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Consider a file that resides in a linear storage device with one read head. Suppose that several queries on the file must be 
answered simultaneously with no prespecified order. To satisfy the ith query the head must be located at point I., of the file 

and traverse the file up to point R, without interruptions, where 1~ L, < R, 4 N denote positions in the file. We wish to find 

the execution order that minimizes the total time to service all queries. measured as the total distance traversed by the head. 

Although this is obviously a special type of traveling salesman problem. we show that the optimum sequence can be 

determined by a simple algorithm in G(n log n) time. The case in which the head may traverse a file in reverse is similarly 

solved. 
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1. Introduction 

The optimal execution of a set of batched 
queries in a disk is an old and honored problem 
(see, e.g., [2,3,12,15]). Its significance declined with 
the replacement of file systems by more sophisti- 
cated database technology. More recently, how- 
ever, the problem has reemerged in different con- 
texts and guises, as an important optimization 
problem within advanced database systems. For 
example, it arises as the final, physical level, opti- 
mization phase in the implementation of conjunc- 
tive queries (one of the most basic optimization 
problems in databases and AI, see [4,1,12,11]). 
Also, it is one of the basic optimization problems 
arising in the efficient implementation of the rule 
satisfaction subsystem (sometimes called inference 
engine) of logic databases and knowledge bases 

[14]. It is therefore quite timely that the corre- 
sponding computational problem-which a priori 

seems quite hard-is completely and satisfactorily 
solved in the present paper. 

The problem can be posed as follows: Consider 
a file that resides in iV consecutive locations of a 
linear storage medium such as a disk or a tape. We 
identify each location by a number i, 1 d i G N; it 
may correspond to a block (for files in magnetic 
tape), bucket, page, or cylinder (for files in a disk). 
We must service a batch of n queries on this file; 

the queries are of various origins and degrees of 
complexity, e.g. queries based on single or range 
primary key values, secondary key retrievals, etc. 

Each query q, is satisfied by a set of records 
residing at a subset of the N locations. In fact, 
most file organization schemes provide mecha- 
nisms for determining quickly the set of locations 
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containing the records satisfying the query. Thus, 
for each query q, we can assume that we know the 
first (leftmost) location that satisfies it. call it L,, 
as well as the rightmost. R,. We assume that, in 
order to answer q,, the head must traverse all 
locations between R, and L, without interrup- 
tions and from left to right. In other words, we 

rule out techniques that would interleave searches 
for more than one query, or that may traverse the 
records in reverse order (we later relax this latter 
assumption). We assume that in the beginning the 
head is positioned at location 0, and it need not 
return after the end (actually, the problem in 
which the head returns to position 0 after 
processing all queries can be solved in a similar- 

in fact, slightly simpler-manner). The problem 
is, how to sequence the queries so as to optimize 

the travel time of the head? Naturally, there is no 

way to save the travel time from L, to R, for each 
query q,; however, the precise order of answering 
the queries can have a dramatic effect on the total 
travel time between queries. 

For example, take the six queries shown in 
Table 1. Satisfying them in the order q,, q2, q3, 
q4, qs, q6 would require the head to travel be- 
tween answering queries from location 0 to L, 
(remember, the head resides initially in location 
0), from R, to L,, from R, to L,, from R, to L,, 
from R, to L,, and from R, to L,, which would 
result in a total travel time between queries of 
12 + 85 + 13 + 33 + 30 + 8 = 181. The optimal 

order, q2, q4, q3, ql, qs, q6 (which we shall 
explain how to find easily) requires only 5 + 10 + 

3 + 41 + 20 + 8 = 87 travel time between queries. 
The query sequencing problem is to find the se- 
quence that results in the smallest travel time. 

In another variant of the problem, we allow the 
head to answer a query by traversing its range in 

Table 1 

An Example 

Query 

41 

q2 

q3 

q4 

45 

% 

4 R, 
12 90 

5 30 

43 53 

20 40 

70 80 

72 82 

142 

reverse order. In other words, we do not care if the 
records of a query are retrieved in reverse order. 
as long as they are not intermixed with records 

from other queries. In this case, a better traversal 

sequence is possible, namely q2. q,. q6, q5, q3. q4 
(of which only the first two are traversed in the 
forward direction, and all others backwards) with 
extra travel of 49. We call this the two-way quec) 
sequencing problem. 

These problems have been studied extensively 
in the past (see, for example, [2,3] and the survey 

paper by Wong [15]). The thrust of previous work 
was to devise simple motion rules for the head 
(example: “Service next the query with starting 
record closest to the current head position.“) whose 

performance is good on the auerage, under the 
assumption that Ri’s and L,‘s are somehow uni- 

formly distributed. It is easy to see that these 
rules, although efficient on the average, are in 
general suboptimal with respect to worst case (this 
observation motivated our work). In fact, if the 
queries originate from many different families. 

such as range queries, individual queries, batches 
of primary key queries, secondary key queries. 
etc., it should be expected that their statistical 
parameters may differ significantly from the uni- 
formly distributed case. The main asset of the 

rules analyzed in the literature, besides their good 
average-case performance under probabilistic as- 
sumptions, has been their simplicity. In this paper, 
we show that finding the exact optimum processing 
sequence does not require much more sophisti- 
cated algorithms for head motion; the most com- 
plex operations of our algorithm involve sorting 
the Li’s and R,‘s and manipulating in an elemen- 
tary way a balanced tree containing the R,‘s and 

Li ‘s. 
The algorithm that we propose is of a sort 

rather common in the traveling salesman litera- 
ture, sometimes called subtour patching (see [9, 
Chapter 41). The basic idea is to find the optimal 
assignment (which may be disconnected), and then 
“patch” the pieces in an optimal way. This tech- 
nique has been used in the past in order to solve 
other variants of the traveling salesman problem, 
including one that is superficially very similar to 
ours: Optimize head motion in a circular storage 

-medium. in which record N coincides with record 
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0 [5.6]. However, the technique in these papers 
does not apply to the linear storage medium prob- 
lem. which we discuss and solve in this paper. 

2. The algorithm 

The query sequencing problem can be for- 
mulated as a traveling salesman problem [9]: We 

create a “city” c, for every query q,, and an extra 
city c0 (for the initial position of the head at 

location 0). The distance from c, to c,, i, j > 1. 
i#j, is taken to be 1 R, - L, ]-the amount of 
extra travel between queries that results if query q, 
is serviced immediately after q,. The distance from 
c,, to c, is L,-the initial extra travel-and the 
distance between c, and ca is O-no charge for 
ending up at R,. Notice that the distances are not 
symmetric. We wish to find the shortest tour start- 

ing from ce, visiting all cities, and ending in cO. 
The shortest tour is obviously the query sequence 
that induces the least extra travel time. 

A tour can be considered as a connected di- 

rected graph with all nodes having indegree one 
and outdegree one. A directed graph with all 

nodes having indegree and outdegree one (but not 
necessarily connected) is called an assignment. As 
with many algorithms for special cases of the 

traveling salesman problem (see [9, Chapter 41) 
our algorithm first finds an optima1 assignment. 
and then enforces connectivity in an optima1 way. 
There is a polynomial-time algorithm for finding 
the shortest assignment (see, e.g., [lo]), but in our 
special case it can be done much easier as follows: 
We sort the Lj’s and the R,‘s in increasing orders 
separately, and call the two resulting permutations 
X and p: i < j implies Rpti, < RpCj, and LA(,) < 

LACj,. We let p(0) = X(n + 1) = cO. 

Lemma 1. The shortest assignment contains the arcs 

(p(i), X(i+ l)), i=O ,..., n. 

Proof. See, e.g., [8]. 0 

We shall be constructing the optimum tour of 
the cities, as a set of arcs (c,, cj), where we say 
that (ci, c,) is in the tour if we visit city c, im- 
mediately following city ci. From the optimum 

tour. we can derive immediately the optimum head 
motion: Initially. the head goes to L,. where 

(cl). c,) is in the tour. After this, if the head is on 

L,, then it should move to R, answering query q,. 
If the head is in R,, then it should next go to L,. 

where (c,, c,) is in the tour. Finally, if (c,. c,) is in 

the tour, the process is over, and the head may 
stay at R,. Up to now. the “tour” under construc- 
tion contains the arcs in the optimum assignment. 

Recall that the optimum assignment may con- 
sist of several disconnected cycles. denoted 

K ,, . . ., K,. In the example of Table 1 the opti- 
mum assignment consists of the arcs (c,,, c?), 

(cz. c,),(c,, CO).(Cl, C‘$).(CJ, CJ), (cg. c,). (c,. cs)* 
and thus has four cycles, namely ( cO. c2. c,), ( c3). 
(c.,). and (c,. cs). Our next task is to “patch” 
these cycles together in an optima1 way. to obtain 
the shortest tour. The cycle involving c0 

((co. c2. c,) in our example) is called the basic 

cycle, and is denoted K,; it also contains cx(,) and 
cP(,) (the queries with the leftmost and rightmost 

endpoints). Our algorithm will repeatedly merge 
nonbasic cycles among themselves and with the 

basic cycle, until there is only one cycle. namely 
the optimum tour. 

The merging is done in two phases. In the first 
phase we perform mergings that add nothing to 
the cost of the final solution, and in the second 
phase we perform mergings that increase the cost. 

Define the span of a nonbasic cycle K, to be the 
interval between the leftmost L, and the rightmost 
Rj in the cycle. The span of the basic cycle is a set 
of intervals. namely the union of all intervals 
[R,, L,] for each consecutive pair of cities c,, c, in 
K, (this special treatment of K, reflects the fact 
that there is no travel from RpCn) back to location 

0). 
In the first phase we repeat the following step: 

Find a pair of cycles with intersecting spans, and 
merge them at no extra cost. The merging is done 

by finding two arcs (c,, c, ) and ( ck, c,). one in 
each cycle, such that the intervals [L,. R;] and 

[L,, Rk] intersect (this is always possible for cycles 
with intersecting spans). We then merge the two 
cycles by replacing the two arcs (c,, c,) and ( c~, c,) 
by (c,, c,) and ( ck. cj). For example, we notice 
that the span of cycle (cq) overlaps with the span 
of the basic cycle, and thus we replace arcs ( c2, c,) 
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and (cd. cJ) by (c?. cd) and (c,, c,); the two of L,‘s and R,‘s to its left is balanced (and thus to 
cycles are thus merged in one (basic) cycle, its right also), these portions will make up an 

(c,, cz, c43 c,). Obviously, this results in no extra assignment of the cities involved, and therefore a 
cost. Repeating this as many times as possible, we tour. Also, again because of the balanced L,‘s and 
end up with an optimal assignment whose cycles R,‘s, there is an arc leaving and an arc coming 
have disjoint spans. (Notice that we postpone the into each span, both from the same boundary. It 
description of the efficient way to implement these follows that any tour can be decomposed into 
manipulations until the detailed analysis of the tours of the cycles of the assignment, plus pairs of 
running time of the algorithm.) In the first phase, arcs connecting the spans. Since the constructed 
therefore, we do nothing more than finding a tour optimizes both parts (it consists of the opti- 
particular optimal assignment (the one that has mal assignment, plus a shortest spanning tree of 
the fewest possible cycles). the cycles), it is optimum. q 

In the second phase we find the optimum tour 

by repeatedly merging cycles with disjoint spans. 
Define the distance of two cycles to be the smal- 

lest distance between two points of the corre- 
sponding spans. For example, the distance be- 

tween cycles (cj) and (c,, cg) is 17, and the dis- 
tance between (c,) and the basic cycle is 3. We 
consider thus the cycles as nodes with these dis- 
tances, and find their minimum spanning tree 
[&lo]. Finally, for each two cycles that are con- 
nected in the minimum spanning tree, we find two 
arcs, (c,, c,) and ( c~., c,), one in each cycle, such 
that the points R, and L, realize the distance of 

the cycles. We then merge the two cycles by re- 

placing the two arcs ( ci, cj) and (ck, c,) by (ci, cI-) 
and ( ck, c, ). In our example, the shortest distance 

3 will definitely be in the spanning tree, and thus 

we replace (c,, c,) and (c,, cj) by (c,, cj) and 
(c,, c,), thus merging the two cycles at a cost of 6, 
twice the distance. We continue merging the cycles 

that are connected in the shortest spanning tree, 
until a single cycle results. 

It remains to describe how we can implement 
all these steps efficiently. Sorting the L,‘s and R,‘s 
can be done in O(n log n) time. We can search 
for cycles with intersecting spans by inserting the 

endpoints of the spans in a balanced search tree 
one after the other, and merging each time an 

intersection is detected. Insertion and detection 
takes O(log n) time, and there are at most 2n of 
these. The resulting tree will also contain the 
spans from left to right, and thus information 

concerning the leftmost and rightmost points and 
the distances is also immediately available. Phase 

two can be similarly carried out in 0( n log n ) 
time. 

Theorem 3. The query sequencing problem can be 
solved exactly in O(n log n) time. 

That the algorithm described above yields an 

optimal tour can be shown as a consequence of [9, 
Chapter 4, Theorem 151. However, we shall give 

an independent proof. 

The two-way query sequencing problem can 
also be solved by a very similar algorithm, which 

we outline below. In this case we find not the 
optimal assignment, but the optimum matching of 
the L,‘s and Ri’s, now considered as members of 
one set. We then merge the resulting cycles exactly 
in the same way. The details, very similar to those 

above, are omitted. 
Lemma 2. The tour resulting from repeatedly merg- 
ing the cycles of the optimum assignment as de- 
scribed above is optimum. 

Theorem 4. The two-way queT sequencing problem 
can be solved in 0( n log n) time. 

Proof. Given any tour, consider the spans of the 
cycles. Since the tour is connected, there are arcs 
of the form (Ri, Lj) going in and out from each 
span. Consider then the portions of the arcs within 
the span. Since at each span boundary the number 

Finally, as an open problem, we propose the 
intermediate case, in which certain queries must 
be answered in the forward direction, and the rest 
in the backward direction. The techniques used 
above do not appear to generalize to this variant. 
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