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Abstract-Although files with variable length records are very frequent in actual databases due to variable 
length fields, missing attribute values, multiple values of an attribute and compression, little has been 
reported in the literature about file structures appropriate for variable length records. In this paper we 
describe and analyze several overflow handling techniques for the case when records are of variable length. 
We develop analytic models that take into account variable length records and study the performance in 
the context of indexed sequential (ISAM) files. We also propose a new overflow handling technique and 
show that it provides an incremental reorganization capability appropriate for handling variable length 
records. Analytic results demonstrate that its performance is better than the performance of previous 
methods, The overflow handling techniques and the analytic methods developed in this paper are also 
applicable to other file structures with variable length records that require overtlow handling. 
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INTRODUCTION 

Variable length records occur frequently in practice 
as a result of variable length fields, missing attribute 
values, multivalued attributes and compression. File 
organizations appropriate for handling variable 
length records have not been studied extensively. 
Some work on the effect of variable length records on 
the performance of various database operations has 
been reported, e.g. [l-9]. In this paper we analyze the 
effect of variable length records on the performance 
of indexed sequential (ISAM) files. However, the 
approach is of more general interest and applies to 
other file organizations as well. We study four 
different methods for handling overflow records. 
Three of them have been analyzed previously, but 
only for records of fixed length. The fourth one is 
new. It provides dynamic reorganization of the data 
in the file to improve clustering. 

Larson developed a model for analyzing the per- 
formance effects of random insertions in indexed 
sequential files [IO]. Our analysis is based on a similar 
model. We extend the analysis to other overflow 
handling techniques and variable length records. The 
model provides a common framework for studying 
the performance of these overflow handling tech- 
niques. Alternative models for analyzing the perform- 
ance deterioration of a file caused by insertions and 
deletions have been proposed in [ll-131. Other re- 
lated work on indexed sequential files is described in 
[14-211. Extensive surveys appear in [9,22]. 

In Section 2 of this paper we present the basic 
mathematical model. In Section 3 we analyze the 

performance of overflow handling by a simple chain- 
ing scheme, under the assumption that a single record 
exists in each overflow bucket. In Section 4 we study 
a chaining scheme which uses large overflow pages. In 
Section 5 we analyze the performance of a method 
using hashing into a fixed number of overtlow chains. 
In Section 6 we analyze the performance of a new 
method which provides a dynamic reorganization 
capability. In Section 7 we present numerical results 
and compare the four schemes. 

2. ASSUMPTIONS AND BASIC MODEL 

The mathematical model presented in this section 
is an extension of the model presented in [lo] for 
calculating the probability distribution of the number 
of records in a bucket after a sequence of random 
insertions. This distribution is needed in subsequent 
sections for deriving performance estimates for the 
various overflow handling techniques. But first a note 
on terminology. A bucket is merely a logical record 
container, which physically consists of a primary 
page and some number of overtlow records, stored on 
overflow pages. A page is assumed to be the smallest 
unit of transfer between disk and main memory. 

During initial loading of an ISAM file only pri- 
mary pages are loaded with records. The highest key 
of each primary page is extracted and the resulting 
set of keys constitutes the lowest level of the index. 
The index is not changed until the entire file is 
reorganized. As a result of initial loading, each bucket 
is assigned a key interval that thereafter remains 
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fixed. We assume that the keys of the records loaded 
are a random sample from some underlying key 
distribution. It was shown in [23] that the probability 
mases Qi assigned to buckets i = 1,2, . . . , NB by this 
procedure are identically distributed, random vari- 
ables with mean E(Qi) = m/(M + 1) where m is the 
number of records loaded in a bucket, M the total 
number of records loaded and NB is the total number 
of buckets in the file. 

The exact distribution of the probability mass 
assigned to a bucket and the correct distribution of 
the number of records per bucket after a sequence of 
random insertions were first derived by Batory [1 11. 
The analysis in [lo] is based on an approximate 
model. In the Appendix we present a different deri- 
vation which shows that the asymptotic distribution 
is a negative binomidal distribution. Let a, a 2 0, 
denote the file expansion factor, defined as N/M 
where M is the total number of records originally 
loaded and N is the total number of records inserted 
thereafter. The probability that a bucket loaded with 
m records contains n, n > m, records after the file has 
expanded by a factor a is then asymptotically: 

In our experiments we found that the performance 
estimates obtained using the correct distribution are 
considerably higher than those obtained by approxi- 
mating the probability of insertion in a bucket by its 
mean, as done in [lo]. The observed difference ranged 
from 5 to 20%. 

We are interested in the performance as a function 
of the file expansion factor. The state of a bucket is 
defined as the number of records x in the bucket 
(x = m + n). If the buckets of the file were not 
originally loaded with the same number of records, 
the record distribution is given by: 

P(x, a) = y R,,, PI (x - m, a), 
m=, 

forx=m,m+l,... (2) 

where R, is the fraction of buckets that received m 
records during loading and max is the maximum 
number of records loaded in a bucket. 

We assume that the population of records is 
divided into L classes, C,, C,, . . . , C,, according to 
length. Class C1 contains records with length I,, class 
C, contains records with length lr, . . , and class C, 
contains records with length I,. Without loss of 
generality we assume that 1, < l2 c ’ . . < 1,. The 
probability that a record belongs to class C, is pi, 
i=l,2,..., L and is assumed to be known. Record 
lengths are assumed to be independent of primary key 
values. The assumption of a fIxed number of classes 
is motivated by the fact that varible length records 
frequently are the result of missing attribute values, 
repeated groups or storing records of a few different 
types in the same file. If variable length records are 
the result of variable length fields or compression the 
length distribution is continuous and more difficult to 
model. In this case the range of record lengths can be 
subdivided into subranges and a class associated with 
each subrange. 

Consider a set of x records assigned to a bucket. 
The probability that n, of these records have been 
selected from class C,, n2 from C,, . . . , nL from C, 
follows a multinominal distribution and hence is: 

4(“,, . ..,%)=n. “!, 
,’ . L! 

p;’ p;2. .p;‘. (3) 

The sum of the record lengths is 

i n, li. 
i=l 

Assume that b out of the x records are stored in the 
primary page. Note that b is a random variable and 
depends on the distribution of record lengths. Let 
Q(b, x) be the probability that exactly b out of the x 
records in a bucket are stored in the primary page. 
Furthermore, let BS denote the number of bytes 
available per primary page, PS the size of a pointer 
in bytes and KS the size of a key in bytes (fixed). 
These definitions are summarized in Table 1. 

Symbol 

Table 1. Symbol definitions 

Definition 

x = X(a) 

P(x, a) 
X(a) 

b = b(a) 
m 

ii 
N 
BS 

BSO 
KS 
PS 
L 
ci 
4 

max 

Number of records in a bucket (as a function of a) 
Probability that a bucket contains x records when the file expansion factor equals u 
Average number of records in a bucket (as a function of a) 
Number of records in the primary page of a bucket (as a function of e) 
Number of records initially loaded in a bucket 
Number of records inserted into a bucket 
Total number of records initially loaded in the file 
Total number of records inserted into the tile 
Size of a primary page (in bytes) 
Size of an overflow page (in bytes) 
Key size (in bytes) 
Pointer size (in bytes) 
Number of classes of record lengths 
Class i 
Record length of class i (in bytes) 
Maximum number of records in a bucket 

q(n,, . . nr) Probability that n, records have length I,, , , nL records have length IL 
OCb. .xj Probability that exactly b out of x records are stored in the orimaw owe of a bucket 
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When computing the number of disk accesses for 
record retrieval we consider only the extra access 
required for retrieving overflow records, that is, 
accesses over and beyond those required for travers- 
ing the index and for retrieving the primary page. The 
cost of traversing the index depends on the structure 
of the index, which is a separate issue. 

3. ANALYSIS OF SIMPLE SEPARATE 
CHAINING 

In this section we analyze the performance of a 
simple separate chaining scheme. In the scheme 
overflow records are placed in a overflow area and 
chained together. Each primary page has one 
overflow chain which starts from the primary page, 
not the index. Records in the primary page and 
overIiow records are kept sorted according to key 
values. The highest keys are placed on the overflow 
chain. We assume a single record per page in the 
overiIow area but a primary page may contain several 
records. The motivation for a single record per page 
in the overflow area is to make better use of main 
memory and to reduce the page transfer time from 
the disk to main memory. Note that if the proportion 
of overflow records is small, then most of the buckets 
have only one overflow record. If so, it is not justified 
to use large overflow pages. This file implementation 
is similar to IBM’s ISAM files. Separate changing 
was also analyzed in [lo], but only for fixed-size 
records. 

The probability that exactly b records are stored on 
the primary page when the bucket contains n records 
is: 

(4) 

The above formula is explained as follows. Recall 
that record lengths are independent of primary key 
values. The ordering of the x records is determined 
by their key values and does not change. However, 
the length of a record is a random variable and 
takes the value I, with probability pi, 1, with 
probability pz, l2 with probability pz, and so on. 
The first summation is over all combinations of b 
records from L classes where the sum of the lengths 
of the records is less than or equal to the size of a 
primary page minus the pointer size. The probability 
of such a combination is q(nl , . . . , n,), which is given 
by (3). This condition guarantees that the b records 
fit in the primary page. In order to have exactly 6 
records in the primary page, the (6 + I)st record 
must be longer than the empty space left in the page. 
The probability of this event is given by the second 
sum. 

The expected number of records in the primary 
page when the bucket contains x records can be 
calculated as 

i b Q(b, xl. 
b-l 

The expected number of overfIow records is: 

1 i ]P(X)Q@, x) tx - 611 
x b-1 

=;If-CP(X) f K?@,x~. 
x b-1 

For large values of X (i.e. long overtlow chains), the 
expected number of overflow records can be approxi- 
mated by 

A? - b;, bQ@, xl. 
P 

This equation can be used to compare the expected 
length of overflow chains for different record length 
dist~butions. The expected space overhead can be 
computed for the expected number of overtIow 
records and the maximum record length. 

We are now ready to compute the expected re- 
trieval performance. Assuming, as in [lo], that every 
record of the file has the same probability of being 
retrieved, the expected number of additional access 
for a successful search is given by: 

x-1 

f: k(k + 1) Q(x -k, xl, (5) 
k=l 

where R(a) is the expected number of records per 
bucket, 

r’(a) = i xP(x, a). 
X=1 

(f4 

Recall that we consider only the extra access required 
for retrieving overflow records. Formula (6) is 
derived as follows. Q(.x - k, x) is the probability that 
there are exactly x - k records in the primary page 
and therefore exactly k overflow records. Assuming a 
single record per overflow page, the expected number 
of additionai accesses required to find a record is 
k(k + 1)/(2x). The probability of accessing a bucket 
which contains x records is xP(x, a)/_%‘(a). Formula 
(6) follows after summation over k and x. 

The expected number of additional accesses for an 
unsuccessful search is given by: 

j-l 

x-l 

x r: k(k+3)Q(x-k,x). (7) 
k-l 
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The formula is explained as follows. The x keys of a 
bucket divide the key space of the bucket into x + 1 
subintervals. We assume that a specified search key 
belongs to any of these subintervals with the same 
probability [23, IO]. A search for a key in the jth 
subinterval is terminated when reaching the jth 
record, j = 1,2, . . , x. A search for a key in the last 
subinterval is terminated when the xth record has 
been inspected. Thus, if there are k overflow records, 
the expected number of additional accesses is 
k(k + 3)/2(x + 1). This number of additional ac- 
cesses has to be weighted by the probability 
Q(x - k, x) of having k overflow records. The prob- 
ability of an unsuccessful search hitting a bucket is 
proportional to the number of records originally 
loaded into the bucket, since this number determines 
the probability mass from the underlying key distri- 
bution that was assigned to the bucket. Thus the 
probability of hitting the bucket which was loaded 
with m records originally is 

max 

Formula (5) follows. 
The additional expected cost required for accessing 

all the records of a bucket during a sequential scan 
or range search is given by: 

R(a) = f P(x, a) xf’ kQ(x -k, x). (8) 
x=2 k=l 

The second sum in the above formula gives 
the expected number of overflow pages, each one 
holding a single record. This is also the expected 
number of additional accesses required when the 
bucket contains x records. It has to be weighted 
by the probability that the bucket contains x 
records. 

The overflow space required per bucket is 
given by: 

SP(a) = BS, f P(x, a) ‘i’ kQ(x - k, x), (9) 
x=2 k=l 

where BS,, = 1, + PS is the size of an overflow page. 
Each overflow page is of the same size and must be 
large enough to hold a record of minimum length. 
The second sum in the formula gives the expected 
number of overflow pages required. 

4. ANALYSIS OF CHANGING 
USING LARGE OVERFLOW PAGES 

In this section we analyze the performance when an 
overtlow area with large pages is used. Overflow 
records are placed on an overflow chain as in the 
previous case, but now several overflow records from 
different or the same bucket may be stored in the 
same overflow page. We assume that an overflow 
page that is examined remains in main memory so 
that the same page does not have to be retrieved 
more than once during a search. Compared with the 

previous case, the search cost is thus reduced. In 
addition, since overflow pages are large, variable 
length records may be packed better within a page, 
which improves the storage utilization and reduces 
the search cost further. This file implementation is 
well-suited for systems which use preformatted disks 
(disks with fixed block size). 

The probability distribution of the lengths of 
records in an overflow page is not the same as in a 
primary page. The reason is that longer records 
have a higher probability of being intercepted by 
the primary page boundary than shorter records. 
Hence longer records are more likely to be found 
in the overflow area. Let P;(t) be the probability of 
all arrangements of records where a record of type Ci 
is intercepted by the boundary of a primary page. 
Then: 

max 
P;(a)= 1 P(x,a) c 

x=2 n,+"*+...+n‘<x 
I. L 
1 n,l,6‘9-PS<li+,yl,~ 

1-I - 

x q(n,,. . . ,n,)*P, for i= l,..., L. 

This formula is derived in the same manner 
as formula (4). It takes into account the fact that 
the record with the next key value may not fit 
in the primary page and therefore may have to 
move into the overflow area. Any record with a 
higher key value will then be in the overllow area as 
well. 

The probability that a record intercepted by a page 
boundary is of type C, is: 

P;(a) 
Pjnt(a)=7. 

I, P,“(a) 

(10) 

To find the length distribution of records in the 
overflow area we must consider both the intercepted 
records and the remaining records on the overflow 
chain (which follow the probability distribution Pi 
i=l,... , L). The fraction of intercepted records to 
the total number of records in the overflow area is 
given by: 

NB c J’(x, a) 1 Q&x) 
x=2 b<u 

NB 5 W, a) c (x - 6) QV, xl’ 
(11) 

x-2 b<x 

The enumerator is the expected number of buckets 
having overflow chains (i.e. the expected number of 
intercepted records), while the denominator is the 
expected number of overtlow records. The proportion 
of all other overtlow records is then: 

l- m XP2 b<x 
(12) 

c p(x,a) 1 6 -6) Q&x) 
x-2 b<x 
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Hence, the probability that the length of an overflow The expected number of recors per overtlow page 
record is 1, is given by: is then: 

P?(a) = (P:“‘(a) - Pi 
(17) 

f P(x,a) 1 Q@, x) 
X 

x=2 b<x 

f W, a) c (x - 6) Q@, xl 
r=2 b<x 

+p,, i=l,..., L. (13) 

Since P?(u) is greater than Pi for long records, 
P?(a) will be greater than Pi for long records. The 
reverse is true for short records. For large values 
of a, the first term in the sum tends to zero and 
Pp”(a) asymptotically approaches Pi. Figure 1 shows 
the probability distribution P?(a) for two record 
classes. 

Given the length distribution of overflow records, 
the number of overflow pages can be estimated. 
The expected number of overflow records per bucket 
is: 

N,,(a) = NB f P(x, a$ kQ(x -k, x). (14) 
x=2 k=, 

The expected number of pages in the overflow area is 
then given by: 

(‘5) 

where 

P(a) = i pp”(a)Z, 
i=l 

and 0 is the average number of bytes used in an 
overflow page. 0 depends on how effectively the 
overffow space is used. Assuming that a good al- 
gorithm is used for packing records into overflow 
pages we can approximate 0 by: 

o= B&-i. (16) 

where I, is the length of the smallest record. 

IO- 
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Fig. 1. Overflow distribution of records belonging to two 
classes. 

The expected number of overflow pages containing 
k overflow records can then be approximated by [2]: 

B(k)zNB.(.)*(1--sf) (18) 

where CL is the binomial coefficient, i choose k. Note, 
however, that this formula overestimates the expected 
page accesses [2]. 

Next we derive an estimate of the expected cost of 
successful and unsuccessful searches when a simple 
search algorithm is used for finding the qualifying 
record. The algorithm simply follows the pointers of 
the overflow chain until it finds the record or decides 
that no record with the given key exists in the file. 
Overflow pages retrieved from secondary storage 
are assumed to remain in main memory so that a 
page containing several overflow records from the 
same bucket does not have to be retrieved more than 
once. 

The expected number of accesses for finding one of 
the k overHow records is: 

W) =; i B(r). 
,-, 

(19) 

The expected number of accesses for an unsuccess- 
ful search when the length of the overflow chain is k 
records is: 

L’(k) =& ,iI B(r) + B(k)). (20) 

The expected number of additional page access for 
a successful search when using this overflow handling 
technique is: 

and the expected number of additional page access 
for an unsuccessful search is: 

U(a)=& 
max cc f%(x, a) 
1 mk c - 

jT,jRj"=' x=2 x+1 
x-l 

x ,;, (k + 1) L’(k) Q<x -k a). (22) 

The expected number of additional accesses per 
bucket for a range search or a sequential scan is given 
by: 

R(a) = i P(x, a)‘;i’ B(k) Q(x -k, x). (23) 
x-2 k-l 



The space per bucket required for overtlow records is there are c chains). Using the binomial theorem [24], 
given by: the formula can be simplified to: 

SP(a)=F(a)$ i 
x=2 

x-l 

x p(x, a) 1 kQ(x -k X) (24) 
k-1 

There are more efficient search algorithms (in terms 
of page accesses) than those discussed above. For 
example, if a key value between the values of the ith 
and the rth record is found when the page containing 
the ith record is retrieved, then the search can be 
continued by following the chain emanating from 
that record. An analysis of this type of algorithm is 
considerably more complex. The expected cost of the 
algorithms analyzed in this section is an upper bound 
of the cost of this algorithm. 

5. ANALYSIS OF CHAINING WITH 
MULTIPLE CHAINS 

In this section we analyze a chaining scheme which 
uses several outflow chains per bucket. Denote the 
number of chains per bucket by c, c > 1. Hashing is 
used to determine to which one of the chains an 
overflow record belongs. As in the case of separate 
chaining, each overtlow page is assumed to store a 
single record. Within each overflow chain records are 
kept sorted according to key value. 

The probability Q(b, x) that b records are stored in 
the primary page when the bucket contains x records 
can be calculated using equations (6) and (7). How- 
ever, in equation (7), the constraints should take into 
account the space requirements of the c pointers in 
the primary page. That is, the space available in the 
primary page for record storage is BS-cPS instead of 
BS-PS. 

The expected number of additional accesses for 
successful search can be computed as: 

S(a) = ~~~~P(x,a):~~Q(x-k,*) 

This formula is derived in a similar way as formula 
(5), except that the last summation takes into account 
the fact that the k overflow records are distributed 
among c chains. Assuming a uniform hashing func- 
tion, each chain has a probability of l/c of receiving 
an overtlow record. The probability that there are i 
records on a particular chain is then 

The average cost of accessing these records is 
i(i + 1)/2. The above formula follows by summing 
over all values of i and multiplying by c (because 

S(a) = &j f P(x, a)ii: k 
x=2 

X Q(x -k,x). (25) 

This formula is an approximation which does not 
take into account the dependencies between chain 
lengths. An expensive to compute, but exact formula, 
can be derived using the multinomial distribution. 
Note that assuming that each chain has the same 
number of records, (k/c), would underestimate the 
expected cost. For c = 1 the above formula reduces 
to formula (5) which gives the expected cost when 
using a single chain. 

The expected number of additional accesses for an 
unsuccessful search is given by: 

U(a) = C y mR, XE2 f$$$ 

2~jRim=' 

j=l 

x-l k k 1’ 
x c QG-kx)C i ; 

k=l i=L 00 

. (i + 3) 

1 max m G(x,x) =p c mR, c ~ 
2 km jRj m=' x=2 x+1 

j-l 

x-l 

ak 
k-l 

(26) 

This formula is derived in the same way as formula 
(7). The last summation determines the total expected 
cost of unsuccessful searches in a chain. This formula 
reduces to formula (7) for c = 1. 

The additional expected cost for accessing all 
records in a bucket is given by: 

R(a) = f P(x, a) ‘i’ kQ(x -k, x). (27) 
x-2 k-l 

This is the same formula as (8). The only difference 
is that the records must be sorted before being 
returned to the user. 

The additional space required per bucket is given 
by: 

Sp(a) = BS, f P(x, a) ‘f’ kQ(x - k, x). (28) 
x-2 k-l 

This formula again is similar to (9) keeping in mind 
that Q(x - k, x) is somewhat different, as discussed 
in the begining of this section. 
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6. ANALYSIS OF A METHOD USING A 
LOCAL OVERFLOW DIRECTORY 

In this section we analyze the performance of a new 
overflow handling scheme. The basic idea is to have 
on each primary page a small overflow directory 
which stored the keys, record lengths and location of 
all overflow records of the bucket. If a record is not 
found in the primary page, the overflow directory 
is searched to determine whether the record exists 
as an overflow record. At most one additional 
access is required to find any overflow record and no 
additional accesses for an unsuccessful search. The 
overflow records do not necessarily have higher key 
values than the records in the primary page. Instead, 
which records become overflow records is determined 
by the record length. The smallest records are stored 
in the primary page and larger records in the overflow 
area. By keeping the smallest records in the primary 
page more records will fit on the page. The fraction 
of overflow records will be smaller and retrieval, on 
average, faster. To achieve this, the class to which the 
record belongs (or its length) must be indicated in the 
overflow directory. 

It may lx necessary to move a record from the 
primary page to the overflow area to make room for 
expanding the overflow directory. An entry in the 
overflow directory of a primary page would typically 
be much smaller than an actual record, even as much 
as an order of magnitude smaller Thus it is highly 
unlikely that a primary page would not have enough 
space for the overflow directory. If this occurs the 
problem can be solved either by reorganizing the file 
or by using a flag indicating that the bucket is full and 
a pointer to a second “primary page”. In the analysis 
we ignore this case and assume that reorganization 
takes place. 

In this scheme the probability Q(b, x) that b 
records are stored in the primary page when the 
bucket contains x records is different from (5) be- 
cause the length of records in the primary page is not 
random. Instead, the smallest b records are placed 
there. Let x records be selected, the b shortest of them 
from the first j classes C,, . . . , C,. Let n,, . . . , nj, 
where n, # 0 and 

,$, nJ = b, 

be such a combination of b records. The remaining 
x - b records have a length greater than or equal 
to I,. Define C(j, b, x) to be the sum of the probabil- 
ities of selecting x records where the b smallest 
are from the first j classes and the x -b records 
from the classes C,, C,, ,, . . . , C,. Furthermore, 
exactly b records must fit in the primary page. 
Then 

Q&x)= i cU,b,x). 
j-l 

The function C(j, b, x) is given by: 

Wb,x)= c 
b! 

- Pi”’ . . .p;9 
n,+“‘+“, n,!. . . n, ! 

where the summation is over all combinations such 
that 

f: nili<BS-(x-b)(KS+PS+LZ) 
i-l 

and where r > j is the minimum value that satisfies 

/,-KS-PS-LI+i nili>BS-(x-b-1) 
i-2 

(KS + PS + LZ). 

LZ is the size of the record length indicator. 
The above formula can be explained as follows. 

The first b records are selected from classes Ci to 
Cj while the last x - b records are selected from 
classes C, to C, where r > j. This occurs with 
probability 

The b smallest records are distributed over the j 
classes with probability 

b! 
-pp;“’ . . . pj”t 
n, ! . . . nj! 

In this formula 

Pf+. 
1 Pk 
k-l 

The conditions stated guarantee that the next smallest 
record, which is taken from class r, r > j, does not fit 
into the primary page. 

If r =j (i.e. nj records from class r are inside the 
primary page and 1 records are outside) the function 
C(j, b, x) is given by: 

x-b 

W 6 x) = c 1 

I-0 n,+...+.,+/=b+/ 

“, # 0 

X 
(b + I)! 

,... (n,+l)!P;““..P;“J+’ 
4. 



where the summation is over all combinations such class changes from 300 to 201 than when it changes 
that from 400 to 300 bytes. 

i~,n,r,<BS-(x-b)(KS+PS+U) 

and 

Given the function Q(b. x) the performance meas- 
ures can be expressed as follows: 

The above observation is explained as follows. 
There are two factors affecting the length of overflow 
chains (and therefore the expected cost). The first is 
the average record length. The smaller the average 
record length, the more records are needed to fill a 
primary page and therefore the lower is the expected 
number of records on the overflow chain. The second 
factor is the empty space left at the end of the primary 
page (this is not always true but holds in general, e.g. 
[9]). Intuitively, the larger the record size (relative to 
the page size), the more space wilf be wasted at the 
end of a primary page. 

S(a) = & X$s R(x, a) ;i: kQ(x -k, x), (31) 
P 

U(a) = 0, (32) 

R(a)= f P(x,a)‘i’kQ(x -k,x), (33) 
x=2 k=I 

S’(a) = BS, t P(x, a) ‘i’ kQ(x - k, x). (34) 
x=2 k=l 

7. ~RICAL RESULTS AND 
COMPARISON 

In this section we present numerical results com- 
puted using the formulae derived in the previous 
sections. We use these results to compare the perfor- 
mance of the four methods considered, and to ana- 
lyze the performance effects of variable length 
records. 

Figure 2 shows the expected number of disk ac- 
cesses for a successful search as a function of the file 
expansion factor. The primary page size for this 
experiment was 4 kbytes. The records belonged to 
two classes. The record size of the first class was kept 
fixed at 400 bytes. The record size of the second class 
was 400, 300 and 201 in three different experiments. 
As expected, for the case of equiprobable classes, the 
cost decreases as the size of the records of the second 
class decreases. However, the cost reduction is not 
linear. It is apparent from that figure that the cost 
decreases more when the record length of the second 
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Fig. 2. Expected length of successful searches. 

More wasted space implies longer overflow chains, 
on average. If there were no empty space left at the 
end of primary pages, then the distance between the 
three curves in Fig. 2 would be the same. Since the 
lowest average record length also implies less wasted 
space at the end of primary pages, the distance of the 
curves for R2 =201 and 300 is greater than the 
distance for R2 = 400 and 300. In addition, as can be 
seen from the figures, when the probability of the 
class with the smallest record size increases the ex- 
pected cost decreases. This is expected since both a 
larger number of records can be packed in a primary 
page and, at the same time, the average wasted space 
in the primary page is reduced because of smaller 
records. 

Figure 3 shows a different experiment where the 
average record length was kept constant at 250 bytes 
for a block size of 500 bytes. As the variance of the 
record lengths changed, the expected wasted space at 
the end of the primary page changed, affecting the 
length of overflow chains. The expected length of an 
overflow chain for a large number of records per 
bucket was derived in Section 2. Base on this analysis 
it is easy to verify that the expected cost will be the 
highest for R 2 = 300, followed by R 2 = 350,400 and 
250. As the page size increases the wasted space at the 
end of a primary page becomes small relative to the 
page size. Thus the variance of the record length does 
not significantly affect the performance. This is 
shown in experimental results reported in [25]. 
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Fig. 3. Expected Iength of successful searches. 
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The performance figures for unsuccessful searches 
are similar to those for successful searches. They are 
not presented here but can be found in [25]. The cost 
of range searches (or sequential scans) and the space 
overhead increase linearly with the file expansion 
factor [25]. Figure 4 shows the expected space over- 
head as a function of the file expansion factor. 
Figure 5 shows the expected space overhead for the 
case of records with R 1 + R2 = 500 and BS = 500. In 
this case the expected cost is highest for R2 = 400, 
followed by R2 = 350, 300 and 250. This order is 
different than the order based on the cost of success- 
ful searches. This is explained by the fact that the 
storage cost depends on the maximum record length, 
in addition to the length of the overflow chain, as was 
analyzed in Section 1. This dependence is not elimi- 
nated as the size of the primary page increases 
contrary to the cost of successful and unsuccessful 
searches. 

The performance figures for successful, unsuccess- 
ful and range search when using chaining with large 
overflow pages are similar to those of simple chaining 
[25]. The most significant advantage of this method 
when records are of variable length is the reduced 
amount of storage space required for overtlow 
records. Figure 6 shows the expected storage over- 
head for this method. 

Figure 8 shows the expected cost of a successful 
search for the method using local overflow direc- 
tories. The expected cost is much lower than for the 
other techniques, especially for high values of the file 
expansion factor. This is due to the fact that at most 
one overflow page has to be read to tind a record. A 
second observation from Fig. 8 is that, for equiprob- 
able classes, the difference between the curves for 
R2 = 400 and 300 is approximately the same as 
the difference between the curves for R2 = 300 
and 201. The reason is that, for large values of the 

The expected cost of successful searches is much 
smaller when multiple chains are used, as shown in 
Fig. 7. The expected cost of an unsuccessful search is 
also much smaller than when using a single overflow 
chain [25]. The overflow space requirements and the 
range search cost are approximately the same. 
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Fig. 5. Overflow space per bucket. 

file expansion factor, a primary page is almost 
always filled with the smallest records. This implies 
little (and independent of the class) average wasted 
space per page. On the other hand, the expected cost 
of a successful search decreases as the probability 
of the class with the smallest records increases. 
The expected cost remains lower than for the other 
methods. 

It is interesting to compare the storage overhead of 
this method (Fig. 11) with that of chaining (Fig. 4). 
In the case of a single record length, chaining has less 
expected storage overhead than the overflow direc- 

For all the other methods analyzed the cost of a 
succesful search is a convex function becoming 

tory method. However, when there are several record 

asymptotically linear for large number of overflows. 

classes, the local overflow directory method may use 

For the method using local overflow directories this 
is not true. The first part of the function is convex but 
the last part is concave. This is better shown in Fig. 9. 

less storage space. The reason is that, since the 

Asymptotically, the curve approaches an additional 
cost equal to one. The cost of an unsucessful search 

smallest records are stored in the primary page, it 

is always zero. The expected cost for retrieving all the 
records in a bucket is shown in Fig. 10. 

utilizes better the space of overflow pages with longer 
records. This also affects the range search cost since 
all the pages of a particular bucket have to be 
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accessed (Fig. 10). The difference increases as the 
variance between the record lengths increases. 

As a final conclusion, when the variation in record 
sizes is high, it appears that the overall performance 
of the overflow directory method is superior to the 
other methods analyzed, with the possible exception 
of changing with larger overflow pages which may 
require less space. A hybrid scheme combining the 
overflow directory approach with the use of large 
overflow pages may be the most cost effective sol- 
ution. In addition to the reduced space requirements 
of the overflow directory method, it may also reduce 
the cost of range searches by clustering overflow 
records into larger pages. 
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Fig. 9. Expected length of successful search. 
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Fig. 11. Overtlow space per bucket. 

8. CONCLUDING REMARKS 

In this paper we have studied several overtlow- 
handling techniques for variable length records and 
derived analytic estimates of their performance. Our 
formulae take into account the record length distri- 
bution of the underlying population of records. We 
found that a new overflow handling method, the 
overflow directory method, offers several advantages 
over other methods. It allows for a gradual reorgani- 
zation of the file so that the smallest records are kept 
in the primary page, thus achieving better clustering. 
The net result is a reduction in the expected search 
lengths. 

Future research involves the analysis of alternative 
placement and search algorithms for variable length 
records in an overflow area with large pages and 
analysis of more efficient ways of searching overflow 
chains. In addition, some approximation of the cost 
equations presented is desirable to reduce the cost of 
numerical computation. 
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APPENDIX 

Probability Mass Assigned to a Bucket 

Consider an arbitrary but tixed bucket immediately after 
initial loading. It is assumed that the keys loaded are 
a random sample from the underlying key distribution. 
Denote the cumulative key distribution by F(x). L.et the 
keys assigned to the bucket under consideration be K,, , , 
Kj+2,..., ,+m. - K. The variables y, = F(Ki), i = 1,2,. . . ; M, 
are mutuallv indenendent and uniformly distributed in 10.11. 
The total probability mass, that is, the probability that a 
randomly selected key will be inserted into the bucket, 
assigned to the bucket as a result of initial loading is then 
Y - y. = F(K,+,) - F(K,). We therefore need the distri- 
&&n oi the random variable x = yj+,,, - yj, where y, is the 
lowest value obtained in sample of size M from the uniform 
distribution, y, is the next higher value,. , and y, is the 
highest value obtained. 

I I 1 
0 *I =2 1 

j-l 1 m-l lM-j-m 

We first need the joint probability P(y, = z,, y,+, = z2) 
where z,, z2r [0, 1) and z, C z2. To have Yj= z, and 
yj+m = z2, we must in the random sample have J - 1 values 
less than z, , one value equal to z, , m - 1 values between z, 
and z,, one value equal to z2, and the rest (M -j - m) 
greater than z2 (see the above). The variable with value z, 
can be chosen in M ways, the one having value z2, in M - 1 
ways, the j - 1 variables less than z, in 

ways, and the m - 1 variables between z, and z2, in 

(“,-‘r ‘) 

different ways. This gives the following probability: 

JYY, = Zl, Y,+m = 52) 

Let K=M(M-l)(~~12)(M-jr1). 

The probability that yj+, - yi = x is then obtained as: 

p(Yj+, -yj=x) 

I 
I-x 

= P(Yj=zl~Y,+m=z~+x)~l 
0 

I--x 

= K.p-’ z’I-‘(1 -z, - ~)~.-‘-~dz,. utilization in block split data structuring scheme. 
Proc. VLDB-78 Conf. Berlin pp. 489-495 (1978). 
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Now perform the variable substitution z, = r(1 -x) 
which yields: 

=Kxm-‘(1 -x)M-m 
I’ 

I/_‘(1 - r)M-‘-“dt 
0 

M(A4 - 1) (M - 2)! (M -j - l)! 

=(j-l)!(M-j-I)!‘@-l)!(M-j-m)! 

(j-1)!(M-j-m)!x”-‘(1-~)~-” 
X 

(M-m)! 

After simplification we finally obtain: 

p(Yj+m -yj=x)=M :I; ( > x”-‘(1 -X)M-m. 

Record distribution after insertions 

The probability that n of the N records inserted hit the 
bucket, given that it has been assigned a probability mass 
of x, has a binomial distribution: 

N 
P(n Ix) = 0 x”(1 -x)N--“. 

n 

The probability that the bucket receives n out of the N 
records is then: 

P,(n) = 
S’ 

P(n ]x)P(x) dx 
0 

=$:I:)(:) 
X S’ ~“(1 -x)~-“x~-‘(~ -x)“-mdx 

II 

We can find the asymptotic distribution by letting M, 
N-+co, keeping M/N = a constant. From (2) we have: 

m (m+n)! 
P,(n)=-- 

m+n m!n! 

M(M-l)...(M-m+l)N(N-l)...(N-n+l) 

’ (M+N)(M+N-l)...(M+N-m-n+l) . 
Divide both the nominator and denominator by Mm+“, 
noting that M + N = M (1 + a). This gives: 

m (m+n)! 

m+n m!n! 

1(1-;)...(I-y)a(a-&)...(a--$) 

(l+a)(l+a-k)...(l+a--v) ’ 

Letting m + co we finally obtain: 

p+(na)=(m+n-ll)! a” 
m (m - l)! n! (l+’ (3) 

The asymptotic distribution is simply a negative binomial 
distribution with parameter p = l/(1 + a) [26]. The expected 
number of records per bucket and its variance are therefore: 
p =m +ma =m(l +ct), a*=m(l +a)a. 

The fact that the asymptotic distribution is a negative 
binomial gives an alternative way of looking at the problem. 
Assume that we have an infinite supply of balls (records), of 
which a fraction p = l/(1 + a) are labelled “old” and the 
rest are labelled “new”. We randomly select balls until we 
have m balls with label “old”. Then the probability of 
having n balls with label “new”, for a total of m + n balls, 
is exactly P: (n, a) above. 

The probability distribution in [IO] was derived using the 
expected value of the insertion probability mass assigned to 
a bucket and ignoring the fact that it is a random variable. 
This simplification leads to a poor approximation which 
underestimates the number of overflow records. The correct 
distribution was first derived in [1 I]. The first part of 
the derivation above, up to equation (2), is based on the 
same idea as the derivation in [ll]. The asymptotic 
distribution given by equation (3) has not previously been 
available. 


