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Abstract

Performing data mining tasks in streaming data is considered a challenging research direction, due to the continuous

data evolution. In this work, we focus on the problem of clustering streaming time series, based on the sliding window

paradigm. More specifically, we use the concept of subspace a-clusters. A subspace a-cluster consists of a set of streams,

whose value difference is less than a in a consecutive number of time instances (dimensions). The clusters can be

continuously and incrementally updated as the streaming time series evolve with time. The proposed technique is based on

a careful examination of pair-wise stream similarities for a subset of dimensions and then it is generalized for more streams

per cluster. Additionally, we extend our technique in order to find maximal pClusters in consecutive dimensions that have

been used in previously proposed clustering methods. Performance evaluation results, based on real-life and synthetic data

sets, show that the proposed method is more efficient than existing techniques. Moreover, it is shown that the proposed

pruning criteria are very important for search space reduction, and that the cost of incremental cluster monitoring is more

computationally efficient that the re-clustering process.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of query processing and data mining
techniques for data stream processing has recently
attracted the interest of the research community [1–3],
due to the fact that many applications manage data
that change very frequently with respect to time.
Examples of such emerging applications are network
monitoring, financial data analysis, sensor networks
e front matter r 2007 Elsevier B.V. All rights reserved
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to name a few. The most important property of data
streams is that new values are continuously arrive, and
therefore efficient storage and processing techniques
are required to cope with (usually) high update rates.

Due to the highly dynamic nature of data
streams, random access is prohibitive. Therefore,
each data stream is possible to be read only once
(or a limited number of times). This feature poses
additional difficulties for query processing, since the
data can only be accessed in arrival order. More-
over, additional methods are required for data
mining tasks, such as clustering and association rule
discovery, to cope with the data evolution.

A streaming time series s is a sequence of
real values s½1�, s½2�; . . . ; where new values are
.
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continuously appended as time progresses. For
example, a temperature sensor which monitors the
environmental temperature every five minutes,
produces a streaming time series of temperature
values. As another example, consider a car equipped
with a GPS device and a communication module,
which transmits its position to a server every 10min.
A streaming time series of two-dimensional points
(the x and y coordinates of its position) is produced.
Note, that in a streaming time series, data values are
ordered with respect to arrival time. New values are
appended at the end of the series.

1.1. Motivation

Clustering is considered an important data
mining task and significant results have been
reported for several types of data [4,5]. The
challenge in a set of streaming time series is to
update the clustering information as time pro-
gresses, avoiding the re-clustering process which is
a computationally intensive procedure. It is desir-
able to use incremental clustering algorithms to
enable continuous clustering.

Given a set of streaming time series, clustering
can be applied to all available values within a
specified length, which is known as the sliding

window model. The size of the sliding window
defines the dimensionality of each streaming time
series. For example, a sliding window of size 256
means that each time series is considered as a 256-
dimensional vector. Each dimension corresponds to
a time instance. Searching for clusters in a large
number of dimensions may result to failure, because
as the size of the sliding window increases the
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probability that two streams will belong to the same
cluster decreases. In many cases, although two or
more streams do not belong to the same cluster for
the whole sliding window, they do so by considering
a subset of dimensions.

Fig. 1 illustrates three streaming time series A, B

and C with a sliding window of size 17. We assume
that two streams belong to the same cluster if the
difference of the values in the corresponding
dimensions is less than or equal to 2. By inspecting
Fig. 1, it is evident that these streams cannot belong
to the same cluster, since the difference of values in
several dimensions is more than 2. For example, the
value difference of A and B in the second dimension
is 7� 4 ¼ 3. However, by considering subsets of
dimensions, streams A and B belong to the same
cluster for the dimension intervals ½d3; d6�, which
contains d3, d4, d5, d6 and ½d9; d17�, which contains
d9, d10, d11, d12, d13, d14, d15, d16, d17. It is evident
that the value difference of streams A and B in each
of these dimensions is less than or equal to 2.

The basic requirements for the generation of
subspace clusters is that each cluster should contain
a sufficient number of streams, in a sufficient
number of consecutive dimensions. The generated
subspace clusters contribute to the discovery of
useful knowledge, since they reveal a high degree of
similarity among streams participating in the same
cluster.

The usefulness of the proposed clustering scheme is
twofold. First, it can be used as a subspace clustering
tool in several application domains such as:
�
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Sensor monitoring. Sensors that measure similar
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the environmental conditions in the correspond-
ing locations are similar (e.g., temperature, wind
speed, seismic behavior).

�
 Traffic analysis. A telephone company can

cluster its subscribers in order to group them
according to the cost of their calls. Special
prices can be offered to a number of groups, at
specific time intervals, to increase the company
profit.

Second, it serves as a base to calculate pClusters
in consecutive dimensions incrementally. pClusters
[6,7] have been used as a method to find subspace
clusters in any subset of the dimensions in
static data. However, in streaming data, a major
property is that the data are time ordered. So, in this
paper, we deal with pClusters on consecutive
dimensions.

1.2. Contribution

Although the literature is reach in methods
and techniques for clustering, subspace clustering
and continuous query processing, to the best of
our knowledge, there is no work on continuous
subspace clustering when the data evolve with
time. Therefore, we present a methodology to
attack the problem and we study effective algo-
rithms toward efficient subspace a-cluster genera-
tion for a set of streaming time series. Toward this
direction, we propose a method to update the
clusters when new stream values become available,
avoiding the process of re-clustering. The genera-
ted a-clusters are defined only on consecutive
dimensions.

Moreover, we investigate the incremental compu-
tation of pClusters in consecutive dimensions, which
are based on the use of the pScore measure
proposed in [6,7]. It is shown that the method to
produce subspace a-clusters is easily adapted to
produce pClusters as well. The most efficient
algorithm for generating pClusters in any subset
of the available dimensions is MaPle [6]. However,
MaPle generates pClusters only in static time series.
The proposed method can be used to generate
pClusters incrementally. In addition, the proposed
method can also be used to generate pClusters in
static time series efficiently, outperforming MaPle
significantly. However, the proposed method can
find pClusters only in consecutive dimensions
contrary to MaPle that can find pClusters in any
subset of the dimensions.
In summary, the contributions of this work have
as follows:
(i)
 the study of the subspace clustering problem in
streaming time series,
(ii)
 the study of continuous subspace clustering
taking into account the time series evolution,
(iii)
 the incremental computation of pClusters in
consecutive dimensions,
(iv)
 the performance evaluation of the proposed
method based on real-life and synthetic data
sets, and
(v)
 the performance comparison between the pro-
posed method and MaPle, the state-of-the-art
subspace clustering algorithm to generate
pClusters.
The rest of the work is organized as follows. In
Section 2 we discuss the appropriate related work.
Section 3 studies in detail the proposed method for
continuous clustering of streaming time series.
Section 4 illustrates the incremental computation
of pClusters by using the proposed algorithm.
Section 5 presents performance evaluation results
based on real-life and synthetic data sets, whereas
Section 6 concludes the work.

2. Related work

Clustering is an important research direction with
significant research contributions [4,5]. In [8] and [9]
it has been demonstrated that similarity search and
clustering respectively is meaningless for spaces that
are embedded in a very large number of dimensions.
This observation has lead a significant number of
researchers to study alternative clustering meth-
odologies. One research direction that has been
followed, is subspace clustering.

In [10], the authors have studied the problem of
subspace clustering in a high-dimensional space and
they have proposed CLIQUE, which is a grid-based
bottom-up algorithm to discover density-based
clusters. The space is divided in equal-sized cells,
and the density of each cell is computed as the
fraction of the number of the objects in the cell over
the total number of objects. CLIQUE determines
dense cells and merges them to create clusters in a
high-dimensional space. In [11], the concept of
entropy is used to determine a dense cell, whereas in
[12] a density-connected method has been proposed
based on DBSCAN [13]. A different approach has
been followed in [14], where the Fascicle method has
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Table 1

Basic symbols used throughout the study

Symbol Description

s, si a streaming time series

s½i� the value of s in the ith dimension

N the number of streams

W the size of the sliding window

Ci a maximal subspace a-cluster
ci;j the jth simple a-cluster of the ith dimension

c, c0 simple a-clusters
m number of streams in a cluster

G, Gi a group of candidate a-clusters
minRows minimum number of streams contained in a

subspace a-cluster
minCols minimum number of consecutive dimensions

contained in a subspace a-cluster
a maximum distance between any two streams for

a given dimension
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been proposed as a scheme to cluster and compress
data. The aforementioned methods apply to static
data sets, and their adaptation to the streaming case
is not obvious.

In [15–17] the authors have proposed top-down
algorithms for subspace cluster discovery. The basic
drawback of these methods is the usage of
parameter k, which is the number of subspace
clusters that each method should report. In many
real applications, this value is not known a priori.

Several research contributions have used
d-clusters for subspace clustering [6,7,17–19]. How-
ever, the concept of d-clusters is treated differently.
In [18], d-biclusters have been proposed to find
subspace clusters in a set of genes and conditions of
DNA microarrays. In [7], the pScore metric has
been proposed to measure the coherence of a
cluster. The method determines object and attribute
pair-wise clusters and utilizes a prefix-tree to
generate clusters in a high-dimensional space. The
same metric has been used in [6] to find pair-wise
clusters, along with a depth-first-search algorithm to
prune redundant non-maximal clusters. In [19], it
has been shown that the above methods do not scale
well in large data sets, and therefore the authors
have proposed SeqClus. SeqClus is based on the
Counting Tree data structure, that provides a
compact summary of the dense patterns in a data
set. Using the occurrences of a dense pattern,
SeqClus generates subspace clusters. The above
methods operate on static data sets. It is not
straightforward to apply these methods for the
streaming case, since they either rely on: (i) access
methods that should be updated continuously to
cope with the arrival rate of new stream values, or
(ii) algorithms that cannot adapt easily to the
incremental case.

Recently, the problem of data stream clustering
has attracted the interest of the research community
[20–24]. The majority of these contributions apply
the k-median clustering technique. The fundamental
characteristic of the proposed methods is that they
attack the problem of incremental clustering con-
sidering one data stream only. However, this
characteristic is quite restrictive, taking into account
that modern applications require the management
of a large number of data streams.

Due to the dynamic nature of the data streams,
continuous and incremental algorithms are neces-
sary to process streaming time series. Recent
research work in continuous query processing
includes [20,21,23,24]. These research contributions
study various aspects of continuous query proces-
sing issues, taking into consideration that the
update rate may be high.

To the best of the authors’ knowledge, this is the
first attempt to solve the incremental subspace
clustering problem in streaming time series.

3. Incremental clustering

For illustration purposes, stream values in the last
W dimensions are represented by a matrix, in which
the rows represent the streams and the columns
represent the last W time instances. Table 1
summarizes the basic symbols and the correspond-
ing definitions that are used throughout the study.
We begin our exploration with a number of basic
definitions that are used for the rest of the work.

Definition 1 (simple a-cluster). A simple a-cluster

contains a number of streams with pair-wise
distances at most a in a single dimension. There is
no restriction applied to the number of streams
contained in each cluster.

The jth simple a-cluster in the ith dimension is
represented as ci;j. The previous definition does not
take into consideration possible restrictions applied
to the number of streams in each cluster and the
number of consecutive dimensions. By forcing each
cluster to contain at least minRows streams and at
least minCols dimensions we have:

Definition 2 (subspace a-cluster). A subspace a-
cluster contains at least minRows streams, for which
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the maximum value difference is at most a in at least
minCols consecutive dimensions.

In the example illustrated in Fig. 1, assuming that
minRows ¼ 2, minCols ¼ 3 and a ¼ 2, we have two
generated subspace a-clusters containing streams A

and B, defined by dimension ranges ½d3; d6� and
½d9; d17�. However, assuming that minCols ¼ 5, we
have only one subspace a-cluster defined by the
dimension range ½d9; d17�. Moreover, assuming that
minRows ¼ 3 there is no subspace a-cluster, since we
can not define a subspace a-cluster containing at
least three streams.

A subspace a-cluster C is represented as a pair
ðS; ½di; dj �Þ, where S is a set of streams and [di,dj ] is
an interval of j � i þ 1 consecutive dimensions (time
instances), where ipj. Evidently, the cardinality of
S must be at least minRows, whereas the number of
consecutive dimensions must be at least minCols.
We assume that the streams contained in S are
represented by their corresponding IDs. Further-
more, we assume that stream IDs are stored in S in
a non-decreasing order.

Definition 3 (maximal subspace a-cluster). A sub-
space a-cluster ðS; ½di; dj�Þ is maximal, if (a) we
cannot find another a-cluster ðS; ½dk; dl �Þ such that
kpi and lXj and (b) we cannot find another a-
cluster ðT ; ½di; dj �Þ such that S � T .

Subspace a-clusters have a very convenient
closure property, as it is demonstrated by the
following Proposition.

Proposition 1 (closure property). Let C ¼

ðS; ½di; dj �Þ be a subspace a-cluster, not necessarily

maximal. Then every cluster C0 ¼ ðS0; ½dk; dl �Þ such

that S0 � S, kXi, lpj, jS0j X minRows and

l � k þ 1XminCols, is also a subspace a-cluster.

Proof. First, we show that if C ¼ ðS; ½di; dj�Þ is a
subspace a-cluster, then C0 ¼ ðS0; ½di; dj�Þ is also a
subspace a-cluster for S0 � S. Assume that C0 is not
a subspace a-cluster. Since jS0j XminRows and
j � i þ 1XminCols, the only reason for the violation
is the existence of at least two streams s1 2 S0 and
s2 2 S0 such that their value difference in at least one
dimension is more than a. However, since s1 2 S

and s2 2 S, we conclude that C is not a subspace a-
cluster, which contradicts our initial assumption.

Next, we show that if C ¼ ðS; ½di; dj�Þ is a
subspace a-cluster, then C0 ¼ ðS; ½dk; dl �Þ is also a
subspace a-cluster for kXi, lpj. Again, assume that
C0 is not a subspace a-cluster. This means that there
exist two streams s1 2 S, s2 2 S and a dimension dx,
kpxpl such that the value difference of the streams
is more than a. However, since the dimension dx is
contained in C we conclude that C is not a subspace
a-cluster, which contradicts our initial assump-
tion. &

The power of the closure property lies in the fact
that it is not necessary to discover all possible
subspace a-clusters, but only a subset of them. This
property is very similar to the Apriori principle [25]
which has been used for association rule discovery.

We are ready now to proceed with the detailed
description of the proposed methodology, which
attacks the following problem:

Given a set of streaming time series, a maximum
value difference a, a sliding window size W and two
integer numbers minRows and minCols, determine
all maximal subspace a-clusters continuously, where
each cluster contains at least minRows streams, and
the value difference is less than or equal to a, in at
least minCols consecutive dimensions.

The proposed methodology comprises the follow-
ing phases: (i) the initialization phase, which
determines an initial set of maximal subspace a-
clusters, and (ii) a series of update phases which
incrementally maintain the clusters when new
stream values become available.

3.1. Cluster initialization (CI)

The purpose of the cluster initialization phase
(CI) is to determine an initial set of maximal
subspace a-clusters, based on the last W values of
each streaming time series. Each such cluster must
contain at least minRows streams and at least
minCols consecutive time instances.

The CI process comprises a series of steps. In the
first step, each time instance (dimension) is in-
spected separately to determine simple a-clusters
(which are defined in one dimension only). In the
next step, the algorithm generates all clusters
containing m ¼ 2 streams in the maximum possible
number of dimensions. In each subsequent step the
algorithm tries to increase the number of streams
contained in each cluster (m ¼ mþ 1), until the
generation of all possible maximal subspace a-
clusters, according to the values of a, minRows and
minCols. Clusters that contain less than minCols

dimensions are discarded permanently in each step
of the algorithm, since they cannot contribute to the
final answer.
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We will illustrate the CI process by means of an
example, which is depicted in Figs. 2–4. Assume
that there are N ¼ 5 streaming time series with a
sliding window of size W ¼ 4. Moreover, let a ¼ 2,
minRows ¼ 4 and minCols ¼ 3. Fig. 2(a) shows the
value of each stream in every dimension, Fig. 2(b)
shows subsets of values that satisfy the a constraint,
whereas Fig. 2(c) shows the generated simple
a-clusters for a ¼ 2.

To determine the simple a-clusters for each
dimension we proceed as follows. The values in
each dimension are sorted in a non-decreasing
order. The produced sorted sequence S is processed
by means of two pointers pleft and pright. Initially,
pleft and pright are placed on the first element of the
sorted sequence. The pointer pright is incremented
until it reaches an element where jS½pleft� � S½pright�j

4 a. If this happens, then all elements S½pleft�,
S½pleft þ 1�,y,S½pright � 1� form a cluster in the
corresponding dimension. Then, the pointer pleft is
increased by one, and the same process is applied
until pright reaches the end of the sorted sequence. If
two clusters end at the same element, the one
containing the minimum number of elements is
discarded.

Following the generation of the initial set of
simple a-clusters, the next step considers pairs of
streams and determines if there are any simple a-
clusters with two streams (m ¼ 2). Fig. 3(a) depicts
the generated clusters for each dimension, whereas
Fig. 3(b) shows all possible 2-level clusters that are
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Proposition 2 (cluster pruning criterion). If the

number of candidate m-level clusters contained in a

group is less than minRows�mþ 1 then all the

clusters in this group can be safely discarded from

further consideration.

Proof. Consider that we have a group G consisting
of x m-level clusters, with xominRows�mþ 1. If
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contained in a group will be at most x� 1. In the
minRows-level, a group will have at most x�

minRowsþm clusters, and xominRows�mþ 1
) x�minRowsþmo1. This means that we can-
not have a subspace a-cluster, and thus, G can be
discarded. &

Evidently, all candidate clusters in the first group
survive the cluster pruning criterion. At a first
glance, it seems that all four clusters qualify, since
each pair of streams contain at least three dimen-
sions. However, with a more careful look we can see
that dimension d4 must be rejected. The following
proposition explains.

Proposition 3 (dimension pruning criterion). If each

candidate a-cluster in a group G contains exactly m

streams and the number of occurrences of a dimension

in G is less than minRows�mþ 1, then this

dimension cannot contribute to the generation of

subspace a-clusters.

Proof. Consider a group G of m-clusters. Assume
that the occurrences of a dimension di in G

is omominRows�mþ 1. Then, in the next level,
the mþ 1-level clusters of any group will be
at most x� 1 (see proof of Proposition 2) and
the number of occurrences of dimension di in G will
be at most omþ1 ¼ om � 1. The proof is similar to
that of Proposition 2 and it is omitted. In the
minRows-level, the number of occurrences of the di

will be at most ominRows ¼ om �minRowsþm.
Therefore, ominRowsominRows�mþ 1�minRows

þm ) ominRowso1, and this means that dimension
di can not participate in a subspace a-cluster. &

If the application of the dimension pruning
criterion affects an existing cluster, either the cluster
will be rejected, if the number of dimensions is less
than minCols, or will shrink (dimensionality shrink-
age), if the number of dimensions is at least minCols.
Applying the dimension pruning criterion to our
case, it is evident that dimension d4 has only two
occurrences, (see Fig. 3(c)) and therefore must be
rejected from further consideration. This means that
cluster no. 3 contains the streams {s1, s2} and the
dimensions d2 and d3. However, since minCols ¼ 3
this cluster is rejected from further consideration
(shaded row of Fig. 3(b)).

In the next step, the method tries to merge the
clusters that survived the previous step, toward the
generation of clusters containing mþ 1 streams.
Therefore we try to combine the clusters no. 1 with
no. 2, no. 1 with no. 4 and no. 2 with no. 4 (recall
that no. 3 has been rejected). These combinations
are depicted in tabular form in Fig. 4(a). The
clusters are categorized in two different groups.
Each group should contain clusters that share all
stream IDs, except the last. For example, candidate
clusters no. 1 and no. 2 are contained in the first
group since they differ in the last stream only, and
they have two streams in common s1 and s2.
Again, at a first glance all three candidate clusters
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of Fig. 4(a) qualify. However, cluster no. 3 can be
safely rejected, as it is suggested by the cluster
pruning criterion (Proposition 2). This is illustrated
by the shaded row in Fig. 4(a).

By inspecting clusters no. 1 and no. 2 in the first
group it is evident that both clusters survive both
pruning criteria. Therefore, these two clusters can
be combined toward the generation of a single
4-level cluster, which is illustrated in Fig. 4(b).
Recall, that minRows ¼ 4 and minCols ¼ 3. There-
fore, this cluster is recorded as an answer, since it
contains four streams and these streams form a
subspace a-cluster in three dimensions.

Let us now return to check the second group of
clusters depicted in Fig. 3(b). The candidate cluster
no. 6 would never be created by the algorithm, since
it does not satisfy the minCols restriction. It is
shown here only for demonstration purposes. This
means that there are now only two candidate
clusters in this group. According to the first pruning
criterion these clusters should be discarded without
any further consideration.

Up to this point, we have checked all candidate
clusters of streams s1 and s2. Is it necessary to check
the clusters for streams s3, s4 and s5? The answer is
negative, since each group does not survive the
cluster pruning criterion. In fact, since there are
three remaining streams it is impossible to generate
a 4-level cluster (minRows ¼ 4), as it is illustrated by
the following Proposition.

Proposition 4 (stream pruning criterion). If the

number of remaining streams is less than minRows

then all groups of candidate clusters generated by

these streams can be safely discarded since it is

impossible to give subspace a-clusters.

Proof. Assume that there are x remaining streams
for processing where xominRows. When m ¼ 2,
the number of clusters that can be formed in a
group is at most x� 1 (see Proposition 2). After
minRows� 2 levels, where m ¼ minRows, the num-
ber of clusters in a group will be at most x� 1�
minRowsþ 2 ¼ x�minRowsþ 1o1, which means
that xominRows streams cannot form subspace
a-clusters. &

The CI algorithm terminates at this point and
reports as an answer the cluster illustrated in
Fig. 4(b). Recall that each group of candidate
clusters has been studied separately. Is it possible to
miss a possible cluster? The answer is negative as it
is suggested by the following Proposition.

Proposition 5 (correctness of CI algorithm). By

treating each group of candidate clusters separately,
it is impossible to miss a maximal subspace a-cluster.

Proof. Assume that we have two candidate a-
clusters C1 ¼ ðS1; ½di; dj�Þ and C2 ¼ ðS2; ½di; dj�Þ,
where S1 ¼ fs1; . . . ; sj ; sk; sjþ1; . . . ; sjþig and S2 ¼

fs1; . . . ; sj ; sl ; sjþ1; . . . ; sjþig. These clusters differ only
in one stream, which is not the last, and therefore
belong to different groups. Each one contains
exactly m ¼ j þ i þ 1 streams.

Let C3 ¼ (S3; ½di; dj�Þ be an a-cluster, that can be
generated from the combination of C1 and C2, where
S3 ¼ fs1; . . . ; sj ; sk; sl ; sjþ1; . . . ; sjþig. Then, due to the
closure property, the following clusters also exist:
C4 ¼ ðS4; ½di; dj�Þ and C5 ¼ ðS5; ½di; dj�Þ, where S4 ¼

s1; . . . ; sj ; sk; sl ; sjþ1; . . . ; sjþi�2; sjþi�1 and S5 ¼ s1; . . . ;
sj ; sk; sl ; sjþ1; . . . ; sjþi�2; sjþi.Note that C4 and C5

belong to the same group, since they differ in the
last stream only. This means, that C3 will be
generated by combining C4 and C5, and therefore,
the combination of C1 and C2 is not required. &

By the aid of Proposition 5, algorithm CI
computes all maximal subspace a-clusters, by
considering only candidate a-clusters which belong
to the same group. This way, it is impossible to
discover the same cluster more than once and
therefore, less computational effort is required. The
outline of the CI algorithm is depicted in Fig. 5.

3.2. Cluster maintenance (CM)

The purpose of the cluster maintenance phase
(CM) is to keep the clustering information up to
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Fig. 5. Outline of CI algorithm.
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date, taking into consideration the new stream
values. This phase is executed when new values for
the streams become available for the next time
instance. We distinguish two different cases, which
are handled by different algorithms:
(1)
1T

diffe
all streams update their values in the next time
instance and
(2)
 only one stream updates its value in the next
time instance.
3.2.1. Multiple updates per dimension (CM-UPALL

algorithm)

In this case, all streams update their values in
each time instance.1 Since the processing is based on
his does not necessarily mean that the new values will be

rent than the previous ones.
the sliding window paradigm, the left-most dimen-
sion should be discarded and a new one should be
included. An example is illustrated in Fig. 6(a),
where stream values in dimension d1 should be
rejected, whereas stream values in dimension d5

should be taken into consideration to update the
clustering information. This requires the deletion of
all simple a-clusters of dimension d1 and the
determination of all simple a-clusters for dimension
d5. These clusters are illustrated in Fig. 6(b).

The CM algorithm CM-UPALL, which is de-
picted in Fig. 7, operates in two steps.
(1)
 Initially, existing maximal subspace a-clusters
are checked, since some of them may be
rejected due to the deletion of dimension d1.
Moreover, some of the existing clusters may be
expanded by the inclusion of the newly created
dimension d5.
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(2)
 Next, the algorithm searches for new maximal
subspace a-clusters that may be generated due to
the arrival of the new dimension d5.
Initially, each cluster containing d4 as its right-
most dimension is checked for possible expansion
by adding dimension d5. If the cluster can be
expanded, then it is included in the answer. Next,
the dimension d1 is deleted from all clusters that
contain it. If by deleting dimension d1 a cluster is
left with less than minCols dimensions, then it is
deleted. Finally, the other clusters that are not
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affected by the deletion of dimension d1 and the
inclusion of dimension d5 are considered part of the
new answer.

In order to search for new clusters that may have
been formed due to the inclusion of dimension d5,
the algorithm inspects only the last minCols dimen-
sions. The reason for this is given in the following
proposition.

Proposition 6 (correctness of CM-UPALL algor-

ithm). Let dnew be the newly created dimension.
To search for new clusters it is sufficient to study

the last minCols dimensions (i.e., dnew�minColsþ1,
dnew�minColsþ2; . . . ; dnew).

Proof. Assume that we take into account the last
minColsþ k dimensions, where kX1 and minColsþ

kpW . If there exists a cluster C in the last
minColsþ k dimensions, then this means that the
cluster was present also in the minColsþ k � 1
dimensions (due to the closure property), and
therefore the cluster is not new. Consequently, it is
safe to search for new clusters only in the last
minCols dimensions. &

Due to Proposition 6, the method considers only
the last minCols dimensions. Therefore, if a dimen-
sion does not participate in a cluster, the cluster is
rejected because it violates the minCols restriction.
This means that dimension pruning is not necessary,
and only cluster pruning needs to be applied.

3.2.2. One update per dimension (CM-UPONE

algorithm)

In this case, only one stream updates its value in
each time instance. As in the previous case, the
method first updates the simple a-clusters and after
that, performs changes to the existing maximal
subspace a-clusters, if needed. The outline of the
CM-UPONE algorithm is illustrated in Fig. 8.

Let s be the stream which updates its value. To
update the simple a-clusters the algorithm performs
the following steps, for each dimension:
(1)
 First, the stream s is deleted from the simple
a-clusters that belongs to, using the value that
the corresponding dimension has.
(2)
 Second, the stream s is inserted in existing
simple a-clusters or it is inserted in a new one,
using the new value of the dimension.
Each simple a-cluster cij contains the minimum
and the maximum value of its streams. The simple
a-clusters are ordered, i.e., the minimum (max-
imum) of a cluster is always greater than the
minimum (maximum) of the previous one. Thus,
the method determines the first cluster that contains
the old value. The method scans the remaining
simple a-clusters, until a cluster that does
not contain the stream s is found. Since the
clusters are ordered, the remaining clusters cannot
contain s.

To insert s, the method again scans the available
simple a-clusters, for each dimension. Stream s can
be inserted in a cluster, that its bounds contain, or
can be extended to contain, its new value. Assume,
that the new value of s is v and the minimum and
maximum values of a simple a-cluster c is minc and
maxc respectively. If v4minc þ a, then s cannot be
inserted in c. The method continues to scan
subsequent clusters, until a cluster c0 is found such
that vomaxc0 � a. Stream s is inserted in all simple
a-clusters between c and c0 and their bounds are
updated if necessary. If c and c0 are consecutive, a
new cluster should be created to insert s. The new
cluster is placed between c and c0.

The next step is to update the maximal subspace
a-clusters. All clusters containing the updated
stream are deleted. The remaining clusters are not
affected. To find new maximal subspace a-clusters,
the method computes 2-level candidate a-clusters by
combining the updated stream with every other. In
the subsequent steps, the algorithm tries to increase
the number of streams contained in each cluster.

3.3. Performance issues

Here we study some performance issues regarding
the proposed method by discussing the necessary
auxiliary data structures required to guarantee
efficient cluster monitoring. We investigate each
phase of the algorithm separately.

The CI phase requires the determination of all
simple a-clusters for each dimension. The dimen-
sionality of the streaming time series is determined
by the parameter W which defines the size of the
sliding window. To determine the simple a-clusters
for any dimension, we require that the values in the
corresponding dimension are sorted in non-decreas-
ing order. Alternatively, we can utilize a heap
data structure to store the values of each dimen-
sion. In any case, the required complexity is
OðW �N � logNÞ. The preprocessing of each dimen-
sion can be performed when new values become
available.
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Fig. 8. Outline of CM-UPONE algorithm.
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The above cost is insignificant compared to the
cost required to generate the clusters in each level.
Recall that to generate m-level a-clusters, the
ðm� 1Þ-level clusters are required. It can be shown
that the total number of possible clusters that can be
generated is 2N � 1, where N is the number of
streaming time series. However, the application of
the pruning criteria manages to reduce drastically
the number of generated clusters. This effect is
demonstrated in Fig. 9, which depicts (1) the total
number of clusters in each level, (2) the number of
pruned clusters due to cluster pruning, (3) the
number of pruned clusters due to dimension
pruning and (4) the number of affected clusters by
the dimensionality shrinkage. It is evident, that the
majority of the candidate a-clusters is discarded.
Cluster pruning is more significant when it happens
in the first levels, since more clusters are pruned
subsequently.
Algorithms CI, CM-UPALL and CM-UPONE
require the support of some fundamental operations
toward fast lookups of streams, clusters and
dimensions. We do not present each operation in
detail, since all of them can be efficiently supported
by hashing schemes. The required operations are
summarized in Table 2.
4. Incremental computation of pClusters

In this section, we study the problem of the
incremental computation of pClusters defined by
means of the pScore measure. The pScore measure
has been proposed in [7] to determine subspace
similarities among multidimensional data. More
specifically, the pScore measure has been used to
effectively determine co-expressed genes in micro-
array data [6,7].
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Table 2

Fundamental operations required by CI, CM-UPALL and CM-

UPONE algorithms

Algorithm Operations required

CI 1. find the simple a-clusters that each stream

belongs to

2. find the streams that each subspace a-
cluster contains

3. find the dimensions that each subspace a-
cluster contains

4. find the simple a-clusters that each subspace

a-cluster contains

CM-UPALL 1. find the simple a-clusters containing the

dimension that is deleted

2. find the subspace a-clusters which start at

the deleted dimension

3. find the subspace a-clusters which end at

the last dimension

4. all that CI requires

CM-UPONE 1. find the subspace a-clusters which contain a

specific stream

2. all that CI requires
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Let ri;j be the value of the ith stream (row) on the
jth dimension (column). The pScore metric is
defined as follows:

pScore ¼ jðrx;a � ry;aÞ � ðrx;b � ry;bÞj.

We proceed with the definition of pClusters.
Let S be a subset of streams and D be a subset of
dimensions. Then, S and D form a d-pCluster if for
any two streams x, y 2 S and for any two
dimensions a, b 2 D, pScorepd, where dX0.
Moreover, to avoid discovering statistically insig-
nificant pClusters, the authors proposed the use of
two parameters minRows and minCols, denoting the
minimum number of streams and dimensions
respectively, that a pCluster contains.

We can use the proposed algorithms to determine
pClusters in consecutive dimensions by applying a
simple modification. If we change the definition of
simple a-clusters then the resulting output of our
algorithms will be a-pClusters. The following
proposition explains:
Proposition 7 (modification of simple a-cluster). If

we compute the differences between dimensions dj�1

and dj, and use the resulting values for simple

a-cluster generation, then the maximal subspace

a-clusters that our method produces are identical to

the maximal d-pClusters in a number of consecutive

dimensions, where d ¼ a.
Proof. Let Di;j be the difference of the stream i in
dimensions j and j � 1, i.e., Di;j ¼ jri;j � ri;j�1j.
Assume that we have two streams x and y in two
consecutive dimensions a and b. Taking into
account the new definition of the simple a-clusters,
streams x and y will be in the same simple
a-cluster if:

jDx;b �Dy;bjpa.
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These streams will be in the same a-pCluster if the
following holds:

jðrx;a � ry;aÞ � ðrx;b � ry;bÞjpa

) jðry;b � ry;aÞ � ðrx;b � rx;aÞjpa

) jDy;b �Dx;bjpa

) jDx;b �Dy;bjpa: &

The above proposition suggests that if we are
interested in determining d-pClusters in consecutive
dimensions, we can use the proposed modified
algorithms and set the parameter a equal to the
desired d. The modified algorithms differ from CI,
CM-UPALL and CM-UPONE algorithms only in
line 2, where the simple a-clusters are computed or
updated.

To clarify the above observation we give a simple
example. Assume again, that we have two streams
x and y in two consecutive dimensions a and b.
The values of x is 5 and 17 for a and b dimensions
respectively and the values of y is 3 and 16.
If minRows ¼ 2, minCols ¼ 2 and d ¼ 1, these
streams belong to the same pCluster, since pScore
¼ jð5� 3Þ–(17–16)j ¼ 1. By using the same para-
meters (a ¼ 1) and the first definition of simple
a-clusters, these streams do not belong to the same
maximal subspace a-cluster, since in the a dimension
their difference is 2, so they do not belong in
the same simple a-cluster. By using the same para-
meters (a ¼ 1) and the above definition of the simple
a-clusters, these streams forms a maximal subspace
a-cluster. The differences of stream x is j5� 17j ¼
12 and of stream y is j3� 16j ¼ 13. Therefore, they
belong to the same simple a-cluster. The maximal
subspace a-cluster is identical to the d-pCluster.

To the best of our knowledge, the most efficient
algorithm for computing d-pClusters, based on the
pScore metric, is MaPle [6]. However, MaPle can be
applied only on static data, whereas our method is
applicable in streaming time series data. Moreover,
since MaPle generates subspace clusters in any subset
of the available dimensions, it has been modified
toward generating only clusters in consecutive
dimensions. As it is demonstrated in the next section,
the proposed algorithm is significantly more efficient
than MaPle in all experiments conducted.
5. Performance evaluation

The proposed algorithms and the algorithm
MaPle have been implemented in Cþþ and all
experiments have been conducted on a Pentium IV
machine at 3.6GHz, with 1GBytes RAM, running
Windows XP Professional. In the sequel, we present
the data sets that have been used in our experiments
and the experimental results obtained by the
performance study.

5.1. Data sets

The performance evaluation is based on real-life
data sets (STOCKS, ECG, TAO, YEAST), as well
as on synthetically generated (SYNTHETIC). A
short description of the data sets follows:

SYNTHETIC. The SYNTHETIC data set has
been produced by means of a data generator. The
generator takes several input parameters such as:
the number of streams, the sliding window size, the
length of each stream, the number of maximal
subspace a-clusters, the values for minRows, min-

Cols and a. The generator computes exactly the
desired number of maximal subspace a-clusters with
minRows streams in minCols dimensions. The
remaining values are calculated randomly in such
a way that the values do not fall in any cluster and
no additional clusters are formed.

STOCKS. The STOCKS data set consists of a
number of time series denoting the closing prices
of stocks and can be obtained from http://www.
finance.yahoo.com. Each stock has been subdivided
to a number of sub-series of length 200, to obtain a
total of 2313 different streaming time series.

ECG. The ECG data set contains electro-
cardiograms of two-channel recordings and
can be obtained from the MIT-BIH Arrhythmia
Database (http://www.physionet.org/physiobank/
database/mitdb/). Each channel was digitized at
360 samples per second. We chose an electrocardio-
gram of a 69 years old male, containing 650 000
samples. To form the data set, we picked 30 000 of
out of the 650 000 points randomly and each time
series is formed from the consecutive 200 values of
the selected point. The data set consists of 30 000
different streams.

TAO. The TAO data set (Tropical Atmosphere
Ocean) contains wind speed measurements of 65
sites located on the surface of Pacific and Atlantic
Ocean. The data set can be obtained from the
Pacific Marine Environmental Laboratory (http://
www.pmal.noaa.gov/tao). We have used the highest
available resolution (e.g., the sampling time inter-
val). About 4000 streams form the data set, and the
maximum length of each one is set to 200.

http://www.finance.yahoo.com
http://www.finance.yahoo.com
http://www.physionet.org/physiobank/database/mitdb/
http://www.physionet.org/physiobank/database/mitdb/
http://www.pmal.noaa.gov/tao
http://www.pmal.noaa.gov/tao
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YEAST. The YEAST data set contains the exp-
ression levels of 2884 genes under 17 conditions. The
YEAST data set can be obtained from http://www.
arep.med.harvard.edu/biclustering/yeast.matrix.

5.2. Experimental results

In the sequel, we present the experimental results
obtained by (i) the comparison between the
proposed algorithms CI, CM-UPALL and CM-
UPONE and (ii) the comparison of MaPle and the
proposed incremental algorithm, taking into ac-
count the CI cost.

5.2.1. Performance of the proposed methods

To evaluate the performance of the methods we
used a synthetic data set. The parameter values used
(if not otherwise specified) are: the number of
streams (N) is 5000, the sliding window (W ) is 100,
a ¼ 0:0, the number of embedded maximal subspace
a-clusters is 100, and each one contains 50 streams
in 10 dimensions.

In the first experiment, we examine the scalability
of the method with respect to the size of the sliding
window (W ) and the number of streams (N). The
corresponding results are depicted in Fig. 10. In this
experiment the CI method was applied in each
update so the CI cost denotes the cost of recluster-
ing the streaming time series. For the CM-UPALL
and CM-UPONE methods, we give only the update
costs since the initialization phase is applied only
once for both methods. Fig. 10(a) illustrates the
scalability of the method with respect to the sliding
window size. The time required for CI phase is
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Fig. 10. Response time vs. (a) sliding window size an
significantly more than that of both update meth-
ods. Moreover, the cost of the CM-UPONE
increases with respect to W but the update cost
for CM-UPALL is almost steady. This is because
the CM-UPONE updates the simple a-clusters of
each dimension that contains the updated stream,
while the CM-UPALL updates only the simple
a-clusters of the new dimension. Fig. 10(b) depicts
the scalability of the method with respect to the
number of streams. In order to have a similar set up,
we generated different synthetic data sets consisting
of 1000 to 20 000 streams. In each data set, we
embedded 100 maximal subspace a-clusters, but we
varied the minRows parameter so that the number
of values used in the clusters to be proportional to
the total number of values. When the number of
streams increases significantly, the cost of CM-
UPALL is higher than that of CM-UPONE. This
happens because: (i) the cost of determining the
simple a-clusters of the last dimension increases with
the number of streams and (ii) CM-UPALL tries to
find new subspace a clusters for all streams, whereas
CM-UPONE tries to find new subspace a-clusters
only for the updated stream. Again, the cost for CM
is much less than that for CI. This suggests
that reclustering should be avoided, since the
respective computational cost is prohibitive. In the
subsequent results, the CI cost is not shown for
clarity purposes.

In the second experiment, we study the perfor-
mance of the methods with respect to parameters
minRows and minCols. Recall, that if all streams
are updated, the method examines only the last
minCols dimensions, whereas if one stream is
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updated, the method searches for new maximal
subspace a-clusters only for the updated stream.
Fig. 11 illustrates the impact of the parameters to
the update algorithms. As expected, the cost of CM-
UPALL decreases as minRows and minCols in-
crease, whereas this is not true for CM-UPONE.
This is because the cost of updating the simple
a-clusters is more significant than that of finding
new subspace a-clusters for a specific stream, so
although CM-UPONE determines less clusters as
minRows and minCols increase, the overall cost is
dominated by the update of the simple a-clusters.
The cost of reclustering (not shown) is significantly
higher.

In the next experiment, we study the performance
with respect to minRows and minCols for STOCKS
50
0

0.5

1

1.5

2

10 20 30 40

ti
m

e
 (

s
e
c
)

minRows

CM-UPALL

CM-UPONE

Fig. 11. Response time vs. (a) minRows an

19
0

0.2

0.4

0.6

0.8

1

1.2

1.4

11 13 15 17

ti
m

e
 (

s
e
c
)

minRows

CM-UPALL

CM-UPONE

Fig. 12. Response time vs. (a) minRows an
data set. Fig. 12 illustrates the impact of the para-
meters to the update process. The sliding window
size is set to 100, whereas a ¼ 0:2. In Fig. 12(a)
minCols ¼ 5 and in Fig. 12(b) minRows ¼ 15. The
results are similar with those of the SYNTHETIC
data set.

In the sequel, we examine the relationship among
the parameters minRows, minCols and a. Fig. 13
illustrates the results only for CM-UPALL. The
sliding window size is set to 100. In Fig. 13(a), it is
shown that the cost decreases as the parameters
minRows and minCols increase their values. In
Fig. 13(b), it is shown that the cost decreases as
minRows increases and a decreases. A small a gives a
large number of simple a-clusters and therefore, the
probability that two streams will belong to the same
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Table 3

Number of clusters and average update time for STOCKS data set

a minRows minCols Number of clusters and average update time after

Initialization 10 updates 30 updates 50 updates 70 updates

0.1 11 2 494 5.84 489 0.07 438 0.08 384 0.06 449 0.11

0.2 15 4 328 14.61 295 0.26 268 0.29 245 0.21 382 0.80

0.2 20 2 616 63.05 607 0.52 574 1.07 539 0.48 680 1.89

0.3 30 2 287 289.66 278 1.41 243 4.21 251 2.85 389 25.79

Table 4

Number of clusters and average update time for ECG data set

a minRows minCols Nmber of clusters and average update time after

Initialization 5 updates 10 updates 15 updates 20 updates

0.0 30 3 984 2695.75 980 65.08 984 68.41 979 68.15 986 68.90

0.0 150 2 76 8211.28 75 65.96 72 64.60 71 86.40 69 76.88

1.0 10 9 335 1362.11 321 73.67 314 75.27 310 76.06 311 77.31

1.0 35 5 220 9879.22 209 219.32 203 231.61 201 231.60 194 237.57
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simple a-cluster is reduced. Thus, the number of
maximal subspace a-clusters decreases and the
overall cost is reduced.

In the next experiment, we study the number of
maximal subspace a-clusters that our method
reports. Some representative results are given in
Tables 3 and 4 for the STOCKS and ECG data set
respectively. The sliding window size is set to 100.
The tables depict the number of clusters, the cost of
CI phase, the number of clusters when some update
operations have been performed and the average
update time of CM-UPALL for these operations. In
each update operation all streams are updated. By
observing these tables, we can see how the clusters
evolve with time. Moreover, it is evident that there
are many clusters with respect to proposed a-cluster
model in real data. That show the utilization of
discovering a clusters in data mining applications.
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Fig. 14 illustrates some of the clusters identified
by the proposed algorithm in the ECG data set.
Each figure shows an identified maximal a-cluster
(a ¼ 2). For example, the first figure shows a
maximal a-cluster with 4 streams in 7 consecutive
dimensions. It is evident, that there is a high degree
of similarity among streams belonging to the same
cluster for the specific dimensions.
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5.2.2. Comparison with MaPle

In this section we compare our algorithms with
MaPle. For comparison reasons, we modified the
MaPle algorithm to find d-pClusters only in
consecutive dimensions. Moreover, we modified
the initialization and the update phase as described
in Section 4, in order to discover d-pClusters in
consecutive dimensions. The abbreviations for these
modified algorithms are CI-pScore and CM-UP-
ALL-pScore.

We compared the performance of the CI-pScore
and CM-UPALL-pScore algorithms with that of
MaPle, by using TAO, STOCKS and SYNTHETIC
data sets. The results are illustrated in Figs. 15–17.
In these experiments, we used d ¼ 0. In order to
compare CI-pScore with Maple, we executed each
method 10 times and we give the average execution
time. In order to compare CM-UPALL-pScore with
Maple, we re-apply Maple in each update and we
give the average execution time of the updates. The
execution time of CM-UPALL-pScore does not
include the CI-pScore time, since CI-pScore is
applied only once at the beginning. As expected,
the cost of CM-UPALL-pScore is significantly less
than that of Maple regardless the number of
streams, the sliding window and the other para-
meters. The algorithms were tested extensively. In
all cases the results are similar, so we report some
representative results. Moreover, our CI-pScore
algorithm is more efficient than MaPle in all
conducted experiments. This motivates us to com-
pare the CI-pScore algorithm with MaPle in static
data. Fig. 18 depicts the result of this comparison
on YEAST data set, by using minRows ¼ 30,
minCols ¼ 9.
In Fig. 19 we give examples of d-pClusters
identified in the STOCKS data set (d ¼ a ¼ 1). By
the comparison of Figs. 14 and 19, useful results are
depicted. A subspace a-cluster contains streams that
the similarity among them is obvious. Thus, the
visualization of the subspace a-clusters, which is
very important in order to have effective analysis
from experts, is easy. A d-pCluster on the other
hand, can identify shifting or scaling patterns in the
data set, as it has been shown in [6]. So even in the
case of static data, we can use effectively and
efficiently the CI-pScore algorithm if we interest to
find d-pClusters in consecutive dimensions.

In summary, the proposed incremental subspace
clustering algorithms are scalable with respect to the
number of streams and the sliding window size.
Moreover, the cost to update the clusters by using
the incremental approach is significantly less than
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that of re-applying the initialization phase. Finally,
it has been shown that the modified algorithms
outperform MaPle significantly, thus they can also
be used to generate clusters in static (non-evolving)
data sets.

6. Conclusions

We have studied the problem of continuous
subspace clustering in streaming time series data.
More specifically, a novel method has been proposed
toward efficient cluster generation and maintenance.
Each cluster is composed of a number of streaming
time series, where the pair-wise value difference
inside a cluster is at most a, subject to the restrictions
that the minimum number of streams is minRows and
the minimum number of dimensions is minCols.

The continuous clustering method comprises a
number of different phases: (a) a single initialization
phase, which is responsible for the initial cluster
generation, and (b) a sequence of maintenance phases,
which are used to update the clustering information as
time progresses. Each maintenance phase is executed
when either new values for all streams are available,
or only one new stream value is available in every
time instance. It has been demonstrated that by using
the proposed pruning criteria (cluster pruning,
dimension pruning and stream pruning), significant
search space reduction is achieved.

Moreover, we have shown that the proposed
method is easily adapted to determine pClusters in
consecutive dimensions. A performance comparison
with MaPle, the state-of-the-art method for pClus-
ter generation, has shown that the proposed method
is more efficient both for time evolving time series
and static data.

Appendix A. Supplementary data

Application 1.

Supplementary data associated with this article can be
found in the online version, at 10.1016/j.is.2007.09.001.
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