Information Systems Vol. 22, No. 8, pp. 465-481, 1997
. 1997 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

PII: S0306-4379(97)00029-X 0306-4379/97 $17.00 + 0.00

Pergamon

MOF-TREE: A SPATTAL ACCESS METHOD TO MANIPULATE MULTIPLE
OVERLAPPING FEATURES 1

YANNIS MANOLOPOULOS!, ENRICO NARDELLI?>*®, APOSTOLOS PAPADOPOULOS! and
GuIDO PROIETTI?

1Department of Informatics, Aristotle University, Thessaloniki 54006, Greece
2]ASI, National Research Council, 00185 Roma, Italy

3Department of Pure & Applied Mathematics, University of L’Aquila, 67100 L’Aquila, Italy

(Received 14 May 1996; in final revised form 2 December 1997)

Abstract — In this paper we investigate the manipulation of large sets of 2-dimensional data
representing multiple overlapping features (e.g. semantically distinct overlays of a given region), and
we present a new access method, the MOF-tree. We perform an analysis with respect to the storage
requirements and a time analysis with respect to window query operations involving multiple features
(e.g. to verify if a constraint defined on multiple overlays holds or not inside a certain region). We
examine both the pointer-based as well as the pointerless MOF-tree representations, using as space
complexity measure the number of bits used in main memory and the number of disk pages in secondary
storage respectively. In particular, we show that the new structure is space competitive in the average
case, both in the pointer version and in the linear version, with respect to multiple instances of
a region quadtree and a linear quadtree respectively, where each instance represents a single feature.
Concerning the time performance of the new structure, we analyze the class of window (range) queries,
posed on the secondary memory implementation. We show that the 1/O worst-case time complexity
for processing a number of window queries in the given image space, is competitive with respect to
multiple instances of a linear quadtree, as confirmed by experimental results. Finally, we show that
the MOF-tree can efficiently support spatial join processing in a spatial DBMS. ¢ 1997 Elsevier Science
Ltd. All rights reserved

Key words: Spatial Databases, Spatial Access Methods, Data/File Structures, Algorithms, Perfor-
mance Evaluation

1. INTRODUCTION

The efficient handling of large sets of 2-dimensional data is a key issue in many fields (e.g. image
processing, computer aided design, scientific visualization, geographical information systems etc.).
To obtain efficiency it is necessary to reach the best compromise between storage overhead and cost-
effective information retrieval. Many different approaches can be used to represent spatial data,
such as: array representation (raster-based), run-length codes, polygons (vector-based), bounding
boxes, mapping to higher or lower dimensional spaces and so on. Many access methods have been
proposed for specific classes of spatial data (i.e. point, lines, and rectangles); among others we
note the family of quadtrees, the family of R-trees, the cell tree, and the grid file. The interested
reader can refer to [7, 9, 19] for a survey.

In many cases, multiple pieces of information can be attached to each atomic element (pixel)
of a 2-dimensional dataset (termed image in the sequel). For example, in maps used for land
planning activities, each point is classified under different views, some related to land constraints
(i-e. urban, archaeological, environmental etc.), some to physical aspects (i.e. geological, hydro-
geological, climatic, etc.). Another typical example can be found in road maps, where roads, rivers,
bridges, railways and other features overlap each other in the image space. Topographic maps also
contain multiple data that overlap in space, as cadastral information, drainage and electric systems
and so on. Finally, a well established application field where 2-dimensional points have multiple
pieces of information attached is remote sensing. Here maps are produced by satellites, which
for each point measure values of emission for many different electromagnetic bands. In all these
cases, we say that multiple overlapping features are present in the image. We therefore consider
the following class of 2-dimensional data: an item of the class is a set of 2-dimensional features

tRecommended by Stavros Christodoulakis

465



466 YANNIS MANOLOPOULOS et al.

which are allowed to overlap. Each feature, that is an area homogeneous with respect to a certain
value, is represented by a 2-dimensional region (not necessarily connected).

From the storage point of view, we can roughly classify access methods either as suitable to main
memory or to secondary storage. Main memory data structures to represent multiple overlapping
features have been designed: the pyramid [21] with its variants [3, 14|, and the DF-expression [10]
are the most widely known. All of them belong to the guadtrees class [19], since they are hierarchical
and developed on the basis of a regular space decomposition. Nevertheless, spatial data have usually
a large volume and cannot fit into core memory. Hence, a disk-based representation would be
more appropriate. A quadtree based secondary memory access methods for representing multiple
features is the HL-quadtree [16], but it cannot manipulate overlapping features. Therefore, the
traditional way to store images containing overlapping features in a quadtree-based fashion is based
on a collection of linear quadtrees [8], one for each feature. However, such an approach is quite
space consuming (since multiple indexes must be maintained) and does not allow to manipulate
efficiently operations involving several features simultaneously.

In this work we define and analyze a quadtree-based spatial structure able to efficiently support
images with multiple overlapping features. We name this structure Multiple Querlapping Features
Quadtree (in short, MOF-tree), and we consider both a pointer-based and a pointerless (i.e. linear)
implementation. We show that several advantages derive from storing multiple features in a single
structure, from the standpoint of saving space and execution time in a large class of operations
involving the multiple features as a whole (e.g., to verify if a constraint defined on multiple overlays
holds or not inside a certain region).

Concerning the space requirement analysis, the significance of our approach is that the average
case analysis carried out (instead of the traditional worst-case, which is of less interest for some
applications) is founded on analytic probabilistic models used to describe spatial data. Using as
space complexity the required number of bits used to store the compared structures, we first prove
that the pointer-based MOF-tree outperforms the traditional approach based on multiple pointer-
based region quadtrees. Then, using as space complexity the number of disk pages, we show that
the linear MOF-tree version is space competitive with respect to a representation based on multiple
linear quadtrees.

On the other hand, for what concerns time requirement analysis, we analyze window queries,
which comprise the most important class of queries on 2-dimensional data. Window queries are very
important with respect to 2-dimensional data, since they allow the extraction of the interesting
image parts. Since we assume to work on large amounts of data, we focus on the worst-case
performance of the secondary memory MOF-tree implementation. Time complexity is measured
in terms of page accesses, since main memory processing time is negligible compared with latency
and seek times of disks. We show that the same performance as for the case of multiple non-
overlapping features [16] can be obtained for the ezist and the select query. However, for the report
query we obtain an improvement which is linear in the number of represented features, with respect
to the traditional representation based on multiple linear quadtrees. Such theoretical results are
confirmed by experiments on real datasets.

The rest of the paper is organized as follows. In Section 2 we describe both MOF-tree represen-
tations, and we give implementation details explaining the differences of MOF-tree in comparison
to the HL-quadtree. In Section 3, the space complexity of the two implementations is analyzed
and a comparison with the standard approach based on multiple single-feature quadtrees is car-
ried out. In Section 4 we refer to the algorithms performing window operations and we illustrate
representative experimental results. In Section 5 we report some considerations for future work
on the MOF-tree structure in order to formalize other important user query operations and es-
tablish algorithmic alternatives to improve space and time performance. The last section contains
concluding remarks and motivates for further research.



MOF-Tree: A Spatial Access Method 467

2. THE MOF-TREE STRUCTURE

2.1. Description of the MOF-Tree

Assume that an image of size T' x T containing & overlapping features is given, where T' = 2™
and m is an integer. Similarly to the region quadtree [19] and the HL-quadtree {16}, the MOF-
tree is based on a recursive image decomposition into four quadrants of equal size. Since features
are overlapped, the decomposition stops only when a quadrant is fully covered by all the features
contained in it. In such a case, we say that the quadrant is homogeneous. For the sake of uniformity,
the image background will be considered as a feature.

The decomposition can be represented as a tree of outdegree 4, where the root (at level m) corre-
sponds to the whole image and each node (at level m—d) to a quadrant of side length 7/2¢. Internal
nodes are associated to non-homogeneous quadrants, while homogeneous quadrants correspond to
leaves. The structure generated using this decomposition scheme is the Multiple Overlapping Fea-
tures Quadtree (MOF-tree).

In Figure 1, an example of a MOF-tree in a 22 x 22 image space representing two overlapping
features on a white background is given. Note that internal nodes can be fully covered by some
feature and partially covered by others (see for example the SE son of the root, which is fully
covered by the vertical feature and partially covered by the horizontal feature). Features partially
covering a quadrant are depicted inside a circle, while features totally covering a quadrant are
depicted inside a square.

Fig. 1: Two Overlapping Features on a White Background and the Corresponding MOF Representation

2.2. MOF-Tree Implementations

The MOF-tree can be represented as a tree (pointer-based version) or as a list (pointerless
version). In the former, random access is privileged, but a substantial amount of space overhead
is introduced. In the latter case, the storage medium can be a disk, absolutely needed for large
amounts of 2-dimensional data required by modern applications. In this subsection we introduce
two possible implementations of the MOF structure.

The Pointer-Based MOF-Tree. In the following, we will use indifferently the term MOF-tree
to refer to the data structure and to its pointer-based representation. For a large class of
operations to be executed on the MOF-tree, we need to know when accessing a node, if each
contained feature fully covers or not the considered quadrant. To this aim, to internal nodes
we associate a record of type nonleaf containing, apart from the four pointers to the sons and
the one to the father, all the information concerning the contained features. This information
is stored in a bit-vector FEATURES of size k, in which the ¢-th bit is set to 1 if and only if

the {-th feature is contained in the associated quadrant, and in a bit-vector COVER of size
1S 22:8-8¢



468 YANNIS MANOLOPOULOS et al.

k, in which the i-th bit is set to 1 if and only if the i-th feature fully covers the associated
quadrant. Concerning leaf nodes, since they represent quadrants fully covered by the features
contained, we associate to them a record of type leaf containing a pointer to the father and
a bit-vector FEATURES of size k.

The Linear MOF-Tree. A linear MOF-tree version can be obtained by coding all the nodes by
means of a base 5 locational key of length m (the image resolution) [8]. This allows the use of
an indexing scheme as the BT-tree [1] to efficiently support random access to every MOF-tree
node. As in the case of the pointer-based MOF-tree, we distinguish among records associated
to internal and to leaf nodes. More precisely, an internal node is represented by means of a
record containing a k-bit vector FEATURES and a k-bit vector COVER, being used in the
same way as in the pointer-based MOF-tree. Concerning records associated to leaf nodes,
they lack of the COVER vector in comparison to an internal record. To distinguish between
the two kinds of records, we also associate to each of them a LEAF bit whose value is 1 if
and only if the corresponding node is a leaf.

Figure 2 shows the structure of the records both for pointer (above) and pointerless (below)
representation.

/ Nonleaf node Aeaf node

father NW | NE | SW| SE features cover father features

son | son |son|son| (k bits) (k bits) (k bits)
Nonleaf node Leaf node

leaf | features | cover leaf [ features

(1 bit) | (k bits) (k bits) (1 bit) | (k bits)

Fig. 2: Pointer (Top) and Pointerless (Bottom) Records’ Structure

The most important structural difference of MOF-tree in comparison to the HL-quadtree is
that, in order to manipulate overlapping features, we introduce the COVER vector. The COVER
vector is not needed in HL-quadtrees since an internal node is always partially covered by the
features contained in it. Also, note that in the case of non-overlapping features, since a leaf node
represents a quadrant fully covered by only one features, it is enough to store the identifier of the
feature itself, and then [log k] bits suffice to fully describe a leaf record.

The obtained list of records can be sorted according to ascending values of the [-keys. For
example, for the MOF-tree in Figure 1, we have the following sequence:

(0,00,111,000), (0,10,110,000), (1,11,100), (1,12,100), (1,13,010), (1,14,010),
(1,20,011), (0,30,101,000), (1,91,100), (1,92,001), (1,33,001), (1,34,001),
(0,40,011,001), (1,41,011), (1,42,011), (1,43,001), (1,44,011).

Note that in the previous list, leaf records (being in italics in order to improve the readability)
have a structure (LEAF, l-key, FEATURES), whereas the structure of internal records is (LEAF,
[-key, FEATURES, COVER).



MOF-Tree: A Spatial Access Method 469

Symbol | Definition
k number of features
T side of the image space
m image resolution (T' = 2™)
n side of the query window
M number of maximal blocks inside the query window
P probability for a pixel to be black
r disk page capacity in records
P disk page size in bits
N
Nm
B,
M

number of nodes in the pointer MOF-tree

number of nodes in a class-m pointer Quadtree
number of black leaves in a class-m pointer Quadtree
number of leaf pages in the Linear MOF-tree

L number of leaf pages in a class-m Linear Quadtree
Ing number of index pages in the Linear MOF-tree

I, number of index pages in a class-m Linear Quadtree
hpg height of the index part of the Linear MOF-tree

R height of the index part of a class-m Linear Quadtree
Sm space occupancy of the pointer MOF-tree

Sm space occupancy of a class-m pointer Quadtree

SLy space occupancy of the Linear MOF-tree
SLy, space occupancy of a class-m Linear Quadtree

Table 1: List of symbols and definitions.

3. SPACE ANALYSIS

In this section we first prove that a single MOF-tree representing k overlapping features is
space competitive with respect to a representation based on & single-feature quadtrees (MQ in
the following); then, a comparison between the linear MOF-tree version against a multiple linear
quadtrees representation (MLQ in the following) is done. Space complexity will be examined in
terms of the number of bits and the number of disk pages used to represent the structures respec-
tively. We analyze space performance with respect to the most significant probabilistic models of
binary images. The following table contains the symbols and their corresponding definitions used
throughout the analysis.

Model for Random Images: According to this model each image pixel is assumed to be statis-
tically independent to any other pixel. If p is the probability for a generic pixel to contain
the feature, then a level-i node is fully covered by the feature with probability b; = p?", fully
uncovered with probability w; = (1 — p)*', and partially covered (and thus internal to the
quadtree) with probability g; = 1 — p* — (1 — p)*’. Therefore, by varying the p value we
reach a range of statistical distributions. A large class of images (for example pebble maps
or point data maps) are truly described from such a kind of distribution.

Model for Random Trees: This model has been proposed by Puech and Yahia {12, 17]. Let
Q.. be the set of all class-m quadtrees, i.e. quadtrees of height less than or equal to m. Let
b; be a non increasing sequence of m + 1 reals, where 0 < b; < 1/2 and by = 1/2. A random
tree of Q,, is built by using a branching process, such that the quantity 2b; is the probability
for a level i node to be external and then g; = 1 — 2b; is the probability for a level i node
to be internal. Therefore, by definition 2bg = 1, i.e. at level 0 (pixel level) all the nodes are
external with probability 1 as expected. Once a node is known to be external, we do not
make assumption on its color, i.e. the node can be indifferently white or black, because if
we do, we may lead to a non-condensed quadtree (a quadtree where the four children of an



470 YANNIS MANOLOPOULOS et al.

internal node can be all white or all black). This model has been further refined in [11, 23]
by defining a more complicated branching process that produces condensed (ordinary) region
quadtrees, only.

Under a different perspective, Samet introduced a similar model [18], where an external
node containing a fixed pixel has equal probability to be of any size, or, in other words,
a leaf node is equally likely to appear in any position and level in the quadtree. A large
class of geographical images, such as floodplain, topographical and landuse maps, seems to
be modeled by this definition of random trees, and then we will use this model to perform
theoretical comparisons. From an analytical point of view, this model is an instance of the
models of references [15, 23] obtainable by setting the probability that a black node exists at
any level ¢ position equal to 2—51;1—)

3.1. MOF-Tree vs. MQ

Let Spr and S, denote the space occupancy of the MOF-tree and a class-m quadtree, re-
spectively. Also, let Nas be the number of nodes in the MOF-tree. As in the case of a pointer
quadtree, we distinguish the nodes of MOF-tree in two types of nodes: internal and leaf. In the
former, we observe that each pointer has to address among Ny nodes and then needs [logNp] +1
bits (the extra bit distinguishes an internal from a leaf node). Regarding the FEATURE and
COVER node fields, each one needs exactly & bits. Therefore, each internal MOF-tree node needs
5([logNp] + 1) + 2k bits. Regarding the leaf nodes, they only require the pointer to the fa-
ther and a binary string to store the contained features. Thus, the required storage is limited to
([logNar] + 1) + k. Being approximately equal to 3 the ratio between leaf and internal nodes, it
follows that the space complexity (in bits) for the pointer MOF-tree is:

N 3N
Su ~ —ZM—(S(I'logNM]+1)+2k) + —4"1(nogNM1 +1+k)

Since the number of nodes of a complete quadtree is Ny, = 4'";1‘1, it follows that [logNa]| <

2m + 1 (worst case). Therefore, the previous expression becomes:

Spy = NM(4m+Zk+4) (1)

The total number of bits needed to store a class-m pointer quadtree with NV, nodes is:

Sm ~ 2 (5(N10gNm] + 1)) + LT (TlogNal +1) = Nowfam +4)

Then we obtain the following ratio:
Sum N Ny (4m + 5k + 4) B Nu m+1+ 3k

~ = X
S+ S+ ... + Sk (N1 + No + ... + Ni)(dm + 4) Ni+Ny+ ...+ Ny m+1

For the sake of simplicity we assume that each independent feature is described by the same

probability law. Therefore, it follows that Ny = N, = ... = Ny; setting N,, as the expected
number of nodes in a class-m quadtree, the above formula becomes:
Sm Ny m+1+ &k

STt St t5 N X T mt Dk 2)

To compare the space performance of the two approaches, we have then to estimate the number of
nodes contained in the MOF-tree and in each quadtree with respect to the two proposed models.

3.1.1. Random Image Model

It has been proved that under the random image model, the average number of nodes NV,, of a
class-m quadtree obeys the equation [22]:

m-1

Np = 14 > 4™l = wipq — big1)

i=0



MOF-Tree: A Spatial Access Method 471

where w; and b; denote the probability that a level-i node is white and black respectively. Assuming
p as the probability for a pixel to be black and 1 — p as the probability for a pixel to be white. It
easily follows that:

b = p* w; = (1-p)*
and then the average number of expected nodes for a class-m quadtree becomes:
Nm = 1+ Z =i (1= - (1= )t (3)

Let us now estimate the number of MOF-tree nodes. The probability for a node to exist at
level 7 in one of the given quadtrees is:

i4+1 i4+1
p=1-p* —(1-p)*
and therefore the probability that the node does not exist is:
pp=1-p =p*" +(1-p*"

Given the independence among the features, it follows that the probability that a node is absent
from all independent quadtrees is:

i+l iv1\ k
ps = pf = (p"' +(1-p)* )

and finally the probability that the node is present at level ¢ to at least one quadtree (and then
present at level ¢ in the MOF-tree) is:

i+1 i+1\ k
E o =1-p = 1-(p*" +(1-p*")

Therefore, since at level i there are at most 4™~% nodes, it follows that the expected number of
nodes in the MOF-tree is:

) m—1 ' . . k
Nu = 14+ LA E = 14 34 (1 (7 < a-p)') @)
Finally, by combining Equations (2), (3) and (4), we obtain:
‘ N
m—1 ;m=i _ 4it+1 _ 4it1
Sm - L+ Dizo 4 (1 (p +(1-p) ))xm+1+%k
SAS+ T8 | IrE e (g (o) (m D

which, for standard values of p,m and k, produces the ratios depicted in Table 2. From this
table, it immediately follows that in the random image model, the MOF-tree outperforms the MQ
representation for any p, k and m.

8.1.2. Random Tree Model

It has been proved that the average number of nodes N, of a class-m random quadtree is [23}:

4m+2 _3m — 7

Nm = 9(m +1)

()

Let us now estimate the number of MOF-tree nodes. Since b; is equal to 71+_1" the probability
for a node to exist at level ¢ of an independent quadtree is {15, 23]:

i+1

m+1

P =



472 YANNIS MANOLOPOULOS et al.
p=0.1 p=0.3 p=05
m m m
k 8 10 12 14 8 10 12 14 8 10 12 14
2 107 075 0.74 074062 062 061 061|058 057 0.57 0.57
4 1052 051 050 050035 034 033 033031 031 030 0.30
8 /033 032 031 030020 0.19 0.18 0.18{0.18 0.17 0.16 0.16
16 | 0.21 0.19 0.18 0.18 | 0.12 0.11 0.11 0.10]0.11 0.10 0.09 0.09
321014 013 0.12 0.110.08 0.07 007 0.06|0.07 006 0.06 0.06

Table 2: Space Ratio MOF-Tree/MQ for p=0.1, 0.3 and 0.5 (or p=0.9, 0.7 and 0.5 Respectively).

and therefore the probability of the node to be absent is:

m-—1
m+1

1+ 1
1— = 1- =
P m+1

b2 =

Given the independence among the features, it follows that the probability that a node is absent
at level ¢ from all independent quadtrees is:

_ k___ m_i k
Py =P =\

and finally the probability that the node is present at level ¢ to at least one quadtree (and then
present at level 7 in the MOF-tree) is:
| m—i\*
- (55)
m+1

Since we know that at level ¢ there are at most 4™~* nodes, it follows that the expected number
of nodes in the MOF-tree is:

E =

m—1 m—1 m i k
— m—ig _ m—1i _ -
NM—1+§4 E;i 1+;4 (1 (m+1)) (6)

Therefore, by combining Equations (2), (5) and (6), we obtain:

14+ lgm—i 1 m—i)k
i=0 m+1 m+1+ 2k
X

12 _3m—7
9(m+71’; (m+ D)k

Sm _
Si+ S+ ...+ S5,

The following table depicts a sample of results obtained by inserting some standard values of
m and k in the above expression. From this table, it immediately follows that in the random tree
model, the MOF-tree outperforms the MQ representation for every practical value of k and m.

3.2. Linear MOF-Tree vs. MLQ

Maintaining the same notation, we now confront space complexity of the linear MOF-tree
against MLQ. This comparison is of great importance whenever a secondary memory implemen-
tation is required.

Let SLys and SL,, denote the space occupancy of respectively the linear MOF-tree and the
MLQ, measured in disk pages. A B*-tree comprises of two parts: a) the leaf part where all useful
information is stored and b) the index part, used to guide the search in the tree. Therefore, in
order to compare the linear MOF-tree and the MLQ we must estimate both numbers of pages in
the leaf and index parts.



MOF-Tree: A Spatial Access Method 473

m
k 8 10 12 14
2 1097 097 098 098
4 1087 0.89 090 0.92
8 1073 077 0.80 0.82
16 | 0.58 0.62 0.66 0.68
321044 047 0.51 0.54

Table 3: Space ratio MOF-tree/MQ in the random tree model.

Let us first examine the case of the linear MOF-tree. In the case of the MOF-tree, all nodes
of the pointer version must be represented in the linear version. Each internal node needs 3m bits
to store the m digits (in base 5) of the l-key, 2k bits to store the FEATURES and the COVER
vectors and one bit to store the LEAF bit, while each external node needs 3m bits to store the
l-key, k bits to store the FEATURES vector and one bit to store the LEAF bit. This information
is stored in the leaf level of the B*-tree. Let Ljs denote the number of leaf pages in the linear
MOF-tree. From Equation (1) it follows that:

Lo _ [Su] _ [Na(16m+ 5k + 16)
M= 1P|~ 4P

(7)

where P is the disk page size (in bits).

Each page in the index part, contains locational codes and pointers to the lower level. If there
are r locational codes present in an index page (which is assumed to be fully utilized), there must
be r + 1 pointers to the lower level. Assuming that each pointer takes 4 bytes (=32 bits), then r
can be estimated as follows:
32+ 3m

P =320r+1)+3mr = r = { P—32J

The height hps of the index part is therefore:
hv = [logr(Lum)] (8)

Let Ips denote the number of index pages in the linear MOF-tree. It is clear that:

hM hM —
Ly Ly 1—phu
= ZL—]—] N Z(T“) B

i=1 i=1

Therefore, from the above expressions, we get that the total space requirements of the linear
MOPF-tree are:

R
On the other hand, in the case of the MLQ, we know that in each linear quadtree, only the black
nodes are taken in consideration, and each one needs only 3m bits to store the [-key. Therefore,

the number of leaf pages in the linear representation of a class-m quadtree equals:

L= ["”"Bm] (9)

P

where B,, is the number of black nodes in a class-m quadtree.

As in the case of the linear MOF-tree, the index pages contain locational codes and pointers
to the lower levels. Therefore, the height of the index part and the number of index pages are
respectively:



474 YANNIS MANOLOPOULOS et al.

hm = [logr(Lm)] (10)

and . N
Ly, “(Ln 1-r
In = Z[ﬂ ~ Z(F“) = Im—Ty e
7j=1 7=1
The total space requirements of each class-m linear quadtree is:

r—rhm

SLyy = Lyn+1I;m = L + hm

r -1

Since we assume for simplicity that all the features are described by the same probability law,
it follows that SL; = SLy; = ... = SL;. Using the above derived formulae and substituting the

appropriate values we get:

—h
SLy M + by

L
S 11
SLy +SLy+ ...+ SLg k(Lml%+hm) (11)

In order to compare the space performance under the two linear approaches, we have then
to estimate the number of black nodes contained in a class-m quadtree with respect to the two

proposed models.

3.2.1. Random Image Model

It is easily derived that the expected number of black nodes in a class-m quadtree is:

B, = p4"‘ + mz: 4m—i (p4' _p4‘+1) (12)

=0

By substituting the parameters Ly, L, Arr, hm, Ny, and By, from Equations (7,9,8,10,4,12)
respectively in Equation (11) we get the ratio of space requirements for the random image model.
The following Table 4 depicts the ratio of space occupancy of the linear MOF-tree over MLQ for
some values of p, m and k. From this table, it immediately follows that under the random image
model the linear MOF-tree outperforms the MLQ for every m as soon as k > 4.

p=0.1 =03 p=05

m m m
8§ 10 12 14| 8 10 12 14| 8 10 12 14
101 185 181 178|196 190 185 182|232 225 220 216
130 1.25 122 119|109 1.04 101 099|125 1.20 116 1.13
082 078 075 0.72 061 058 055 053|070 066 0.63 0.61
0.51 047 045 043|037 034 032 031|042 039 036 0.35
035 031 028 027|025 022 021 019|029 026 023 022

R B

Table 4: Space Ratio Linear MOF-Tree/MLQ for p=0.1, 0.3 and 0.5 (or p=0.9, 0.7 and 0.5 Respectively).

3.2.2. Random Tree Model

Since according to this probabilistic model the expected number of black nodes is half of the
expected number of the leaves (which are 3/4 of all the nodes), we have that:

3N,

Bp =
8

(13)



MOF-Tree: A Spatial Access Method 475

where N,, is given by Equation (5). By substituting the parameters Las, Ly, Ay, Am, N,
and B,, from Equations (7,9,8,10,4,13) respectively in Equation (11) we get the ratio of space
requirements for the random image model. The following table depicts the space occupancy ratio
of the linear MOF-tree vs. the MLQ under the random tree model for some values of m and k.

m
8 10 12 14
3.50 3.80 3.77 3.74
3.14 347 3.50 3.50
264 3.00 3.07 312
2.08 241 253 261
1.57 1.84 195 2.04

L =
5oy 00 o

Table 5: Space Ratio Linear MOF-Tree/MLQ under the Random Tree Model.

From the later table, it emerges that a small overhead in the space complexity of the linear
MOF-tree with respect to MLQ is introduced. In fact, this model produces very compact quadtrees,
and consequently the number of black leaves to store is very low; on the contrary, the expected
number of nodes in the MOF-tree is quite high (since being the features independent, they tend
to occupy the whole image space, so producing an almost complete MOF-tree), and therefore the
space occupancy of the linear MOF-tree is high also. However, this is a little price to pay for a big
improvement in terms of spatial queries processing, as we shall see in the next section.

4. PERFORMANCE EVALUATION

Large sets of 2-dimensional overlapping data can be queried in many possible ways. In partic-
ular, for multiple overlapping features window queries are formulated as follows:

e ezist (f,w): Determine whether or not the feature f exists inside window w.
o report (w): Report the identity of all the features that exist inside window w.

e select (f,w): Determine the locations of all occurrences of the feature f inside window w.
This means to output all the blocks fully covered by feature f.

The basic approach to process a window query is to decompose it from an n x n window into a
sequence of smaller queries according to the M =0(n) maximal blocks contained inside the given
window [3]. Since the linear MOF-tree stores all the nodes of the corresponding pointer tree,
to answer the window queries it is possible to apply the same algorithms as those proposed for
the HL-quadtree [16]. Then, it follows that the exist and the report query can be satisfied with
O(M log,T) disk accesses, while the select query can be answered with O(M log,T + n?/r) disk
accesses. It is worth noting that for the exist and select queries, the same theoretical upper bounds
are obtained as in the case of an MLQ representation [13]. On the other hand, for the report query
there is an improvement which is linear in the number of represented features, since an MLQ
representation needs O(kM log,T") disk accesses to satisfy such a query. Table 6 summarizes I/O
performance of the linear MOF-tree and the MLQ when executing window queries.

Detailed experiments comparing the linear MOF-tree and the MLQ have been performed. We
implemented all the structures in C programming language under UNIX and run the experiments
on a SUN SPARC workstation. We executed the window queries on 1024 x 1024 images containing
16 overlapping features. Images have been built by overlapping meteorological satellite views of
European and Asian regions. For each of the window sizes, we perform 100 queries, and sum the
number of disk accesses. Some representative results are illustrated in Figures 3 to 7.

By inspecting the Figures 3 to 7, in the case of window queries operations, it is evident that
the MOF-tree while it shows practically the same performance in comparison to the traditional



476

MLQ approach for the exist and the select query, it demonstrates considerable improvement for the
report query. More specifically, we observe that the performance gain of multiple linear quadtrees
over the MOF-tree is around 10% on the average for the exist and select queries, as it is illustrated
in Figures 3 to 6. On the other hand, in the case of the report query, the MOF-tree outperforms by
factors the multiple linear quadtree representation, as it is demonstrated in Figure 7. Therefore,
the use of the MOF structure is recommended, since queries referring to more than one features

YANNIS MANOLOPOULOS et al.

Query | Linear MOF-tree MLQ

exist O(M log,T) O(M log,T)
report O(M log,T) O(kM log,T)
select | O(M log, T +n?/r) | O(M log, T + n*/r)

Table 6: Time Performance of the Linear MOF-Tree and the MLQ Representation for Window Queries.

are posed very frequently in applications that manipulate spatial data.

Disk Accesses

3000 v T T T v T T T T
MOF-tree: 8—
Multiple Quadirees: »—,
2500 +
2000 F
@
o
2
@
2
1500 §
]
a
1000
500
o " L i ' i H i 1
0 50 100 150 200 250 300 35 400 450 500
Window Size

8000 T T T T T

7000 oo -

6000 |-

5000 |-

4000 -

3000 -

2000

1000

) n i

0

A

MOF-tree
Multiple Quadtrees:

i L

0 50 100 150

200 250

300

Window Size

i
350 400 450 500

Fig. 3: Exist Query for Features Covering 71% of the Fig. 4: Exist Query for Features Covering 43% of the

Disk Accesses

Image.

180000 T

140000

120000

100000

i

L f

T T T
MOF-tree -&8—
Multiple Quadtrees: »—

Disk Accesses

1 i i L

[\] 50

100

150

200
Window Size

250 300

350 400 450 500

Image.

300000 T T T T

250000 [

200000 |

%

100000

2 1 i

L

T T T
MOF-tree: -8—,
Muitiple Quadtrees:

i i i

c 50 100 150

200 250

Window Size

350 400 450 500

Fig. 5: Select Query for Features Covering 43% of the Fig. 6: Select Query for Features Covering 71% of the

Image.

Image.



MOF-Tree: A Spatial Access Method 477

250000 T T T
MOF-tree -o—
Multiple Quadirees -»—

200000

150000 |-+

Disk Accesses

100000

50000 /
-

L// D U S SR
1 1 1 1

0 50 100 150 200 250 300 350 400 450 500

Window Size

0

Fig. 7: Report Query.

5. ALGORITHMIC AND STRUCTURAL ALTERNATIVES

5.1. Eztended Window Queries

In an MLQ representation, exist and select queries require the traversal of the quadtree rep-
resenting the specified feature f. This implies that an aggregating representation as offered by
the MOF-tree does not induct advantages other than space savings. However, in real applications,
when dealing with k& multiple overlapping features, extended versions of the window queries are
often needed [2], including also set theoretical operations among the features. The exist and the
select query can then be extended to a subset of h (1 < h < k) features in the following way:

o extended_exist(fi,, fiy, ..., fin,w): Determine whether or not all of the features f;,, fi,,..., fi,
exist inside window w;

o extended_select(fi,, fi,, .., fin,w): Determine the locations of all occurrences of all the fea-
tures fi,, fip -, fi, inside window w. This means to output all blocks homogeneous for at
least one of the features f;,, fip, ..., fi,, W;

Operating on the linear MOF-tree, a simple way to execute the extended_exist query is to
repeat the same procedure as for the exist query, being careful to verify the existence or not of
the given features inside each maximal block contained in the window (or in the respective direct
ancestor) and returning an affirmative answer only when all the given features have been found.
By looking at the I/O complexity of the exist query as obtained in the Section 5, it follows that
such a process has a worst-case bound on the number of secondary storage accesses of O(M log,T).
Concerning the extended_select query, we have to focus exclusively on the complete nodes of the
linear MOF-tree inside the given window, operating respectively on each of them an OR-ing or an
AND-ing on the features bits concerned in the query. With a similar reasoning, it follows that such a
process has a worst-case bound on the number of secondary storage accesses of O(M log, T +n?/r).
Conversely, using an MLQ representation, although the essence of operations remains the same,
we have to load each involved quadtree independently, which implies an I/O time overhead linear
in the number of concerned features.

Operations of such a kind have a common property, that is the need to linearly scan the
occurrences of all the features involved in the operation itself. And this is the reason why a
physical aggregation of the data can lead to significant savings in terms of I/O execution time. In
fact, the above sketched algorithms for the given queries require only one scanning of the MOF-
tree, while h distinct scans in the MLQ representation are requested: the advantage is then linear
in h.



478 YANNIS MANOLOPOULOS et al.

These operations are not exhaustive, in the sense that they do not cover completely all appli-
cation needs. In such an environment it is important to support an additional operator, known as
spatial_join that is able to formally represent the whole class of operations combining in some way
a subset of the given features. In such a way a large class of spatial predicates (such as overlap
and containment) among features can be supported. An immediate example derives directly from
various applications in the geographic field, where a widely used type of query is: “Determine all
the locations where there are forests or meadows but not cities inside the query window w”. Such
nice zones can be located simply combining known queries as follows:

(select(forest,w) OR select(meadow,w)) AND (NOT (select(city,w))

Another typical query could be: “Determine all the factories contained in cities inside the query
window w”. To locate such dirty zones, we simply combine known queries as follows:

select(factory,w) AND select(city,w)

If we indicate with P(f;,, fi ..., fi,) & logical predicate on a subset of h (1 < h < k) features,
then we can formally define a spatial_join as an operation involving all the h features in the following
way:

spatial_join(fi,, figys - fin W, P(fiy, fizs -, fi,)): Determine the locations where occurrences of the
features fi,, fi,, .-, fi, satisfy a logical predicate P(fi,, fiy, -, fi,)-

A special case of the spatial join operation is the spatial intersection, where the spatial predicate
is a feature intersection. This operation is very frequent in spatial applications. It has the following
from:

spatial_intersect(f;,, fiy, .- fin,»w): Determine the locations where occurrences of all the features
firs figs -, Ji, intersect inside window w. This means to output all blocks homogeneous for
all of the features f;,, fiz, ..., fi, -

Operating on the linear MOF-tree version, to execute the spatial_join query, we have to focus
exclusively on the complete nodes of the linear MOF-tree inside the given window, verifying on
each of them if the logical clause describing the given predicate is true or not. It follows then,
also looking at the extended-select query studied above, that such a process has a worst-case
bound on the number of secondary storage accesses of O(M log,T). Conversely, using a MLQ
representation, once again we have to load each involved quadtree independently, and this implies,
as for the above defined extended queries, an I/O time overhead linear in the number of relevant
features. Therefore, it is clear that when a certain number of features is involved in a query as a
whole, then the MOF-tree introduces an improvement that is linear in the number of features into
consideration.

5.2. Algorithmic Enhancements

As it has been described earlier, the basic approach to process all the window queries is to
decompose the query over an n x n window into a sequence of smaller queries onto the O(n)
maximal blocks contained inside the window [3]. This approach (which will be called vertical
approach in the sequel) is then to descent the B*-tree O(n) times, once for each maximal block.
However, there is another possible execution strategy that may reduce the number of disk accesses.
Instead of descending the tree O(n) times, we can descent it only once with respect to the maximal
block which has the smallest locational code value. Then, using the horizontal pointers, present at
the leaf level of the B -tree, we seek for all the other maximal blocks scanning the pages up to the
maximal block with the biggest locational code value. We will call such a strategy the horizontal
approach. Therefore, it is necessary to define a criterion specifying when to use each approach.
Let Mpin and Mp,q. be the two maximal blocks having respectively the smallest and the greatest
I-key among those belonging to the window w (see Figure 8).

Let M be the number of maximal blocks inside the window and let N be the number of elements
in the linear MOF-tree. We descent the tree two times, one for the M,,;, and one for the M0z



MOF-Tree: A Spatial Access Method 479

M, min M, max

Fig. 8: A Bt-tree with the Two Bounds Mpin and Mmaz.

locational codes. Then we determine the number of pages W that separate the pages of My, and
M naz; this will be called the page width of the window.

Let us now present the way that the page width is calculated. Assume that each page contains
on the average r pointers (the fanout) to the lower and that leaves appear at level 0 and the root
at level h (tree height). The key idea is to calculate W incrementally during the B*-tree traversal.
Assume that P, denotes the number of pages between the left-most leaf and M,,;, and P, the
number of pages between the left-most leaf and Mp,4;. Also, let j; and &; denote the subtree we
choose in each level ¢ during the lookup for My, and My, respectively. Clearly, we have:

R
P, = Z(j,- —1) % pi-l
=1

and
h

Pb = Z(kz - 1) * 7'i_1

i=1

Therefore, the number of leaf pages separating the pages holding M,,;, and Mp,,, is determined
by the formula:

W=P P, 1, if P,#P,
W =0, if P,=P,

Therefore, under the assumption that the retrieval of the B*-tree is not buffered, the horizontal
approach is better than the vertical approach if and only if:

N
h+W < (M—-2h & W< (M-3) (1+long+l) (14)

It is noted that instead of using a very rough approximate for M in this formula (e.g. M = n), we
could use its expected number, which equals [5, 6]:
-2 4 .
— o2 _ g _ e 2
M =2 3j 4+4z+4]. 2
where ¢, j are uniquely determined by the equations n =2/ — 1+ and ¢ < 27.

Clearly, Inequality (14) can be used as a criterion. If it is true, then we use the horizontal
approach; if it is false, we follow the vertical approach. We anticipate that in general, there will be
a reduction in the number of page accesses and therefore the structure can be more competitive in
all query types.



480 YANNIS MANOLOPOULOS et al.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have proposed and analyzed space and time complexity of a new access
method, namely the MOF-tree, for efficiently storing and processing large 2-dimensional datasets
representing multiple overlapping features. We have used as space complexity measure the number
of bits used to store the structure in main memory and the number of disk pages to store it in
secondary memory, and as performance measure the number of secondary storage accesses for
processing window queries. We have analyzed our structure with respect to multiple instances of
structures each representing a single feature and we have given theoretical as well as experimental
evidence that the number of accesses for answering classical window queries is always competitive
with respect to known algorithms using an MLQ representation. Future work could involve:

e the analysis of space complexity under other models of image randomness and time com-
plexity for other widely used operations and for comparisons between MOF-tree and other
largely used structures for 2-dimensional data,

o the study of the structure’s behavior into a full dynamic environment, where features could
be added or deleted arbitrarily,

¢ investigation of new techniques to reduce the space requirements of the structures, and

e anew MOF-tree implementation along the lines of the Paged Quadtree [20] that may produce
a powerful structure for secondary storage.

Acknowledgements — The authors would like to thank Dr. Michael Vassilakopoulos for his valuable comments
and suggestions on previous versions of this paper. Research supported by the 4th Italian-Greek bilateral scientific
protocol, by the European Union’s TMR program (“CHOROCHRONOS?” project, contract number ERBFMRX-
CT96-0056), by PENED 95 program of the General Secretariat of Research and Technology of Greece and by the
“Algoritmi, Modelli di Calcolo e Strutture Informative”, 40%-Project of the Italian Ministry for University and
Scientific & Technological Research (MURST).

REFERENCES

(1] D.J. Abel. A B¥-tree structure for large quadtrees. Computer Vision, Graphics and Image Processing,
27(1):19-31 (1984).

[2] F. Arcieri and P. Dell’Olmo. A data structure for the efficient treatment of topological join. Proceedings of the
4th International Symposium on Computer and Information Sciences, Turkey (1989).

[3] W.G. Aref and H. Samet. Efficient processing of window queries in the pyramid data structure. Proceedings
of the 9th ACM Symposium on Principles of Database Systems (PODS), pp.265-272, Nashville, TN (1990).

[4] W.G. Aref and H. Samet. Decomposing a window into maximal quadtree blocks. Acta Informatica, 30:425-439
(1993).

[5] C. Faloutsos. Analytical results on the quadtree decomposition of arbitrary rectangles. Pattern Recognition
Letters, 13(1):31-40 (1992).

[6] C. Faloutsos, H.V. Jagadish and Y. Manolopoulos. Analysis of n-dimensional quadtree decomposition of arbi-
trary rectangles. JEEE Transactions on Knowledge and Data Engineering, 9(3):373-383 (1997).

[7] V. Gaede. Multidimensional access methods. ACM Computing Surveys, to appear.
[8] 1. Gargantini. An effective way to represent quadtrees. Communications of the ACM, 25(12):905-910 (1982).

[9] O. Guenther. Efficient Structures for Geometric Data Management. Lectures Notes in Computer Science
No.337, Springer Verlag (1988).

(10} E. Kawaguchi, T. Endo and M. Yokota. Depth-first expression viewed from digital picture processing. JEEE
Transactions on Pattern Analysis and Machine Intelligence, 5:373-384 (1983).

[11] Y. Manolopoulos, E. Nardelli, G. Proietti and M. Vassilakopoulos. On the creation of quadtrees by using a
branching process. Image Vision and Computing, 14(2):159-164 (1996).

[12] C. Mathieu, C. Puech and H. Yahia. Average efficiency of data structures for binary image processing. Infor-
mation Processing Letters, 26(2):89-93 (1987/88).



13]
[14]

(15)

[16]

(17]

(18]

(19]

(20}

[21]

(22]

MOF-Tree: A Spatial Access Method 481

E. Nardelli and G. Proietti. Efficient secondary memory processing of window queries on spatial data. Infor-
mation Sciences, 80:1-17 (1994).

E. Nardelli and G. Proietti. An optimal resolution sensitive pyramid representation for hierarchical memory
models. Journal of Computing and Information, 1:385-402 (1994).

E. Nardelli and G. Proietti. Probabilistic models for images and quadtrees: Differences and equivalences, Tech-
nical Report No.402, Institute for Systems Analysis and Informatics, C.N.R., Roma, January 1995, submitted
for publication.

E. Nardelli and G. Proietti. Time and space efficient secondary memory representation of quadtrees, Informa-
tion Systems, 22(1):25-37 (1997).

C. Puech and H. Yahia. Quadtrees, Octrees, Hyperoctrees: a unified analytical approach to tree data structures
used in graphics, geometric modeling and image processing. Proceedings of the Symposium on Computational
Geometry, pp.272-280, Baltimore, MD (1985),

H. Samet. Computing perimeters of images represented by quadtrees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 3(6):683-687 (1981).

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA (1990).

C.A. Shaffer and P.R. Brown. A paging scheme for pointer-based quadtrees, Proceedings of the 3rd Inter-
national Symposium on Spatial Databases (SSD), pp.89-104, Lecture Notes in Computer Science No.692,
Springer-Verlag, Singapore (1993).

S. Tanimoto and T. Pavlidis. A hierarchical data structure for picture processing, Computer Graphics and
Image Processing, 4(2):104-119 (1975).

M. Vassilakopoulos and Y. Manolopoulos. Analytical comparison of two spatial data structures. Information
Systems, 19(7):269-282 (1994).

[23] M. Vassilakopoulos and Y. Manolopoulos. A random model for analyzing region quadtrees, Pattern Recognition

Letters, 16:1132-1145 (1995).



