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Abstract

New application areas resulted in an increase of the diversity of the workloads that Data Base Management Systems

have to confront. Resource management for mixed workloads is attained with the prioritization of their tasks, which

during their execution may be forced to release some of their resources. In this paper, we consider workloads that

consist of mixtures of OLTP transactions and association rule mining queries. We propose and evaluate a new scheme

for memory-adaptive association rule mining. It is designed to be used in the case of memory fluctuations, which are

due to OLTP transactions that run with higher priority. The proposed scheme uses dynamic adjustment to the provided

buffer space. Thus, it avoids the drawbacks of simple but naive approaches; namely the thrashing due to large disk

accesses that can be caused by the direct use of virtual memory or long delay times due to suspension. Detailed

experimental results, which consider a wide range of factors, indicate the superiority of the proposed scheme.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of new application areas
resulted in an increase of the diversity of work-
loads that Data Base Management Systems
(DBMS) have to confront. On one hand, we have
the important class of tasks that process transac-
tions, which comprise the OLTP workload. On the
other hand, there exist the class of tasks that
process complex, long-running queries for Deci-
sion Support applications. The latter class com-

prises the DSS workload and has achieved
legitimacy as a business necessity during the recent
years. Each of these two types of workloads has its
own objectives and requirements. Nevertheless,
the natural question arises whether one can
provide DSS access to the data stored for OLTP
in the same DBMS. In other words, can the
mixture of OLTP and DSS workloads lead to
consistent performance, or is the OLTP workload
prone to receive such a contention from the DSS
one, that will compromise its mission-critical
nature? The vice versa question is also of much
interest: i.e., whether the performance of the DSS
workload can remain acceptable during the
mixture with the OLTP one.1
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One of the important issues that one has to
consider in order to successfully mix OLTP and
DSS workloads, is how to best allocate resources
(e.g., processors, memory, disk) between them.
The governing of mixed workloads is attained
through the prioritization of their tasks that
compete for resources. Therefore, scheduling
algorithms have to be used, which will dynamically
decide the distribution of resources [1]. On the
basis of this paradigm, the tasks in the OLTP and
DSS workloads can be forced (during their
execution) to release some/all of their resources,
or in contrast they may be given additional
ones [2]. Evidently, the definition of a priority
scheme depends on the particular type of OLTP or
DSS applications. A common case is to consider
OLTP as mission-critical application type, there-
fore the OLTP workload will be assigned the
highest priority. In contrast, there exist some cases
where real-time Decision Support is needed, for
which the DSS workload will get higher priority.

Data mining queries, and association rules
mining queries in particular [3], correspond to a
significant type of DSS tasks today. Their char-
acteristic is that they are resource intensive, since
they require large CPU time and main memory
space, and (usually) several database scans. For
this reason, a large number of stand-alone,
specialized algorithms and data mining systems
have been developed. However, such approaches
lead to a loose-coupling with the DBMS, which
incurs a significant overhead when mining large
operational databases [4]. To address this pro-
blem, several methods have been proposed that
achieve a tighter-coupling of association rules
mining queries with the DBMS [4–6]. Never-
theless, the issue of mixing a workload that
contains association rules mining queries, with a
OLTP workload has not been examined by most
of the aforementioned methods. Recently, Riedel
et al. [7] proposed a disk scheduling algorithm for
mixed workloads that consist of OLTP transac-

tions and general data mining tasks (that can be
easily applied to association rules). According to
this approach, the OLPT workload provides a
consistent portion of its bandwidth to a back-

ground data mining task, without impacting OLPT
transactions. The prioritization scheme in [7]
assigns the highest priority to the OLPT workload,
while trying to advocate the DSS workload as
much as possible at the same time. As described
previously, this kind of prioritization corresponds
a logical choice and applies to most cases of
interest.

Besides disk, main memory is another critical
resource that affects the performance of mixed
workloads. However, this factor has not been
examined so far in the context of mixed workloads
that contain data mining queries and OLTP
transactions. Several association-rules mining al-
gorithms assume the existence of unbounded main
memory. In contrast, there exist algorithms that
take into account the case of limited memory and
use specialized buffering schemes like the ones in,
e.g., [8–10]. However, even these approaches
assume the allocation of a fixed amount of buffer
space to the mining query throughout its lifetime.
Therefore, for the purposes of prioritized execu-
tion of mixed workloads (as described previously),
none of these algorithms can adapt (during their
execution) to possible requests for releasing
memory back to the DBMS. Instead, they may
hold an amount of main memory until their
completion, whereas, at the same time, higher-
priority OLTP transactions may not be able to
execute due to memory shortage. Clearly, the
existing approaches will violate prioritization
schemes that consider OLTP as mission-critical,
rendering mixed workloads unfeasible.

It is important to notice that the previously
described issues form a new problem (c.f., Section 3),
which calls for the development of schemes that
will allow association-rule mining queries to
dynamically adapt to memory fluctuations. This
is analogous to the introduction of memory-
adaptive schemes for external sorting [2], which
differ from regular external sorting algorithms
(i.e., those not considering memory fluctuations).
However, the problem of memory-adaptive sorting
is much different in comparison to the one
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DBMS, still worths attention. The reason is that in this case,

data will be directly available to DSS queries, thus their copying

to the warehouse and their maintenance to assure consistency

can be entirely avoided.
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examined in this paper. Moreover, the develop-
ment of dynamic memory-adaptive schemes for
association rule mining differs significantly from
the problem of developing efficient algorithms for
the stand-alone execution of association rule
mining (i.e., when the queries are not mixed with
OLTP transactions), which has been the focus of
recent research. The reason is that in the context of
mixed workloads, the execution of mining queries
may be impeded by OLTP transactions with
higher-priority, and the buffer space provided to
these queries will not be constant. Therefore, the
execution time of a mining query does not depend
solely on the efficiency of the corresponding
(designed for stand-alone execution) algorithm
that is used for the query. The effectiveness of
the memory-adaptive scheme, the use of which is
necessary in this context, is also of equal im-
portance, as it determines how the execution of the
query proceeds under memory fluctuations.
Hence, the role of the two aforementioned factors
is complementary. Moreover, simplistic memory-
adaptive schemes, like the suspension of the query
until sufficient memory is available or the direct
use of virtual memory, are not a viable solution.
As will be shown, such simplistic schemes impact
the efficiency even of the best stand-alone mining
algorithms, since they lead to large delays or
thrashing.2

1.1. Contribution and layout

In this paper, we are interested in mixed
workloads consisting of association rule queries
and OLTP transactions, where the latter are
considered as mission-critical. Therefore, through
the use of a prioritizing scheme, memory fluctua-
tions occur that move buffer space from the
mining queries to the OLTP transactions (and
vice versa). The main objective of the paper is the
development of memory-adaptive schemes for
association rule algorithms, which will allow them

to handle memory fluctuations. To the best of the
authors knowledge, no previous work has ad-
dressed this issue so far, which emerges when
considering the described context of mixed work-
loads.

The technical contributions of the paper are the
following:

* An effective memory-adaptive scheme, which
compared to simplistic ones, does not incur
large delays or thrashing (in terms of disk I/O).
Therefore, the proposed method can be used
towards the problem of making mixed work-
loads feasible.

* The description of ways to apply the proposed
scheme to a significant class of association rules
mining algorithms, especially those designed for
tight-coupling with a DBMS.

* A detailed experimental comparison, which
considers a wide range of factors. The experi-
mental results help to understand the perfor-
mance tradeoffs of each scheme and to identify
the advantages of the proposed one. Moreover,
they show that the proposed method compares
favorably against simplistic schemes even when
the latter ones are combined with very efficient
(in terms of stand-alone execution) mining
algorithms, a fact that indicates the new
requirements of the examined context.

The remainder of this paper is organized as
follows. Section 2 presents the related work and
Section 3 contains the problem description. In
Section 4, we develop a new algorithm that
addresses the problem of limited buffer size and
serves as the framework for the development of the
proposed memory-adaptive scheme. The latter is
given in Section 5, along with two other schemes
that are given for comparison purposes. The
results on the performance evaluation of the
described schemes are illustrated in Section 6.
Finally, Section 7 provides the conclusions.

2. Related work

The problem of association rule mining has been
proposed in [3] and since then, a large number of
algorithms have been developed to address its
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different aspects. These algorithms can be gener-
ally categorized in two paradigms, according to
the way they prune the search space and perform
pattern generation. The first paradigm is denoted
as Candidate set Generation and Test (CGT), which
is based on the iterative generation of a set of
candidate patterns, followed (at each iteration) by
the counting of their support. The basic pruning of
the search space is done with the Apriori-criterion [8],
but more recent CGT algorithms use several
additional criteria. The CGT paradigm contains
a considerable number of algorithms, for instance
[8,11–14]. Although CGT algorithms use a diver-
sity of techniques, they are essentially based on the
same core of iterative candidate generation and
testing, whereas their differences stem from the
specific criteria and methods they use for these
procedures.

The second paradigm consists of recently
proposed algorithms, like the FP-Growth [9],
TreeProjection [15] and H-mine [16], which en-
tirely avoid the generation and testing of candi-
dates. Instead, they are based on pattern fragment
growth, using complex data structures. We refer to
this paradigm as Pattern Growth (PG). Experi-
mental results in [9] show that TreeProjection has
the overhead of transaction projection and is
outperformed by FP-Growth, whereas H-mine is
a hybrid algorithm that develops certain optimiza-
tions for FP-Growth. However, it is allowed to
switch to FP-Growth, to overcome shortcomings
that the latter avoids.

The data structures that are used by PG
algorithms, require a significant main memory size
(e.g., the FP-tree [9]). This cost pays off in cases of
dense data and patterns with large numbers of
items, or for very low minimum support thresh-
olds. Experimental results in [9] illustrate the
advantage of FP-Growth over Apriori [8] in these
cases. It is worth noticing that the CGT paradigm
contains algorithms that also address such cases
and outperform Apriori; for instance, the algo-
rithm in [17] is efficient for mining dense,
correlated data, or the algorithms in [11,12], which
significantly improve Apriori for low support
thresholds (by reducing the number of candidates).
Nevertheless, a generalized comparison between
PG and CGT algorithms has not been performed.

A different categorization of association rule
mining algorithms can be done according to the
database layout. The first category uses horizontal

layout, where each transaction is a list of items.
This category contains the majority of existing
association rule mining algorithms. The second
category contains the algorithms that use vertical

layout, where each column corresponds to an item.
MaxClique [18] was the first algorithm that
proposed the vertical layout, whereas a recent
algorithm in this category is Viper [19]. As
described in [19], the disadvantage of MaxClique
is that it requires large main memory.3 In contrast,
Viper does not present this drawback, and it
compares favorably with MaxClique and Apriori.
Although Viper significantly outperformed
Apriori, it was not compared with other CGT
algorithms.4 Nevertheless, experiments in [19] (the
comparison with the Oracle method) indicate the
advantage of the vertical-layout approach, in
general.

All the aforementioned algorithms were mainly
proposed for stand-alone execution in a specialized
system, i.e., not in the context of a DBMS. The
integration of association rule mining with a
DBMS requires the consideration of several
additional issues, like query optimization, cost
estimation, etc. For this reason, focus has been
given by other works on the tight-coupling of
association rule algorithms with Relational
DBMS, using mechanisms like stored procedures
or user-defined functions [4–6]. Thomas and
Chakravarthy [5] have studied the optimization
of joins for the case of support counting in
RDBMS. Geerts et al. [20] provide upper bounds
on the number of candidate patterns, which can be
used for optimization purposes (an issue of vital
importance for a RDBMS). It has to be noticed
that, up to now, most of the approaches for
integrating association rule mining with a DBMS
have been based on algorithms from the CGT
paradigm.
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Although the latter works consider the integra-
tion with a DBMS, they did not focus on mixed
workloads. Riedel et al. [7] described one of the
first approaches to addresses mixed workloads of
data mining queries and OLTP transactions. They
propose a disk scheduling policy for general data
mining tasks and differently from [1,21] (which
considered general DSS tasks), they assume that
OLTP transactions are the most crucial tasks of
the DBMS, thus they are given the highest
priority. Therefore, the disk scheduler serves: (a)
requests for OLTP transactions that are satisfied
as soon as possible and (b) requests for one or
more data mining queries that are satisfied when
convenient.

Evidently, the size of available memory is crucial
for association rule algorithms. Several algorithms
assume the availability of all required memory,
since they focus on stand-alone execution. How-
ever, there exist approaches that take into account
the case of limited memory; for instance, the
buffering methods in [8,10] for CGT algorithms,
or the partitioning methods in [9,16] for PG ones.
Nevertheless, as described (see Section 1), the
latter approaches cannot handle memory fluctua-
tions, because they do not dynamically adapt to
varying memory size and may keep a fixed size of
reserved memory whereas, at the same time, OLTP
transactions may lack of necessary memory.

Besides the mining of regular association rules,
other works have studied more specialized pro-
blems like the mining of long patterns, for
instance [22], which is based on the CGT paradigm
but finds only the maximal frequent itemsets ([22]
describes the use of a randomized, incomplete
algorithm, in order to search for the regular
association rules). Such approaches mainly focus
on databases that contain very long patterns.

Finally, related work includes the management
of resource allocation among different types of
workloads [21,1,23]. These works have focused on
the combination of large, relational join queries
with small OLTP transactions, and on how to
allocate resources (main memory, disk) to these
tasks. The latter works, however, did not consider
data mining queries, which are very different from
relational join queries. Faloutsos et al. [24]
described flexible buffer allocation, but they did

not focus on diverse workload types. Pang et al. [2]
have examined memory-adaptive external sorting
algorithms that address memory fluctuations. This
work clearly provides a motivation to our
approach, but the problem of sorting is very
different from the mining of association rules.

3. Problem description

The context studied in this paper considers
mixed workloads consisting of association-rule
mining queries and OLTP transactions, where
the latter ones are mission-critical (i.e., take the
highest priority). For this reason, under a prior-
itization scheme, main memory can be dynami-
cally reallocated between the association rule
queries and OLTP transactions. Therefore, the
size of buffer memory provided to association
rule queries fluctuates during their execution, and
the queries may be forced to release an amount of
their buffer space to the DBMS. Considering that
association rule queries can be memory intensive
(e.g., for low support thresholds), they may come
to a point where they lack sufficient memory. This
problem has not been previously studied. As
described in Section 2, existing algorithms assume
that (a) either all required (i.e., unlimited) memory
is available, or (b) a constant (i.e., limited) buffer
space is provided. Nevertheless, as explained, both
cases may violate the required prioritization
scheme under repeating memory fluctuations,
since they do not address the need to release
buffer space back to the DBMS. Moreover,
they cannot take advantage of possible extra
buffer space that may be provided to them
from the DBMS.

What is, therefore, needed is dynamic schemes
that will allow association rule queries to become
memory-adaptive. These schemes will decide how
the execution of the association rule algorithm will
proceed at the time points that an amount of main
memory must be released from the query to the
DBMS, or how the algorithm will exploit extra
memory that is given to it. Evidently, none of the
existing algorithms for association rule mining can
be directly used in the examined context (in order
not to violate the described prioritization scheme),
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unless it adopts a memory-adaptive scheme. In
particular, the roles of the memory-adaptive
scheme and the association rule algorithm are
complementary. This is because they address
different requirements. Existing association rule
algorithms have been designed for stand-alone
execution (i.e., not for memory fluctuations) and
contain optimizations for this case. However, in
the examined context, their execution times will
not depend only on how efficient they are in the
stand-alone case, but also on the effectiveness of
the memory-adaptive scheme that will be used,
since a not good memory-adaptive scheme can
render deficient any good algorithm. Therefore,
the examined problem is not to develop an
association rule algorithm for stand-alone execu-
tion, but to propose effective memory-adaptive
schemes that will help towards the objective of
having viable mixed workloads in the same
DBMS.

To determine the examined execution model, we
assume an integration of association rule mining
queries within the DBMS based on extensions like
the user-defined functions (UDF) [4]. In this
context, the mining query is provided with buffer
memory allocated in the address space of the
DBMS (unfenced option [4]), and this buffer
memory is subject to memory fluctuations
throughout the execution of the mining query.
Following the approach of [7], the execution of
association rule queries is performed in the back-
ground, whereas the highest priority is given to
OLTP transactions that run in the foreground and
cause the memory fluctuations.

For the purposes of the examined problem, we
mainly focus on CGT association rule algorithms.
As described in Section 2, the tight-coupling with a
DBMS has been examined in a larger extent for
CGT algorithms, e.g., [4–6,20,25], and this factor
is important when considering mixed workloads in
the same DBMS. Since there exist more advanced
CGT algorithms than Apriori, we generalize our
approach to work with such algorithms (Section 4.2).
Clearly, it is worth developing memory-adaptive
schemes for other types of association rule
algorithms as well, like PG or vertical-layout
algorithms. However, since the roles of the
association rules algorithms and of the memory-

adaptive schemes are complementary, we consider
CGT algorithms as a good starting framework to
test the viability of the latter in the examined
context of mixed workloads. Nevertheless, for
comparison purposes, we examine the combina-
tion of a PG algorithm (FP-Growth) with less
advanced memory-adaptive schemes (that can be
directly applied to this algorithm), to demonstrate
that, in the examined context, the execution time
of association rule queries depends significantly on
the effectiveness of the memory-adaptive scheme.
Evidently, one may expect that the development of
dynamic memory-adaptive schemes that can be
combined with other, non-CGT algorithms will
improve further the execution times. For this
reason, this topic is considered as an interesting
future work.

4. The framework algorithm

In this section, we describe the framework
algorithm upon which we will develop the
proposed memory-adaptive scheme (that is given
in the following section). The framework com-
prises a basic algorithm that takes into account the
case of constrained available memory. First, for
reasons of clarity in presentation, we develop a
basic form of the framework in terms of the
general structure of Apriori algorithm, and then
we describe ways to extent it to other, more
advanced algorithms of the CGT paradigm.

4.1. Basic form of the framework

Let that at a given time point the available main
memory allows for the accommodation of m

candidates. Memory fluctuations cause the de-
crease or increase of m during the execution of the
association rule query. Although [8] proposes a
buffering method that can be followed by CGT
algorithms, this method proceeds the merging of a
phase only if all its candidates can be kept in
memory, a fact that can cause memory under-
utilization. The reason is that, although the main
memory may be sufficient to hold a large part (but
not all) of the candidates during a phase, it is left
under-filled. Moreover, in the case of memory
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limitation inside a phase and the breaking of a
candidate set into groups that are separately
counted, the last group may not entirely fill the
available main memory.

To resolve the aforementioned problems, in the
proposed framework the handling of memory
limitation within a phase could be directly
followed by phase-merging, in order not to
under-utilize the available main memory. There-
fore, the cases of memory limitation (when not all
candidates of a phase can be kept in available
memory) and phase merging (when available
memory can keep the candidates of more than
one phases) are not treated separately. In the
former case, we have to move on to phase-merging
in order to exploit all available memory. In the
latter case, the merging stops and the supports of
candidates are counted. Then, we have to move on
by treating the stopped phase as being under the
case of memory limitation (since not all of its
candidates can be held in main memory). When-
ever the available memory is exhausted, the
candidate generation procedure stops and support
counting is performed. The resulting algorithm is
depicted in Fig. 1.

In order to keep a synchronization in passing
from one case to the other, the algorithm
maintains some extra information for each node
in the trie data structure (which stores the
candidates). Additionally, we prefer to also keep
in the trie the large itemsets (i.e., the candidates
that have been counted and found large).5 Of
course, the large itemsets are taken into account in
the number m of itemsets that are held in main
memory. Each trie node has an associated
information that denotes its status. A node that
is ‘active’ denotes a candidate with support that
has to be counted. A node that is ‘extendible’
corresponds to a counted itemset that was found
large and can be extended to generate further
candidates. A large itemset becomes non-extend-
ible when it cannot generate any other candidates.
In this case, as described, it is maintained in the
trie but it does not further participate in the

candidate generation procedure. Candidates that
have been counted and found non-large are
pruned and are not maintained in the trie.

Memory fluctuations can take place either when
support counting is performed or during candidate
generation. Assume that the association rule query
has to release an amount of main memory during
support counting. Also, let m0 be the resulting
number of trie nodes that can be stored in memory
(where m0om after memory reduction). If jCj > m0;
then memory shortage occurs. The required
number of active nodes is stored on disk, so that
m0 candidates are being left in the trie structure
and the resulting free buffer space is returned to
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the system. It must be noticed that, during support
counting with forthcoming transactions, a further
release of memory from the association rule query
to the system may be required. In such case, the
above procedure is repeated. The way of proceed-
ing support counting after memory shortage
depends on the particular memory-adaptive
scheme that can be followed. Each scheme deter-
mines if the overall support counting procedure is
stalled or not, and how the candidates that are
moved to secondary storage participate in support
counting. Specific schemes are described in detail
in the following section. Moreover, to take
advantage of the case when the reserved memory
is given back to the association rule query, each
scheme determines how the candidates from
secondary storage are restored back in the trie.

Evidently, a paging mechanism is required to
move candidates to secondary storage and release
buffer space to the system. This mechanism is part
of the general algorithmic framework that is
described above, and it is common for all
memory-adaptive schemes that will be described
in the following.

When the association rule query has to release
memory during candidate generation, assuming
that for the new m0 it holds that jCj > m0; then the
number of ‘active’ candidates is reduced to m0 and
the extra generated candidates are moved to
secondary storage. Therefore, in terms of the
proposed framework, the case of memory limita-
tion is handled by considering the m0 candidates as
a separate group for which support counting has
to be performed. However, the way that extra
candidates (those moved to secondary storage) are
handled and how the procedure moves on to
support counting, depends on the particular
memory-adaptive scheme. In the opposite case,
when extra memory is given to the association
query, any candidates stored on disk are restored
back in the trie and new candidates are being
generated in order to fill all available memory. The
adaptive association rule algorithm may have to
move on from the last group of candidates of the
memory-limitation case to merging with the forth-
coming phase. This illustrates the advantage of the
developed framework, which does not separate
these two cases, in order to support memory-

adaptive schemes and to utilize all available main
memory.

4.2. Extension to other CGT algorithms

The basic form of the framework (Section 4.1) is
based only on the high-level structure of the
Apriori algorithm. An analogous structure is
followed by most of other CGT algorithms, since
they all perform iterative candidate generation and
testing. Their differences come from the way that
these procedures are implemented.6 Nevertheless,
the exact implementations of these procedures do
not modify the CGT paradigm that all these
algorithms are based on.

To extend the basic framework to ones that are
based on other CGT algorithms, we do not have to
modify the way they perform candidate generation
and testing. The only required change is to add
within these procedures, methods that will handle
the changes in buffer size. As will be described
(c.f., Section 5), the proposed scheme adds within
the candidate generation procedure the moving of
a number of candidates to secondary storage,
when an amount of memory must be released, and
then passes control to the candidate-testing
procedure. This addition does not involve details
like the exact pruning criteria, etc, used by the
candidate generation procedure of the specific
CGT algorithm. For the candidate-testing proce-
dure, the proposed scheme uses a technique that
handles the testing of candidates stored on
secondary storage. This addition is included within
the candidate-testing procedure regardless of the
way that the latter is implemented (e.g., whether it
operates on the entire database or a part of it, etc).
Therefore, the extension to frameworks that use
other CGT algorithms can be attained by the
addition of the techniques used by the memory-
adaptive schemes within the corresponding places
of the candidate generation and testing proce-
dures.
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For instance, consider some known CGT
algorithms like DHP [12], Partition [13], or the
algorithm that is based on sampling [14]. DHP
reduces the number of candidates with a hashing
technique, and transaction trimming is related to
the specific support-counting procedure. As ex-
plained previously, these techniques are encapsu-
lated in the candidate generation and testing
procedures and the memory-adaptive scheme will
not have to modify these techniques. For Parti-
tion, the memory-adaptive scheme will first handle
the candidate set in each partition according to the
basic framework, and then the same will apply for
the second phase as well (when testing against the
entire database) for the union of candidates
selected from each partition (i.e., candidates found
frequent in at least one partition). In a similar way
the memory-adaptive scheme will handle the
candidate sets generated by the algorithm of [14],
both in the first (when testing against the sample)
and second (when testing against the entire
database) phases. Analogous reasoning can be
applied to other CGT algorithms, e.g., [11] and
[17] (for its first phase in particular, which finds the
frequent closed candidates and is the most
computationally intensive).

Therefore, the proposed scheme (that is detailed
in the following section) can be combined with the
broad family of CGT algorithms. For purposes of
illustration, we selected as representative cases the
extension to the frameworks that are based on the
algorithms of [12,14]. The performance results for
these methods are reported in detail in Section 6.

5. Memory-adaptive schemes

In the previous section we described the algo-
rithm-framework for the development of memory-
adaptive schemes. These schemes determine the
different policies that can be followed to handle
memory fluctuations. For comparison purposes,
we first describe two simplistic approaches and
next we develop the proposed dynamic scheme.

5.1. Suspension

Consider the case of memory shortage during
the support counting stage of the association rule

query. As described, a number of candidates is
moved to secondary storage, and buffer space is
released to the DBMS. A straightforward ap-
proach to proceed from this point is to suspend the
execution of the association rule query. When
enough memory is given back to the query and all
the moved candidates can be restored back to
main memory (in the trie structure), then support
counting continues. The only information to
resume the procedure is the position of the
transaction in the database at which support
counting was suspended. While the query is
suspended, it may be required to release to the
DBMS even more buffer space. This can further
increase the suspension time.

When memory shortage occurs during candi-
date generation, the suspension scheme moves
candidates to secondary storage (so as to release
the required buffer space) and suspends the
generation of any additional candidates, until
enough memory is given back to the association
rule query.

Although the aforementioned issues correspond
to the use of the suspension scheme by the CGT
paradigm, it has to be noticed that it can be easily
modified so as to apply for non-CGT algorithms
as well. The reason is that it does not take any
actions besides the simple suspension of the mining
query, which can be done regardless of the specific
type of the association rule algorithm that is used
by the query.

5.2. Paging

In order to avoid suspension in case of memory
shortage, one could directly use a paging scheme
(virtual memory). In fact, this scheme can utilize
the paging mechanism that was described in the
framework algorithm of the previous section,
which moves candidates to/from the secondary
storage. Let us focus on memory shortage during
support counting. After a number of candidates
has been moved to disk, the paging scheme can
continue the support counting by considering the
candidates stored on secondary storage as being
‘normal’ entries in the trie structure. Pointers in
the ancestor nodes of such trie nodes will refer to
their address on disk. The direct probing of a trie

ARTICLE IN PRESS

A. Nanopoulos, Y. Manolopoulos / Information Systems 29 (2004) 365–384 373



that has several nodes stored on disk, evidently,
can result to a prohibitive cost. Therefore, we
introduce an LRU buffer to cache the frequently
accessed nodes that have been moved to disk. It
has to be noticed that the size of the LRU buffer is
taken into account together with the remainder
main memory that is used by the trie structure.
Thus, it results in a reduction of the memory
provided for normal (i.e., stored in main memory)
trie nodes. When memory is given back to the
association rule query, the corresponding number
of trie nodes are restored back to main memory
(also, they are flashed out from the buffer).

The paging scheme can easily handle repeated
memory requests from the DBMS. Each time, the
association rule query moves nodes to disk and
releases the requested main memory. Considering
memory shortage during the candidate generation
stage, the paging scheme stops generating any
more candidates and, differently from the suspen-
sion scheme, it does not wait until enough memory
is given back. Instead it treats the generated
candidates as a separate group of candidates (see
the framework algorithm in the previous section)
and proceeds to their support counting.

As in the case of the suspension scheme, the
paging scheme can be adapted to be combined
with non-CGT algorithms as well. However, this
adaptation is not as straightforward as in the case
of the suspension scheme, since it has to consider
the specific representation of patterns in main-
memory (e.g., the used data structures, etc), so as
to apply their paging. Nevertheless, following the
specific details of each approach, such an adapta-
tion is possible.

5.3. Dynamic scheme

The proposed scheme for memory-adaptive
association rule mining follows a different ap-
proach in comparison to the suspension and
paging schemes. Its objective is to dynamically
adapt to memory fluctuations, neither by stalling
the mining query nor by having to directly resort
to virtual memory. Therefore, as it will be
discussed in the following, it avoids the drawbacks
of the previously described schemes.

Suppose that memory shortage occurs during
support counting. The dynamic scheme proceeds
as follows:

1. The required number of candidates is moved
to disk, based on the framework algorithm.

2. The dynamic scheme marks those candidates
as ‘moved’,7 which denotes that these nodes
have been moved to disk at least once. Also,
let tm be the transaction ID number at which
the memory shortage occurred (i.e., the one
for which the support counting procedure
would probe the trie before memory short-
age). The dynamic scheme stores tm along
with each moved candidate.

3. Support counting continues regularly. How-
ever, differently from the paging scheme, the
candidates that have been moved to disk do
not participate, i.e., their support is not being
counted while they are stored on secondary
storage.

When the association rule query is requested to
release more memory while being in memory
shortage, more candidates have to be moved to
disk. In contrast, when memory is given back to
the query during support counting, a number of
candidates can be restored back to main memory.
Let one such candidate be c: Also let tm be the
transaction ID at which c was moved to disk, and
tr be the current transaction ID (at which c is
restored). The dynamic scheme increases the (so
far) counted support of c by tr � tm (assuming that
for the tr transaction we can perform support
counting for c).

Lemma 1. The dynamic scheme does not produce

false negatives (i.e., false-dismissals).

Proof. Let c be a candidate that remains on
secondary storage during support counting for
transactions with ID ranging from tm to tr:
Although its support is not being counted for
these intermediate transactions, it cannot be larger
than tr � tm; since the latter corresponds to the
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case where all transactions from tm to tr contain c

(i.e., it is the upper bound for the support increase
of c for these transactions). Let s0ðcÞ be the counted
support of c (using the previous method) and sðcÞ
its actual support. Hence, s0ðcÞXsðcÞ: If
sðcÞXMINSUP; then s0ðcÞXMINSUP: Therefore,
no large itemset is missed, and the dynamic scheme
does not produce false negatives. &

When support counting (for one or more
phases) is finished, then the large candidates are
determined (see the framework algorithm of
Section 4). If, under the dynamic scheme, a
candidate has support larger than MINSUP, then
we have to examine if it had been moved at least
once to disk (i.e., we test if its status information
denotes ‘moved’). If it had not been moved, then it
is a large candidate. Otherwise, we cannot decide
whether it is actually large or not, since its actual
support may be smaller than MINSUP. In this
case, the support of the candidate is reset to zero
and it remains in the trie structure as a normal
candidate, so as to recount its support (also the
‘moved’ status is cleared). In contrast, when the
support of a candidate is less than MINSUP, then
it is pruned regardless if it had been moved to disk.
Based on the aforementioned issues, we can prove
the following.

Lemma 2. The dynamic scheme does not produce

false positives.

Proof. Let c be a candidate that had been moved
at least once to disk. Also, let s0ðcÞ be its counted
support under the dynamic scheme and sðcÞ its
actual support (s0ðcÞXsðcÞ). If s0ðcÞXMINSUP; it
does not necessarily hold that sðcÞXMINSUP: For
this reason the support of c has to be counted
again. Thus, if sðcÞoMINSUP; the dynamic
scheme will not report c as large. In contrast, if
s0ðcÞoMINSUP; then it holds that
sðcÞoMINSUP: Hence, c is correctly pruned by
the dynamic scheme and will not be reported as
large. Therefore, the dynamic scheme does not
produce false positives. &

With Lemmas 1 and 2 it is shown that the
dynamic scheme generates all (no false negatives)

and only (no false positives) the large itemsets. It
has to be noticed that, when support counting has
been terminated, several candidates may remain
on secondary storage due to lack of buffer space.
While candidates are being pruned as non-large,
buffer space is freed. The candidates that are
stored on disk, are read using this freed buffer
space,8 and their support is updated according to
the dynamic scheme (using the difference of
transaction IDs), so as to examine if they can be
pruned or not. Evidently, since these candidates
are read from disk, they cannot actually be
determined as large because their status will
definitely be denote as ‘moved’.

Regarding memory shortage during candidate
generation, the dynamic scheme follows the same
approach as the paging scheme. The candidate
generation procedure stops generating any addi-
tional candidates. It treats the generated candi-
dates as a separate group of candidates (see the
framework algorithm in Section 4), and then
proceeds to the counting of their support.

5.4. Qualitative comparison

The suspension scheme is simple to implement.
However, it has the drawback of introducing
possibly long delay times, due to stalling. Depend-
ing on the system load, i.e., how often OLTP
transactions cause memory shortage to the asso-
ciation rule query, the total execution time of the
query can be significantly impacted.

Although the paging scheme does not introduce
delay times, it may cause trashing, i.e., the rapid
increase of accesses to secondary storage. Depend-
ing on the system load, a large number of trie
nodes may be moved to disk. Moreover, it has to
be considered that the access-patterns (in terms of
the trie probing) during support counting can be
quite scattered. Therefore, the LRU buffer may
not always be able to prevent thrashing, and the
execution time of the association rule query can be
severely impacted. If we use a very large LRU
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buffer, then the number of trie nodes that can be
kept in main memory will reduce substantially
(since the total available main memory is the sum
of the size of this LRU buffer and the size of the
trie). Evidently, this does not present a clear
solution, because it affects the number of candi-
dates that can be generated in each phase (i.e., will
result to the split of each phase in a large number
of sub-phases). Thus, one can expect the paging
scheme to efficiently handle small fluctuations
(with respect to the magnitude of requested
memory), since it will avoid suspensions with a
small cost of few accesses to secondary storage.
Moreover, for small fluctuations, the LRU buffer
can be effective. However, for medium and
especially for large fluctuations, the performance
of the paging scheme is expected to degenerate.

The dynamic scheme, differently from the
suspension scheme, does not introduce any stal-
ling. When memory shortage occurs during sup-
port counting, it dynamically adjusts to the
available memory by continuing the procedure
for the remaining candidates. For memory short-
age during candidate generation, it adjusts by
proceeding to the support counting of the candi-
dates that can fit in the available memory. Thus,
delay times are avoided. Moreover, differently
from the paging scheme, the dynamic scheme
avoids the involvement of candidates that, due to
memory shortage, have been moved to disk.
Hence, it avoids the scattered disk accesses and
the possibility of thrashing. It also takes advantage
of memory that is given back to the association
query, so as to restore moved candidates from disk
to main memory by assigning to them the upper
bound for their support. Conclusively, the dy-
namic scheme does not present the drawbacks of
the other two schemes. The superiority of the
proposed scheme is illustrated by the performance
results that is given in the next section.

6. Performance evaluation

In this section we present the experimental
results on the performance. All the described
schemes where implemented in C, using common
components. Henceforth we refer to the memory-

adaptive schemes as follows: to the suspension
scheme as ‘SPND’, to the paging scheme as
‘PGNG’, and to the dynamic scheme as ‘DNMC’.
In our measurements we considered the following
factors: the magnitude and the rate of memory
fluctuations, the duration of period for each
memory release (memory given from the associa-
tion rule query to the DBMS), the buffer size, and
the sensitivity against support threshold and
database size. We also considered the described
extensions for CGT algorithms and we examined
the impact that simplistic memory-adaptive
schemes may have on a non-CGT algorithm. For
our experiments we used a simulation model. For
this reason, we first give its description and then
we present the results.

6.1. Simulation model

As explained, we adopt the approach of [7] and
assume that the highest priority is given to OLTP
transactions, whereas the mining queries run in the
background. For simplicity, since we do not wish
to address concurrency control issues, the OLPT
transactions are assumed to perform ‘read-only’
operations. Also, following the approach of [2] so
as to clearly focus on the management of main
memory resource, we do not examine the impact
of contention on secondary storage (disk waiting
queues).

The simulation of a model that addresses the
aforementioned issues is described as follows. It
consists of an association rule query, which is
initially given an amount of main memory that can
store M nodes in the trie structure. We assume
that requests for memory releases (due to OLTP
transactions) have inter-arrival times which follow
exponential distribution with mean mint: By first
running the association rule query without being
subject to memory fluctuations, we get the total
execution time in this case. We determine mint as a
fraction of the latter execution time. Therefore, a
smaller fraction denotes higher memory fluctua-
tion rate, whereas a larger denotes a lower rate.
The size of memory fluctuation, called magnitude,
follows uniform distribution in the range from 0 to
a MemThresh (this size denotes the number of
nodes that have to be moved to secondary
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storage). The duration of each memory release
also follows exponential distribution, where its
mean mdur is given as a ratio of mint:When this ratio
is larger than 1, the association query may
terminate while some requests for memory release
may be pending. In this case, when the query
terminates, it releases to the DBMS all its working
main memory. In all cases, the query termination
determines its total execution time.

To have a strict control on the amount of
available main memory, we do not wish to directly
consider I/O operations with means of the operat-
ing system, since buffering performed by the
operating system may provide extra main memory
for avoiding I/O operations. For this reason,
following an approach analogous to [2], we model
the access to secondary storage by considering disk
page equal to 8 kB; disk seek time equal to 10 ms
and page transfer time equal to 2 ms: Moreover,
the net CPU time of the process is counted (all
schemes use the same programming components).
The total execution time is the sum of the CPU
and I/O time calculated by the simulation.

6.2. Basic comparison of memory-adaptive schemes

We used the basket-data generator of [8]. We
examined several instances with respect to transac-
tion length and pattern size. Herein, for brevity,
we present the results for T10.I6.D100K, since the
other cases gave analogous results with respect to
the relative performance of the examined schemes.

Our first experiment examines the magnitude of
memory fluctuations. The support threshold was
0.2% and the initial buffer size was set to hold
20% of the total number of candidates that were
generated in the case when no memory fluctua-
tions occur (see the simulation model). The
fraction of mean interarrival time was set to 10%
(corresponding to a relatively low system load).
The ratio of mean duration time to mean
interarrival time was 0.8. The magnitude of
memory fluctuation depends on the value of
MemThresh, which is given as a percentage of
the initial buffer size. Fig. 2 illustrates the results
with respect to the MemThresh percentage.

As shown, for low fluctuation magnitude all
schemes present comparable performance. How-

ever, the performance of PGNG quickly decreases,
starting after 5% magnitude. This is because larger
memory fluctuations cause many candidates to be
moved to disk. Since PGNG involves these
candidates for support counting, as expected, it
cannot avoid the thrashing that appears for larger
magnitudes (more than 7%). In contrast, the other
two schemes are not affected by the magnitude of
memory fluctuations, since they avoid the involve-
ment of candidates that are moved to secondary
storage.

We now move on to examine the impact of the
duration of memory fluctuations. We used a small
magnitude, equal to 1%, the fraction for mean
interarrival time was set to 2.5% and the remain-
ing parameters were the same as in the previous
experiment. Fig. 3 illustrates the results with
respect to the ratio of mean duration time.

SPND is clearly affected by the increase in mean
duration time (i.e., larger fraction values). The
reason is that when memory fluctuations have
larger duration, SPND is forced to suspend the
execution of the association rule query for larger
periods of time. Thus, the total execution time is
burdened significantly. In contrast, DNMC and
PGNG are not affected by this factor, since they
do not introduce any suspension during the
processing of the association rule query.

From the above two cases it is evident that, as
explained in Section 5.4, DNMC avoids the
drawbacks of the other two schemes and combines
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their advantages. Therefore, it offers the appealing
characteristic of robustness against the aforemen-
tioned factors.

6.3. Sensitivity against parameters

Next, we examined the impact of the rate of
fluctuations, given by the mean interarrival time.
We used MemThresh equal to 5%, whereas the
ratio of mean duration was set to 0.8 (both values
are relatively small according to the previous two
experiments in order to avoid the problematic
cases for both PGNG and SPND). The other
parameters were the same as the ones is the

previous measurements. Fig. 4a gives the results
with respect to the mean interarrival time (given as
a percentage). As depicted, for very frequent rates
(i.e., with small interarrival time) the effect is much
more pronounced for PGNG. This is due to the
large I/O traffic produced by PGNG, which is the
result of the frequent (and random) access to
candidates that are stored on disk. SPND is less
impacted, because it does not require to access
candidates that are stored on disk, but it is always
significantly worse than DNMC, since it fre-
quently has to suspend the execution of the
association rule query. For rates that correspond
to medium frequency of fluctuations, PGNG
performs better than SPND, because in such rates
the number of random accesses to disk is not as
large, and pays-off since it avoids suspension.
Nevertheless, PGNG still performs worse than
DNMC, because DNMC entirely avoids the
random accesses to disk-stored candidates. As
expected, with decreasing frequency of rate all
schemes converge to low execution times
(i.e., since very few memory fluctuations occur,
all schemes become equivalent).

To summarize all the aforementioned factors
and examine their combined impact, we performed
a measurement where we separated four cases with
respect to the values of fluctuations rate (measured
by mean interarrival time, where lower mean time
value denotes higher rate), the ratio of mean
duration (higher ratio denotes longer duration)
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and the magnitude. The four cases are described
with respect to the parameter values (respectively)
as follows: (1) 2.5%, 2.5, 4%, (2) 1%, 3.5, 5%, (3)
0.5%, 4, 5%, (4) 0.5%, 4, 8%. In brief, case 1 has
relatively low values for the three parameters, case
2 has a significant increase in duration, case 3 has
significant increase both in rate and duration, and
case 4 has an increase in all parameters. The results
are depicted in Fig. 4b (the time axis is plotted
logarithmic). In case 1 DNMC performs better
that the other two methods, but the performance
differences, in general, are moderate, because this
case corresponds to fluctuations that are relatively
small, short, and not very frequent. In case 2
PGNG outperforms SPND, due to the significant
increase in rate that impacts SPND. However,
since magnitude in this case is not negligible,
DNMC outperforms PGNG. Evidently, case 3
illustrates the drawback of PGNG when both
duration and rate are increased, because (as
described in previous experiments) in this case
PGNG results to large I/O traffic. SPND comes
second best, but it is also affected by the combined
increase in both factors. Finally, in case 4, where
all factors are increased, PGNG and SPND are
outperformed by DNMC by an order of magni-
tude. This is because in this case, fluctuations are
relatively long, large and occur often, a fact that
significantly affects both PGNG and SPND.
Therefore, as the values of all factors get high
values, DNMC maintains its good performance,

whereas the performance of the other two schemes
degenerates. This makes DNMC to become the
memory-adaptive scheme of choice.

We now turn our attention to the sensitivity
against the initially available buffer size. We set
interarrival time to 2.5%, magnitude to 4% and
duration ratio to 2.5 (in order to avoid the
problematic cases for PGNG and SPND). The
other parameters had the same values as those in
the previous experiments. Fig. 5a illustrates the
results with respect to the buffer size (as a
percentage). For low values of initial buffer size,
PGNG presents the worst performance. This is
because memory shortage (resulting from the
combination of small buffer size and memory
fluctuations) cause PGNG to frequently access
many candidates stored on disk. SPND is also
affected by a small buffer size, because it
frequently causes suspension. However, since the
I/O overhead of PGNG is excessive in this case,
SPND performs better. DNMC is less affected by
small buffer sizes, since it avoids the shortcomings
of both the latter approaches. For medium values,
PGNG and SPND perform similarly. The reason
is that the I/O overhead, due to PGNG, relatively
reduces. Nevertheless, both approaches are still
impacted by the limited buffer size and are
outperformed by DNMC. For large initial buffer
sizes, as expected, all schemes converge to the same
execution time, since the impact of memory
fluctuations in this case is not significant.
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Also, we measured the impact of support
threshold. We set the initial buffer size to 25%,
whereas all other parameters had the same values
as the ones in the previous experiment. The results
with respect to support threshold are given in Fig.
5b. Evidently, execution time reduces (for all
schemes) with increasing support threshold. The
relative performance of all methods is explained by
the factors described in the previous measure-
ments.

Finally, we examined the scalability of all
schemes to the database size. We used analogous
datasets and parameter values as in the ones in the
previous experiments (where support threshold
was set to 0.2%), and we varied the number of
customer transactions in the datasets. Fig. 6
depicts the results. As shown, DNMC has a linear
scale-up to the database size and clearly outper-
forms the other two methods, for the reasons
already explained. SPND is better than PGNG for
smaller databases, whereas for larger ones they
perform similarly. The reason is that for large
databases both the delay due to suspensions and
the I/O overhead are of equal importance.

6.4. Comparison of extended GCT frameworks

As explained (Section 4.2), we have combined
the memory-adaptive schemes with extended
frameworks that are based on other CGT algo-
rithms. Herein, as representative cases, we focus
on the algorithms of [12,14]. When we separately

applied all the schemes (i.e., SPND, PGNG, and
DNMC) to each of the extended frameworks, we
found results analogous to those presented earlier,
in terms of relative performance (i.e., DNMC
outperforms the other two schemes in all cases).
For brevity we omit these results, and we move on
to compare the basic with the extended frame-
works, under the DNMC scheme. DNMC-B
denotes the basic form of the framework, whereas
DNMC-H and DNMC-S the extended frame-
works that use the algorithms of [12,14], respec-
tively.

Fig. 7a illustrates the execution time with
respect to support threshold (given in percentage).
The other parameters had values that were the
same as those in the previous experiments.
DNMC-H and DNMC-S clearly outperform
DNMC-B. This is expected due to the extended
frameworks they use, which achieve a reduction in
the cost of generating and testing candidates ([12]
reduces the number of candidates and [14] the
number of passes). Comparing the DNMC-H and
DNMC-S schemes, it is noticed that they perform
similarly. Nevertheless, DNMC-S presents a slight
improvement for medium and high support values,
which is explained by the reduced number of
passes relative to DNMC-H (since the number of
candidates for such support values is not as large,
the improvement of DNMC-H over DNMC-S in
terms of this factor is moderated).

It has to be noticed that the extended frame-
works may present increased memory require-
ments, compared to the basic one. This issue
becomes important in the context of memory
fluctuations. For instance, DNMC-H maintains a
main-memory hash table that is used for candidate
pruning. Nevertheless, the reduction in the number
of candidates, which is attained by DNMC-H,
clearly compensates the memory reserved by the
hash table. On the other hand, in its first stage
(when testing against the sample), DNMC-S uses a
reduced support value, so as to reduce the number
of missed candidates in the second stage. This can
increase the required memory, since a larger
number of candidates may be generated, com-
pared to DNMC-B. In stand-alone execution,
when sufficient memory is provided, this cost
pays-off due to the reduction in the number of
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phases. However, in the examined context, buffer
size is constrained and fluctuates, thus this
requirement of DNMB-S may impact its perfor-
mance.

For the aforementioned reasons, we measured
the execution time with respect to the initial buffer
size. The results are depicted in Fig. 7b (time axis is
plotted in log-scale). As shown, a low value of
initial buffer size impacts DNMC-S. The reason is
that, as explained, the larger number of candi-
dates, produced by DNMC-S, burdens its perfor-
mance during memory fluctuations (i.e., many of
them have to be stored on disk to release memory).
In contrast, DNMC-H is not affected that much,
since its hash table requires only a small amount of
memory. As expected, when moving to larger
values of initial buffer size, the execution time of
DNMC-S reduces, because it is not impacted by
the latter problem (i.e., the larger number of
candidates in the first stage can be better handled
under memory fluctuations, and they help in
reducing the number of phases). Clearly, when a
large (50%) initial buffer size is provided, memory
fluctuations have a very small affection, and the
performance of all methods is similar. It should be
noticed that the aforementioned results with
respect to the initial buffer size, exemplify the
different requirements of the examined problem
compared to the ones of existing approaches that
have been designed for stand-alone execution.

6.5. Examination of a GP algorithm

As mentioned, for purposes of comparison,
we examined the combination of memory-adaptive
schemes with a non-CGT algorithm. The objec-
tive of this measurement (see also the description
in the end of this section) is to demonstrate that
the non-dynamic schemes (i.e., SPND and
PGNG), which can be applied to non-CGT
algorithms, significantly impact their efficiency.
In particular, we focus on the FP-Growth algo-
rithm, because it is efficient in terms of stand-alone
execution, and a characteristic algorithm of the
PG paradigm. We have used the PGNG scheme
combined with FP-Growth, according to the kind
of group accessing mode that is described in [9].
However, in the presence of memory fluctuations
and due to the significant main memory require-
ments that FP-Growth presents (see Section 2), it
results to large I/O overhead. For this reason,
herein we focus on the use of SPND scheme
combined with FP-Growth, and the resulting
method is denoted as FP-S.

As described, the data structure (FP-tree) that is
used by FP-Growth needs considerable memory.
For fair comparison, in our experiments we
provided to FP-S an initial buffer size that is
larger (additional 10%) than that required for the
accommodation of FP-tree entirely in main
memory. We compared this method with
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DNMC-H, i.e., the DNMC scheme that uses the
extended framework described in the previous
experiment (DNMC-H gets the same initial buffer
size with FP-S).

We first measured the impact of memory-
fluctuation magnitude, whereas the other para-
meters contained the same values as those in the
previous experiments. The results are given in
Fig. 8a. For very low magnitude values, the impact
of fluctuations is not significant. Therefore, this
case is similar to the stand-alone execution, since
the algorithms are given adequate memory and
they do not undergo significant memory fluctua-
tions. Therefore, as expected, FP-S clearly outper-
forms DNMC-H in this case. The reason is its
efficient technique of pattern fragment growth,
which avoids overheads that CGT algorithms, in
general, introduces. Nevertheless, as magnitude
values increase, the impact of fluctuations becomes
more significant. FP-S, due to its larger memory
requirements, is more clearly affected. The release
of significant amounts of memory to the DBMS
reduces the memory that is available to FP-S, a
fact that restrains its execution. In contrast, the
performance of DNMC-H remains about the
same, because the initially provided amount of
buffer size (combined with its smaller main-
memory requirements) is adequately large so that
it can handle larger memory fluctuations.

We also examined the impact of fluctuation rate.
As previously, we assign to FP-S an initial buffer

size larger than that needed to accommodate the
FP-tree. According to the previous experiment, we
selected a low magnitude for memory fluctuations,
i.e., 2%, so as to clearly examine the impact of
fluctuation rate. The results are depicted in Fig. 8b
with respect to mean interarrival time (given as
percentage), where smaller values of this para-
meter correspond to larger rates of fluctuations
(see Section 6.1). As expected, when memory
fluctuations are rare (i.e., higher values of inter-
arrival time), FP-S outperforms DNMC-H. The
reason is the same as in the previous experiment,
since these cases are similar to the stand-alone
execution. However, as fluctuations become more
frequent (i.e., lower values of interarrival time), the
execution time of FP-S increases. Although the
magnitude of fluctuations is not large, their
increased frequency restricts the memory that is
available to FP-S. Thus, its execution time is
impacted. Similar to the previous experiment,
DNMC-H is not impacted, because the initially
provided buffer size is large enough to compensate
the fluctuations.

The two previous measurements indicate
the argument stated earlier, that in the context
of mixed workloads with memory fluctuations,
the execution time of association rule queries
depends significantly on the effectiveness of the
memory-adaptive scheme. Therefore, a not good
memory-adaptive scheme can impact the perfor-
mance of an efficient (in terms of stand-alone
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execution) association rule algorithm. As already
described, we address as a topic of future work
the development of dynamic memory-adaptive

schemes for non-CGT algorithms, which are
expected to reduce further the execution times.
However, it must be noticed that the development
of dynamic schemes for such algorithms has to
address the increased main memory requirements
that some of them present.

7. Conclusions

We have examined the main memory manage-
ment for mixed workloads, consisting of OLTP
transactions and association-rule mining queries.
We adopt a prioritization scheme that assigns the
largest priority to OLTP transactions and con-
siders that mining queries run in the background.
Therefore, the latter are presented with the
problem of having to adapt to varying buffer size.

We have developed a novel memory-adaptive
scheme for association rule mining queries. To our
knowledge, no prior work has considered this case.
The proposed scheme provides efficient and
dynamic adjustment to memory fluctuations, and
avoids the drawbacks of simplistic approaches
(namely, the suspension and the direct resort to
virtual memory). We have also proved the
correctness of the proposed scheme, and we have
extended it to be combined with a broad class of
association rule algorithms.

The performance of the proposed scheme was
examined with detailed experiments. Based on a
simulation model, we have evaluated the impact of
several factors, like the magnitude and the rate of
memory fluctuations, the duration of period for
each memory release, the initial buffer size, and
finally the sensitivity against support threshold
and database size. All measurements indicate the
superiority of the proposed scheme.

Future work will include the examination of
other prioritization schemes. For instance, con-
strained association rule queries [26] may present
reduced memory (and CPU) requirements. Thus,
they may obtain priority over some OLTP
transactions. Also, we will focus on an examina-
tion of other performance factors, like delays

introduced by disk queues. Finally, we will work
on the development of dynamic memory-adaptive
schemes that can be combined with non-CGT
association rule algorithms.
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