibility for state movement rests with operators upstream in the query
plan, which hold copies of data mainly for fault tolerance purposes at the expense
of higher memory requirements.

A combination of inter- and intra-load management has been proposed for stream
processing systems as well. This can be achieved through load sliding and splitting
techniques, respectively [11]. Distributed eddies can be leveraged to behave in a
similar way, too. However, understanding the interplay between efficient resource
allocation and load balancing is a challenging topic because the goals are often
conflicting, as explained also in [62].

9.6 AdQP for Distributed Settings: Other Techniques

In this section, we present techniques that deal with the problem of adaptive query
optimization in distributed environments where the issues are not investigated at
the operator level. In particular, we discuss proposals for adaptive parallelization
of queries and web service (WS) calls (e.g., [64], [57], [68]). Additionally, a few
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works that propose robust algorithms for distributed query optimization are briefly
described (e.g., [34], [22]).

In [64], an adaptive technique is proposed that aims to optimize the execution of
range queries in a distributed database. The tables are horizontally partitioned and
the resulting partitions are replicated at multiple storage hosts. In order to minimize
the query response time, the queries are executed in parallel. The hosts that store the
data of interest are firstly identified, and then, the identified hosts process the same
query using the local data partitions. However, setting the maximum level of paral-
lelism does not necessarily minimizes the result consumption rate, since, if a query
is sent to too many storage hosts, results may be returned faster than the client who
submitted the query can consume them. Apart from that, things become more com-
plicated when multiple queries run in parallel and need to access the same storage
hosts due to disk contention, which may slow down all queries. To solve this prob-
lem, Vigfusson et al. have proposed an algorithm that can adaptively (i) determine
the optimal parallelism level for a single query and (ii) schedule queries to the stor-
age hosts. In order to find the optimal parallelism level for each query, the algorithm
randomly selects to modify the number of hosts that process the query in parallel for
a short period. If this change results in an increase in the client consumption rate,
then the change is adopted. The algorithm also employs a priority-based approach
in order to schedule queries to hosts. The work in [57] deals with a similar problem,
where adaptive approaches are explored for parallelizing calls to WSs. Also, in [38],
substitution of data sources on the fly is supported to tackle data source failures.

Wu et al. proposed an adaptive distributed strategy for approximately answering
aggregate queries in P2P networks [68]. In particular, data samples are distributed
to sites for further processing. At each processing site, local aggregates are com-
puted that are subsequently sent to a coordinator site, which combines them in order
to produce the global aggregate value. The proposed strategy adaptively grows the
number of processing nodes as the result accuracy increases with a view to mini-
mizing the query response time.

Han et al. have proposed an extension to the initial proposal of progressive opti-
mization in [47] to account for distributed environments [34]. This distributed pro-
posal proceeds similarly to its centralized counterpart. Each plan fragment is marked
at special points, where the optimality of the overall plan can be validated. The exe-
cution sites monitor the cardinalities of the local intermediate results at these special
points and send a positive or negative vote for re-optimization to the controller; if
the observed cardinality lies in the validity range, then the vote for re-optimization
is negative, otherwise it is positive. The controller employs a voting scheme in order
to decide whether re-optimization must be triggered or not. Several voting schemes
are proposed in [34]. For example, in the majority voting scheme, re-optimization is
triggered if at least half of the total execution sites vote for re-optimization. On the
other hand, in the maximum voting scheme, re-optimization is triggered if at least
one site sends a positive vote independently of the votes that the other sites send.
Another extension to [47] is presented in [22]; the work in [22] focuses on queries
that access data from remote data sources.
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Finally, some earlier proposals defer resource allocation decisions until more ac-
curate information about data statistics becomes available (e.g., [33, 71, 50]).

9.7 Conclusion and Open Issues

In this chapter, we investigated the state of the art in distributed adaptive query
processing. The main techniques developed so far deal with issues such as exten-
sions to eddies (e.g., [62]), intra-operator load balancing (e.g., [59]), inter-operator
load balancing (e.g., [70]) and inter-operator load management with selfish hosts
(e.g., [9]). These techniques differ significantly from their centralized counterparts,
both in their objectives and in their focus. The objectives in distributed AdQP are
more tailored to distributed settings, whereas more attention is paid to issues relat-
ing to the adaptivity cost, which is significant, especially when operators and data
are moved over the network. Nevertheless, most of the techniques consider the in-
creased adaptivity cost in an implicit heuristic-based manner, with the exception of
the work in [29]. Apart from the adaptation costs, the overall performance of AdQP
techniques needs to be investigated in a more systematic way, since only very few
works are accompanied with theoretical guarantees about their behavior [6].

Other issues that have not been adequately addressed include scalability and the
interplay between distinct AdQP techniques. Decentralized control in co-operative
settings has been discussed in [62], but it is still an open issue how to apply the
same approach in broader scenarios. Moreover, the relationship between load bal-
ancing and efficient resource allocation should be further explored. Also, in stream
environments, load management may include load shedding techniques as well; it is
worth conducting research to better understand the relationship between the AdQP
techniques presented in this chapter and load shedding methodologies (e.g., [24]).
For example, when the data production rate of a streaming data source increases
beyond the capacity of the consuming operator, any technique from the following
is applicable: to perform load shedding or to move the consumer to a more power-
ful node or to increase the degree of intra-operator parallelism of the consumer and
subsequently perform load balancing. An interesting research issue is to develop
hybrid techniques that combine these different approaches with a view to improving
efficiency.

An additional interesting topic for further research is not merely to combine dif-
ferent query processing techniques, but also to combine AdQP with more generic
adaptive techniques in distributed settings. For example, the problem of load bal-
ancing has also been studied in the area of P2P networks (e.g., [25, 55, 23]); it is
not clear how AdQP behaves when applied to an adaptively managed distributed in-
frastructure. AdQP in distributed settings may also both benefit from and influence
techniques in distributed workflow processing (e.g., [44]). Finally, advanced AdQP
techniques should be coupled with techniques that mitigate the need for adaptivity,
such as robust initial operator allocation (e.g., [69]).
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