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Abstract - Region Quadtrees and Bintrees are two structures used in GIS and spatial databases. 
The expected space performances of these two trees are presented and compared. Analysis is based 
on the general assumption that the storage requirements of internal and external nodes differ, as well 
as on a parametric model of binarv random images. Initiallv. formulae that exnress the averaee total 
storage performance of the two tiees are given: For each” ievel of the Quadtree, formulae-for the 
average numbers of internal, external white and external black nodes follow. Next, for each level of 
the Quadtree, the relationship between each node category of the two trees is presented. Based on the 
formulae developed, we study how the storage requirements of the two trees differ for each Quadtree 
level. Finally, using the above results, we reach conclusions about the storage efficiency of the most 
popular implementations and the inverted variations of these two trees (structures that index pictorial 
databases). 

1. INTRODUCTION 

The Region Quadtree and the Region Bintree [12, 131 (called Quadtree and Bintree in the rest of 
this paper, for the sake of simplicity) are two popular data structures that represent digital binary 
images. The linear implementations of the two structures are the ones that are mainly used as basis 
for the physical level of Spatial Databases and Geographic Information Systems 11, 9,111. However, 
other implementations can serve special purposes in the same context. For example, pointer 
implementations can be used to structure a large main memory sequence of similar images [16] 
where speed of processing is essential, while Depth First (DF) expressions can support spatial 
database backups in stream media. Both structures are based on the principle of Hierarchical 
Regular Decomposition. According to this principle, if the whole image consists of pixels of the 
same color (white or black), then it is represented by an external node of this color. Otherwise, it 
is decomposed into subimages and it is represented by an internal (gray) node having as children 
the subtrees that correspond to these subimages. The decomposition is repeated recursively for the 
subtrees until the subimages created are homogenous. In the Quadtree the image is decomposed 
into four equal parts. These parts emerge by dividing the image along lines parallel to the two 
axes. In the Bintree the image is decomposed into two equal parts. These parts emerge by dividing 
the image along a line parallel to one of the two axes; if further decomposition is needed for at 
least one of the emerging subimages, then the next division takes place along a line parallel to the 
other axis, and so on. Note that the hierarchical decomposition is possible in the Quadtree only 
if the image is a quadrangle of 2n x 2” pixels, while it is possible in the Bintree only if the image 
is a quadrangle of 2” x 2n pixels, or a rectangle of 2”-l x 2” or 2” x 2”-i pixels, according to 
the direction of the first division. The decomposition is called regular because the position of the 
lines along which we divide is predetermined. Thus, we do not structure our data directly, but the 
embedding space (Image space hierarchy). An example of an 8 x 8 image is shown in figure 1.a. 
The hierarchical decomposition of this image by four parts and the Quadtree that represents it are 
shown in figures 1.b and l.d, respectively. The hierarchical decomposition of this image by two 
parts (starting with the zr-axis direction) and the Bintree that represents it are shown in figures 1.c 
and l.e, respectively. 

fj Recommended by Y. Ioannidis. 
tA preliminary extended abstract of this paper appears in the Proceedings of the 4th Panhellenic Informatica 

Conference, Patras, Greece (December 1993), pp. 59-70. 
tResearch partially funded by the Institute for Systems Research (ISR), while the author was with ISR and the 

Computer Science Department, University of Maryland, College Park, MD 20742, USA. 
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Fig. 1: (a) an 8 x 8 image, (b) its hierarchical decomposition by four parts, (c) its hierarchical decomposition by 
two parts, (d) its corresponding Quadtree and (e) its corresponding Bintree (direction of first division is the 
z-axis). 

Stor~~pe~ormance analysis has mainly been presented for the Quadtree. The expected stor- 
age requirements of Qu~tr~s that represent random images when the sizes of internal and external 
nodes differ have been studied in [lS]. Analogous results have been presented for the represen- 
tation of arbitrary iso-oriented rectangles (4, 5, 141, for the representation of arbitrary curves or 
regions [2], for the representation of polygons [S] and for the representation of similar images using 
Overlapping Quadtrees [16, 17). 

The relationship between Quadtree and Bintree storage requirements has only been examined 
in [15], where the presented analysis is based on strict assumptions that concern the represented 
image before it is digitized. Note that [15] presents only a relative performance comparison of 
the two trees, without specifically computing actual storage requirements for each tree. In the 
present paper, extending the methodology of [18], we give a comparison of Quadtree and Bintree 
storage e~cienci~ as well. However, our approach is completely different from [15] for a number 
of reasons. 

Our analysis is based on a random image model for digital images which depends on the 
probability that a pixel is black (in other words, on the black-white analogy of the image). 

Analysis of the relationship of the two trees for each node type and each Quadtree level is 
presented. This analysis makes evident that the correspondence between the two structures 
depends heavily on the level under consideration. 

We present and prove formulae that compute the average actual storage requirements of the 
two trees, for each level and each node type. 

Using our results we reach concrete su~~tions for the most space efficient structure. These 
suggestions depend on the black-white analogy, the implementation used or the eventual 
application. 
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More specifically, in section 2 we define formally the two structures and present our probabilistic 
assumptions. In section 3 we derive formulae for the expected total storage requirements of each 

tree, taking into account the differences of node sizes. In section 4, for each level of the Quadtree, 
formulae for the average numbers of internal, external white and external black nodes for each level 
of the Quadtree follow. In section 5, for each Quadtree level, the correspondence of Quadtree and 
Bintree leaves and Quadtree and Bintree internal nodes is presented. In addition, based on the 
formulae developed, we study how the storage requirements of the two trees differ for each Quadtree 
level. In section 6, using the above results, we reach conclusions about the storage efficiency of the 

most popular implementations of the two trees. For a particular case, we present in graphical form 
the breakpoint-values of black pixel probability at which the winner-structure of space efficiency 

changes, as a function of the image size. In the last section, apart from summarizing the most 

important results, we discuss and conclude on the space performance of the inverted variations 
of the two trees. These variations are used for storing a pictorial database where (fuzzy) image 

pattern searching can be applied. Moreover, we give suggestions on how the random model used 
in this paper and the analysis that is based on it can be extended and customized for various kinds 

of images. 

2. DEFINITIONS AND PROBABILISTIC ASSUMPTIONS 

In order to be able to compare the two trees we consider an initial 2” x 2” image. Without 
loss of generality, we consider that the first separation in the Bintree is along the x-axis, since the 
orientation of the image does not influence our analysis. Evidently, during consecutive separations 
the dimensions of the emerging subimages will equal 2i x2i-1 (when the separation takes place along 
the x-axis) and 2i-1 x 2i-1 (when the separation takes place along the y-axis), where 0 < i < n. 

The Region Quadtree can be defined formally (assuming that the mathematical notion of a 

tree is well known) as follows: 

Definition 1 Consider the numbers n, k,x,y E N, such that k 5 n, z, y < 2” and x, y 0; 2k. 
Consider also the binary array 1[0. .. 2n - 1,0 ... 2n - 11. As Qn(x, y, k) we denote the tree that 
represents the subarray 1[x . . . x + 2” - 1, ye + s y + 2” - l] and consists of 

l one external node, called a black ( white ) node, if every element of its subarray equals 1 (0), 
or otherwise of 

l one root node, called a gray node, and its 4 children, the trees 

0 Qn(x, Y, k - 11, 

o Qn(x + 2k-1, y, k - l), 

o Qn(x, y + 2k-1, k - 1) and 

o Qn(x + 2”-i,y + 2k-1, k - 1). 

The Quadtree for 1 is the tree Qn(O,O,n). 

Similarly, the Region Bintree (when the first separation is along the x-axis) can be defined 
formally as follows: 

Definition 2 Consider the numbers n, k, x, y E N, such that k 5 n, x, y < 2n and x, y o( 2k. 
Consider also the binary array I[0 . . . 2n - 1,O. + -2” - 11. As Bn(x, y, k) we denote the tree that 

represents the subarray I[x . . . x + 2k - 1, y. . . y + 2k - l] and consists of 

l one external node, called a black ( white ) node, if every element of its subarray equals 1 (0), 
or otherwise of 

l one root node, called a gray node, and its 2 children, the trees 

o BL(x, y, k - 1) and 

o B;(x, y + 2k-1, k - 1) 
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As BL(s, y, Ic) we denote the tree that represents the subarray I[a . . + 2 + 2”+i - 1, y . . . y + 2” - l] 
and consists of 

l one external node, called a black ( white ) node, if every element of its subarray equals 1 (0), 

or otherwise of 

l one root node, called a gray node, and its 2 children, the trees 

The Bintree for I is the tree B,(O,O,n). 

We recall a number of properties which are easily inferred from the above definitions. There 
are 2c4”) different images of size 2n x 2”. A Quadtree for such an image has maximum height 

n. We will call such a tree a class-n Quadtree. A node that corresponds to a single pixel is at 
level 0, while the root is at level n. A node at level i, where 0 5 i 5 n, represents a subarray of 
2i x 2i(= 4i) pixels, while there are at most 4”-i nodes at this level. A corresponding Bintree for 
such an image has maximum height 2n. We will call such a tree a class-2n Bintree. Note that a 
class-(2n - 1) Bintree represents an image of size 2n x 2+‘. A node that corresponds to a single 
pixel is at level 0, while the root is at level 2n. A node at level i, where 0 5 i 5 2n, represents a 
subarray of 21ii21 x 2ri121 (= 2i) pixels (the integer parts are used because the dimensions of the 
subarray depend on the orientation of the separation), while there are at most 22n--i nodes at this 

level. 

The probabilistic model of our images assumes that each pixel is statistically independent of any 

other pixel, as far as its color is concerned. We also assume that a pixel is black with probability 
p and white with probability 1 - p. In the rest of the paper we will refer to p as black probability, 

to 1 -p as white probability and to an image obeying this model as a random image. These mean 
that in the Quadtree the block corresponding to a level-i node is black with probability pt4’), white 

with probability (1 - p) c4’) and gray with probability 1 - pc4’) - (1 -p)c4’); in the Bintree the block 

corresponding to a level-i node is black with probability ~(~‘1, white with probability (1 - p)t2’) 

and gray with probability 1 - p(“) - (1 - p)c2’). 

Generally, we will use the symbols Gi, Bi and IV, to denote the probability that the block 
corresponding to a level-i node is gray, black or white, respectively. Note that Gi = 1 - Bi - Wi. 
In each case, the context identifies the tree that the symbols are referring to. We will use the 

symbols Iq, L,, Ib and Lb to denote the size of internal and external nodes of a Quadtree and the 
size of internal and external nodes of a Bintree, respectively. 

This random image model is connected with real life to a significant extend for a particular 

area of values of p. When p equals 0.5 the respective images mainly consist of small black and 
white areas. In this case the Quadtree or the Bintree is a representation of limited efficiency, since 
it is almost a full structure (leaf nodes appear almost exclusively at the lowest level). Such images 
are rare in real applications. However, when p is quite different to 0.5 the probability of having 
large unicolor blocks raises. For example, when p 2 0.8 there is a rather high probability that we 
have 4, 16 or more pixels of an image block all black. In other words, when p is not close to 0.5 
our model expresses spatial coherence to a significant extend and can represent images found in 
practice (for example medical, or meteorological images). The same model of randomness which 
assumes independence of coloring for each pixel has also been used in [lo]. Images that obey the 
random image model even more closely do exist in practice. For example, in Natural Sciences or 
in Biology we have pictures of populations of insects or distant pictures of populations of birds. In 
such images coherence is expected to appear only at the lowest levels. The random image model 
is suitable for such images even for values of p closer to 50% (e.g. p = 0.7). In section 6 we 
present suggestions on how the random image model can be extended so as to express correlations 
in coloring of different blocks and, thus, represent images with even higher spatial coherence. 
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3. EXPECTED TOTAL SPACE REQUIREMENTS 

In this section we present the total storage requirements of the two structures. The following 
proposition was first given in [18]. However, the proof presented here is more compact. 

Proposition 1 The average space requirement, N,, of a class-n Quadtree representing a random 
image obeys the equation 

n-1 

N, = L, + (Ip + 3L,) c 4iG,_i. 
i=o 

Proof. A class-i subtree of a class-n Quadtree (n > i 2 0) exists only if the block that corresponds 
to its parent-node is gray. However, we may always refer to the storage needed by (part of) such a 
subtree, assuming that this storage equals 0 when the subtree does not exist. Note also that, due 
to symmetry of our model, the expected storage needed by such a class-i subtree is the same as 
the expected storage needed by any other subtree of the same class. If 
- Zi is the expected total storage needed by a class-i subtree of a class-n Quadtree, n > i 2 0, 
- Yi is the expected storage needed by the root of such a class-i subtree, n > i 2 0, and 
- Y, is the expected storage needed by the root of a class-n Quadtree, 
then we have 

N, = Y, +42,-i 

zi = yi+4zi_1, n>i>O 

Z-J = Yo 

Obviously, Y, = L,(W,,+B,)+I,G,. The root of a class-i subtree exists and is black (white) if the 
block that corresponds to it is black (white) and the blocks that correspond to its siblings are not all 
black (white); it exists and is gray if the block that corresponds to it is gray. This means that Yi = 
L,Wi(l-W~)+L,Bi(l-BQ)+I,Gi, wheren > i > 0, and that Ys = L,Ws(l-W~)+L,Bu(l-Bi). 
Algebraic manipulations lead to Proposition 1. 0 

The respective proposition for the Bintree is: 

Proposition 2 The average space requirement, N zn, of a class-2n Bintree representing a random 
image obeys the equation 

2n-1 

Nz,, = Ll, + (Lb + Lb) c 2iG2n__i. 
i=o 

Proof. A class-i subtree of a class-2n Bintree (2n > i 2 0) exists only if the block that corresponds 
to its parent-node is gray. However, we may always refer to the storage needed by (part of) such a 
subtree, assuming that this storage equals 0 when the subtree does not exist. Note also that, due 
to symmetry of our model, the expected storage needed by such a class-i subtree is the same as 
the expected storage needed by any other subtree of the same class. If 
- Zi is the expected total storage needed by a class-i subtree of a class-2n Bintree, 2n > i 2 0, 
- Yi is the expected storage needed by the root of such a class-i subtree, 2n > i 2 0, and 
- Ys,, is the expected storage needed by the root of a class-2n Bintree, 
then we have 

N2n = yzn + 2Z2n-1 

Zi = JCi +2Zi-1, 2n>i>O 

Z-J = Yo 

Obviously, Ysn = L,(W2n+Bsn)+I~G2n. The root of a class-i subtree exists and is black (white) if 
the block that corresponds to it is black (white) and the block that corresponds to its sibling is not 
black (white); it exists and is gray if the block that corresponds to it is gray. This means that Yi = 
L,Wi(l-Wi)+L,Bi(l-Bi)+I,Gi, where 2n > i > 0 and that Ys = L,Wo(l-Wo)+L,Bo(l-Bo). 
Algebraic manipulations lead to Proposition 2. cl 

IS 19:7-E 
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4. LEVEL DEPENDENT AVERAGE NODE NUMBERS 

The following three propositions were first given in [18]. They concern the expected numbers 
of gray, white and black nodes for each level of a Quadtree. 

Proposition 3 The average number of internal nodes at level i, A&+, of a class-n quadtree rep- 
resenting a random image obeys the equation 

Mn,i = 4”-iGi, n 2 i > 0 

Proof Recall that at level i of a class-n Quadtree there are at most 4”-” nodes. Consider any 
such node. The probability that it is gray, independently of any other node on the same level, 
equals Gi. Since we are allowed to add the expected values of a finite number of random variables 
in order to find the expected value of their sum, we reach proposition 3. 0 

Proposition 4 Consider a class-n Quadtree representing a random image. The average number 
of white leaves at level i, Xn,i, obeys the equation 

X = w, 

Xl:: = 4n9w, - wi+i), n>ikO 

The avenge number of brace leaves at level 4, Y=,i, obeys the equation 

Y = B, 

;); = 4”3Bi - B;+I), n>i>O 

Proof. We will only provide a proof for white nodes since the one for black nodes is analogous. The 
probability that a level-i node is white equals Wi(l - W:). In other words, this is the probability 
that the block represented by this node is white and that the blocks represented by its siblings are 
not all completeiy white. If all the four siblings were white they would merge to a level-(i + 1) 
white node. Since Wi(l - W?) = Wz - W;+I , adding the expected values for all level-i nodes, we 
reach proposition 4. cl 

Evidently, the respective average number, L,,i, of both white and black leaves equals 

L 7l,R = W,+& 

L,,; =: 4,1i(Wi + Bi - Wi+l - &+I), n > i 2 0 

The reader could easily verify that if we sum our formulae for internal and external nodes from 
level 0 to level n, we reach the formula of proposition 1 for L, = I4 = 1. When L, = 1, = 1 
proposition 1 gives the average number of nodes for the whole tree (for every one of its levels). 

It is obvious at this point that, using the above propositions, we can express the fraction (or 
percentage) of the average number of internal (external) nodes at level i of a class-n Quadtree over 
the average total number of nodes in the tree. Since, in general, internal and external nodes do 
not need storage space of equal size, these percentages permit us to study the contribution of each 
level to the storage requirements of the tree. Summing up for every level we reach formulae for 
the average total number of gray, white and black nodes in a Quadtree. Analogous propositions 
can be presented and proved for a Bintree following a similar methodology. However, we will reach 
such results as a side effect of studying the relationship between the two structures. 

For the sake of completeness, let us give some identities that hold for any Quadtree and can 
be proved using simple induction on the number of internal nodes (N, B, W and G stand for the 
total number of nodes, the total number of black nodes, the total number of white nodes and the 
total number of gray nodes in a Quadtree, respectively). 

G = (B f W - 1)/3 

N = ~~W+G=4G+l=(4(~+W)-l)/3 

Obviously these relations hold for average total numbers as well. 
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We will now explore the relationship of the two structures, for every level of the Quadtree. 
The assumption that the Bintree decomposition starts along the z-axis direction implies that the 
leaves of a Bintree will represent quadrangular or horizontally oriented rectangular image blocks. 
We will call these leaves quadrangular and rectangular leaves, respectively. 

Consider a pair of unicolor sibling Quadtree leaves. If these leaves are the northwest and 
northeast or the southwest and southeast children of their parent-node, then they correspond to 
one rectangular Bintree leaf. We will refer to such a pair of leaves as a pair of bin siblings [15] 
(in figure 2.a there are two pairs of bin siblings). In case the leaves of this pair have different 
colors, each leaf corresponds to a quadrangular Bintree leaf (in figure 2.c there are no pairs of bin 
siblings). It is obvious that a Bintree has a smaller or equal number of leaves than the corresponding 
Quadtree. 

If all the four children of an internal Quadtree node are leaves and form two pairs of bin siblings, 
then this node corresponds to one internal Bintree node (figure 2.a). However, if only two of its 
children form a pair of bin siblings (the other two children might not even be both leaves), then it 
corresponds to two internal Bintree nodes such that the one is the parent of the other (figure 2.b). 
Otherwise, if this internal Quadtree node does not have any pairs of bin siblings among its children, 
then it corresponds to three internal Bintree nodes such that the one is the parent of the other two 
(figure 2.~). It is obvious that a Bintree has at least as many internal nodes as the corresponding 
Quadtree. 

Fig. 2: The relationship between a Quadtree and the corresponding Bintree when there are (a) two pairs of bin 
siblings, (b) one pair of bin siblings and (c) no pairs of bin siblings. 

Moreover, if we consider the path of maximum length of a Quadtree, according to the above 
discussion, we note that any pair of successive internal nodes on this path corresponds to an 
increase of the maximum depth of the corresponding Bintree by one. If a Quadtree has a path of 
length n that ends in four isolated pixels and these pixels do not form two pairs of bin siblings, 
then the corresponding Bintree path will be of length 2n. 

The proposition that follows gives: (a) the average number of pairs of bin siblings at level i of 
a Quadtree and (b) the average numbers of internal nodes at level i of a Quadtree that correspond 
to one, two or three internal Bintree nodes. Knowledge of these quantities reveals the way in which 
the storage requirements of the two trees are related in contrast to propositions 1 and 2 that reveal 
the total storage requirements for each tree independently. 

Proposition 5 Consider a class-n Quadtree that represents a random image and the Bintwe that 
represents the same image. The average number of pairs of bin siblings at level i of the Quadtree, 
Fn,i, obeys the equation 

Fm,i = 2 * 4n-i-1(W~ - Wi+r + Bq - &+I), n > i 2 0 

The avenge n~rnbe~ of literal nodes at lever i of the Q~adt~ee, P,+, thut co~spo~d to one 
internal Bintree node each obeys the eq~at~o~ 

P n,i = 2 . 4n-iW,f_, Bf__, , n > i > 0 



The average number of internal nodes at level i of the Quadtree, R,,,i, that correspond to two 
internal Bintree nodes each obeys the equation 

The average number of internal nodes at level i of the Quadtree, T,,i, that correspond to three 
internal Bintree nodes obeys the equation 

Proof. At level i of the Quadtree there are 2 . 4+6-i rectangular image blocks that represent 
possible pairs of bin sibbngs. This holds because for every possible level-(i + 1) gray node there are 
two such blocks. We will call this gray node parent of the two rectangular blocks. The probability 
that each block of this kind represents a pair of bin siblings [that it consists of unicolor leaves) 
is: the probabifity that this block consists of two white leaves and the other block which has the 
same father does not consist of two white leaves, or the proba~ity that this block consists of two 
black leaves and the other block which has the same father does not consist of two black leaves, 
that is I@(1 - IV:) + BF(l - B:). Note that we consider the other block having the same father 
because we must eliminate the case where both blocks consist of unicolor leaves and are replaced 
by a levei-(i + I) leaf. Since we are allowed to add average values of a finite number of random 
variables in order to find the average value of their sum, we reach the first formula. 

At level S: of the Quadtree there are 4”-; possible gray nodes. Every such node has two 
rectangular child-blocks which represent possible pairs of bin siblings. The probability that each 
of these gray nodes corresponds to one internal Bintree node, independently of any other node at 
the same level, is: the probability that one of its child-blocks is white and the other child-block 
is black or vice versa, that is lVf_18i_1 + B~_rW~_r. Summing up for every possible level-i gray 
node we reach the second formula. 

The probability that each of these level--i gray nodes corresponds to two internal Entree nodes, 
independently of any other node at the same level, is: the probability that one of its child-blocks 
is white or black and the other child-block is not unicolor or vice versa, that is (IV,?_, + BF__,)(l - 

II+!-1 - B,2_,) + (1 - W:_r - B:__,)(WiL_r -t-B%,). Ag ain summing up for every possible level-i 
gray node we reach the third formula, 

Lastly, the proba~ity that each of these level-i gray nodes corresponds to three internal Entree 
nodes, independently of any other node at the same level, is: the probability that both its child- 
blocks are not unicolor, that is (1 - W&i - Bf__,)2. Again summing up for every possible level-i 
gray node we reach the last formula. 0 

The proposition above can help us form the rate of the average increase (decrease) of internal 
(external) nodes for each level of a Quadtree when this is converted to a Entree over the total 
number of internal (external) nodes in the Quadtree. These rates express how (on the average) 
each level of a Quadtree contributes to the increase or decrease of the memory space required when 
this tree is converted to a Bintree, if the relative sizes of internal and external nodes are taken into 
account. 

As figure 2 reveaIs, the level-2a Entree leaves correspond to the level-i Quadtree leaves that 
did not merge, where n > i 2 0. The level-(2i - 1) Bintree leaves correspond to the level-f% - 1) 
Quadtree leaves that merged, where 7t > i > 0. Thus, setting Fn+ = 0, the average number 
of level-2i Bintree leaves equals L,,i - 2F,,i, where n 2 i > 0. On the other hand, the average 
number of level-(2i - 1) Bintree leaves equals F,,;_1, where n 2 i > 0. In addition, figure 2 reveals 
that the level-2i gray Bintree nodes correspond one to one with the level-i gray Quadtree nodes, 
where n 2 i > 0. Finally, the level-(2i - I) gray Bintree nodes correspond to the level-i Quadtree 
nodes that their children do not form two pairs of bin siblings, where n > i > 0. Thus, the 
average number of level-24 gray Bintree nodes equals P,,i f J& + T%,i (= Mmli) and the average 
number of level-(2i - 1) gray Bintree nodes equals R,,i + 2T,,;, where n 2 i > 0. Using variations 
of the formula giving F,,,i that distinguish between black and white nodes and summing up for 
every Bintree level we can reach formulae for the average total gray, white and black nodes of the 
Entree. Natur~~y, the same formulae could be reached without using the Quadtree formulae and 
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the correspondence formulae. The advantage of the approach we used is that we obtain knowledge 
about the correspondence itself. 

More specifically, evaluating types like the ones mentioned above, in tables 1 and 2 various 
indicative numerical data are given. These data correlate a Quadtree and a Bintree both repre- 
senting the same 2s x 26 image. The results appear for black probability equal to 0.5, 0.3 and 
0.1. Table 1 shows for each Quadtree level the average percentage of decrease of the total number 
of Quadtree nodes due to merging of leaves and the average percentage of increase of the total 
number of Quadtree nodes due to splitting of internal nodes. Note that pairs of bin siblings do not 
exist at level rz and gray nodes do not exist at level 0. The percentages do not vary significantly 
for trees of larger classes (stating the comparison of data from level 0). Table 2 shows the average 
total numbers of white, black and gray nodes of the two trees. 

L&l Leaves Internals 
0 -15.52 
1 -0.08 20.69 
2 -0 lo,26 
3 -0 2.59 
4 -0 0.65 
5 -0 0.16 
6 0.04 

Sum -15.6 34.39 

D = 0.5 p = 0.3 P = 0.1 
Leaves Internals Leaves Internals 
-15.30 -12.99 

-0.63 19.37 -4.86 14.27 
-0 10.86 -0.16 11.29 
-0 2.88 -0 4.79 
-0 0.72 -0 1.24 
-0 0.18 -0 0.31 

0.05 0.08 
-15.93 34.06 -18.01 31.98 

Table 1: For each level of a class-6 Quadtree that is converted to a Bintree the average percentage of decrease 
(increase) of the total number of Quadtree nodes due to merging of leaves (due to splitting of internal 
nodes) is shown. 

In [15] storage andysis is based on the factor of merging (Y, that is the fraction of leaf nodes 
that merge. This analysis treats a as a constant value for every tree level. For each tree level, 
apart from Q we introduce two additionai factors, the factor of splitting in two nodes 6 and the 
factor of splitting in three nodes f,. The symbol S represents the fraction of internal Quadtree 
nodes that correspond to two internal Bintree nodes and the symbol < represents the fraction of 
internal Quadtree nodes that correspond to three internal Bintree nodes. Evidently, the fraction 
of internal Quadtree nodes that correspond to one Bintree node is 1 - 6 - C. At Quadtree level i 
we have 

clli = 2 1 Fn,i/Ln,i, n > i > 0 & = R+fM,,,i, n 2 i > 0 ci = Tn,i/Mn,i, n > i > 0 

Note that cz,, 60 and <O are not defined. We can define these factors for the whole Quadtree as 
well. In this case we should first sum up F,-+, L,+, Rn,i and &fn,i for every level. Then 

o = 2 . ~*t*l/~t~t~i 6 = Rt~t~l/Mt*t~i C = ~~t~i/Mt~t=~ 

In table 3 we demonstrate these quantities evaluated for class-6 Quadtrees. The presented values 
remain almost identical for trees of larger classes (starting the comparison of data from level 0). 

p = 0.5 p = 0.3 p = 0.1 
White Black Gray White Black Gray White Black Gray 

. Q 1855.99 1855.99 1236.99 2127.06 1203.92 1109.99 1528.32 409.29 645.54 
B 1470.00 1470.00 2938.99 1587.45 1036.15 2622.60 1083.37 389.02 1471.38 

Table 2: Average total numbers of white, black and gray nodes of the two trees when they represent 2s x 26 random 
images. 
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xl I D = 0.5 

a*;857 
6 c 

0.06227 0.57143 0.28571 
0.00002 0.01550 0.98447 
0.00000 0.00000 1.00000 
0.00000 0.00000 1.00000 
0.00000 0.00000 1.00000 

0.00000 1.00000 

1 0.41594 0.41712 0.47940 0.42473 0.47454 0.44409 

p = 0.3 

0.4:134 6 c 

0.22211 0.64805 0.23464 
0.00332 0.10913 0.89086 
0.00000 0.00002 0.99998 
0.00000 0.00000 1.00000 
0.00000 0.00000 1.00000 

0.00000 1.00000 

P = 0.1 

a 6 c 
0.47644 
0.52063 0.85864 0.09424 
0.18009 0.60186 0.39815 
0.00118 0.06639 0.93361 
0.00000 0.00000 1.00000 
0.00000 0.00000 1.00000 

0.0~00 1.00000 

0.48021 0.66929 0.30501 

Table 3: a, 6 and C for every level and the whole of class-6 Quadtrees 

Note that when p = 0.5 after the first few lowest levels all factors equal zero (or almost zero since 
the values are presented with finite decimal precision) except for <is This means that regardless of 
the tree class the highest levels of almost every Quadtree consist of internal nodes whose children 
are internal nodes. These internal Quadtree nodes correspond to three internal Bintree nodes. In 
other words, both a Quadtree of this kind and the corresponding Bintree are almost full structures 
and require a lot of memory. As has been mentioned earlier an image of this kind mainly consists 
of small black and white areas and is rare in practice. When p = 0.3 or p = 0.1 factors fyi and 6i 
do not equal 0 for more levels. In these cases the model of random images is quite realistic. 

5. STORAGE REQUIREMENTS AND VARIOUS IMPLEMENTATIONS 

The main Quadtree and Bintree implementations include pointer-bred tree structures [13], 
Depth First (DF) expressions [8] and linear Quadtrees [7] or Bintrees. We will briefly describe 
each one of them and examine in detail the memory requirements of the most popular linear 
structures. The reader can use the formulae presented in this paper to examine the memory 
requirements of other implementations. 

The naive pointer-based tree structure is a straight implementation with one node type that 
consists of pointer fields and one color field. This node type is used for internal and external nodes 
according to the value of the color field. This implementation has four (two) nil pointers for every 
leaf of a Quadtree (Bintree). Although inefficient, it can be easily programmed. There are some 
improved versions of this implementation. For example, we can define two node types, one for 
internal and one for external nodes. The external node type would not have any pointer fields. 

A DF expression is a string of symbols. There is a separate symbol for gray , black and white 
nodes. These might be represented by “(” ,“W”and”B”, respectively. The string is formed by 
traversing the tree in preorder. The Quadtree of figure 1.d would be represented as 
((BWW(BWWSWW(WW(WWBBB, while the Bintree of figure 1-e would be represented as 

((((BW(W((BW(WB(W(W((WBB. 
The linear Quadtree (Bintree) representation consists of a list of values where there is one value 

for each black node of the pointer-bred Quadtree. The value of a node is an address describing 
the position and size of the corresponding block in the image. These addresses can be stored in 
an efficient structure for secondary memory (such as a B-tree or one of its variations). There 
are variations of this representation where white nodes are stored too, or which are suitable for 
multicolor images. Evidently, this representation is very space efficient, although it is not suited 
to many useful algorithms that are designed for pointer-based Quadtrees. The most popular 
linear implementations are the FL (Fixed Length) and the FD (Fixed length - Depth) linear 
implementations [13]. 

In the former implementation, the address of a black Quadtree (Bintree) node is a code-word 
that consists of n (2n) base 5 (base 3) digits. Codes 0, 1, 2 and 3 ( 0 and 1) denote directions NW, 
NE, SW and SE, (N and S for even levels or E and W for odd levels) respectively, while code 4 (code 
2) denotes a do-not-care direction. If the black node resides on level i, where n > i > 0 (where 
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2n > i 1 0), then the first n - i (2n - i) digits express the directions that constitute the path from 

the root to this node and the last i digits are all equal to 4 (2). In the latter implementation, the 

address of a black Quadtree (Bintree) node has two parts: the first part is code-word that consists 
of n (2n) base 4 (base 2) digits. Codes 0, 1, 2 and 3 ( 0 and 1) denote directions NW, NE, SW and 
SE, (N and S for even levels or E and W for odd levels) respectively. This code-word is formed in 
a similar way to the code-word of the FL-linear implementation with the difference that the last 
i digits are all equal to 0. The second part of the address has [logz(n + l)] bits ([logz(2n + l)] 
bits) and denotes the depth of the black node, or in other words, the number of digits of the first 
part that express the path to this node. Thus, using FL-linear representation [7, 131, the size of 

an address in bits equals ]n . logz(5)] for Quadtrees and [2n * Zogz(3)] for Bintrees, while using 
FD-linear representation the size of an address in bits equals 2n + [Zogz(n + l)] for Quadtrees and 

2n + [Zogz(2n + l)] for Bintrees [13]. 
The correlation of the space requirements of the two trees depends on the number of external 

nodes and on the size of the address values for each tree. Using these representations the four lines 
of table 4 emerge. The first couple of lines refers to class-6 images, while the second couple of lines 

refers to class-9 images. The first line of each couple presents data for FD-linear structures, while 
the second line of each couple presents data for FL-linear structures. In the case of FD-linear repre- 
sentation, when n = 6, Bintrees excel for black probabilities equal to 50% and 30% while Quadtrees 

excel for black probability equal to 10%; when n = 9 Bintrees excel for all black probabilities. In 
the case of FL-linear representation, Quadtrees excel for all black probabilities, whatever the value 
of n. Figure 3 demonstrates, for each value of n, the breakpoint-value of black probability above 

which Bintrees are more space efficient than Quadtrees in FD-linear representation. Note that for 
n = 1 Bintrees are always less space efficient than Quadtrees. Note also that for images usually 
found in practice (n 2 10) Bintrees need less storage than Quadtrees for p > 8%. 

Table 4: Calculation of the memory requirements in bytes for two linear implementations of the two trees when 
they represent 2’ x 26 and 2’ x 2’ random images. 

6. DISCUSSION AND CONCLUSIONS 

Region Quadtrees and Region Bintrees are two similar and very popular data structures used 
for the representation of digital images in Spatial Databases and GIS. In this paper a comparative 
analysis of the space requirements of each tree is presented. This analysis was based on the general 

assumption that the storage requirements of internal and external nodes differ, as well as on a 
parametric model of binary random images that varies according to the probability of a pixel 
being black. More specifically, this paper’s contribution was to present the following: 

l Formulae for the expected total space requirements of each tree. 

l Formulae for the average numbers of internal, external white and external black nodes for 

each level of the Quadtree. 

l For each Quadtree level, formulae expressing the correspondence of Quadtree and Bintree 
leaves and Quadtree and Bintree internal nodes. 

l Remarks about the storage efficiency of the most popular implementations of the two trees. 

l In the case of the FD-linear representation the breakpoint-values of black probability at which 
the space winner-structure changes, as a function of the image size. 
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Fig, 3: For each Quadtree class the corresponding asterisk determines the black probability above which Bintrees 
are more efficient than Quadtrees in FD-linear representation. 

As an example of possible uses of our analysis let us outline the Fully Inverted Quadtree (FI 
Quadtree [3]). This is a data structure that can be used for storing a set of images or, in other 
words, an image database, where image pattern searching (also known as content driven retrieval) 
and fuzzy image pattern searching can be applied. Firstly, a full Quadtree is built, that is a 
Quadtree where each node has four children, except for the level-0 nodes. As this structure was 
originally designed 131, each node holds a bit string of m~mum length (the m~mum number 
of images in the database). Each bit designates a separate image. The block that corresponds 
to a particular node of the FI-Quadtree is black for every image identified (by a 1) in the bit 
string of this node. This structure is implemented as a linear Quadtree, kept entirely on secondary 
memory using a variation of hashing that is suitable for pattern searching. However, due to the 
large number of 0 bits in the bit strings, a lot of memory space is wasted. The authors of this 
article are working on an improved inverted Quadtree v~iation where each node holds a list of 
identifiers only of those images that have the corresponding block black. The resulting structure 
requires far less memory than the original one. 

For this variation, our analysis reveals that 

l for almost all practical cases (p > 8% and 7~ 2 10) the use of an inverted FD-linear Bintree 
in place of the inverted FD-linear Quadtree would lead to significantly lower disk space 
requirement. 

Evidently, other factors like the modification and performance of the pattern searching algorithm 
should also be examined. In such a study, knowledge of quantitative parameters of different levels 
might prove helpful. 

We can devise variations of the random image model which capture spatial coherence even 
better and express correlations in coloring between different blocks at the lowest levels. These 
levels are the ones which play the most important role in the storage behaviour of our structures 
(statistical data for various applications appear in section 3.2.1.2 of [13]). For example, let us 
suppose that each level-l image block in a Quadtree is statistically independent to any other level- 
1 block in terms of coloring. Let us also suppose that such an image block is black with probability 
p, white with probability w and gray with probability 1 - p - w. Such a block contains 2 x 2 = 4 
pixels and there are 14 different configurations in which it is gray. Thus, we can distinguish 14 
different probabilities, one for each different configuration, whose sum is 1 - p - 20. In this way, 
we can adapt the behaviour of our image in terms of coherence for level-l and level-0 Quadtree 
blocks, assuming any sort of correlations. Our model for all levels above level 1 does not differ to 
the original random image model. 
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The variation of the random image model that we have just described could become even more 
complex. We may assume that our images obey the random image model for ail Quadtree levels 
above level 2. That is, each level-2 block is statistically independent to any other level-2 block in 
terms of coloring, it is black with probability b, white with proba~ity w and gray with probability 
1 - p - w, Each level-2 block contains 4 x 4 = 16 pixels and there are 65534 configurations in 
which this block is gray. Since the number of these configurations is very large, we can group 
them according to some rule of our choice and assign probabilities to different groups. The sum 
of all these probabilities must equal 1 - p - M. In this way, we may adapt the behaviour of our 
image in terms of coherence for level-2, level-l and level-0 Quadtree blocks, assuming any sort of 
correlations. 

The methods of analysis that we present in this article are still of value in these enhanced 
models, since the original random image model holds for the majority of levels. In addition, the 
extension of our analysis to the rest of the levels should not be difficult to formulate. The idea 
behind these enhancements is to customize the coherence behaviour of our image at the most 
sensitive levels. If the reader decides that such an enhanced model interests him more, then he 
should study the methods rather than the specific results presented in this paper. 
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