
Information Processing Letters 36 (1990) 141-145

North-Holland

1 November 1990

THE OPTIMUM EXECUTION ORDER OF QUERIES IN LINEAR STORAGE

John G. KOLLIAS

Notional Technical Universit.v of Athens. Greece

Yannis MANOLOPOULOS

Aristotelian University of Thessaloniki, Greece

Christos H. PAPADIMITRIOU

Uniuersity of California, San Diego, CA, USA

Communicated by D. Cries

Received 26 March 1990

Consider a file that resides in a linear storage device with one read head. Suppose that several queries on the file must be
answered simultaneously with no prespecified order. To satisfy the ith query the head must be located at point I., of the file

and traverse the file up to point R, without interruptions, where 1~ L, < R, 4 N denote positions in the file. We wish to find

the execution order that minimizes the total time to service all queries. measured as the total distance traversed by the head.

Although this is obviously a special type of traveling salesman problem. we show that the optimum sequence can be

determined by a simple algorithm in G(n log n) time. The case in which the head may traverse a file in reverse is similarly

solved.

Keywords: Databases, analysis of algorithms, batched disk queries

1. Introduction

The optimal execution of a set of batched
queries in a disk is an old and honored problem
(see, e.g., [2,3,12,15]). Its significance declined with
the replacement of file systems by more sophisti-
cated database technology. More recently, how-
ever, the problem has reemerged in different con-
texts and guises, as an important optimization
problem within advanced database systems. For
example, it arises as the final, physical level, opti-
mization phase in the implementation of conjunc-
tive queries (one of the most basic optimization
problems in databases and AI, see [4,1,12,11]).
Also, it is one of the basic optimization problems
arising in the efficient implementation of the rule
satisfaction subsystem (sometimes called inference
engine) of logic databases and knowledge bases

[14]. It is therefore quite timely that the corre-
sponding computational problem-which a priori

seems quite hard-is completely and satisfactorily
solved in the present paper.

The problem can be posed as follows: Consider
a file that resides in iV consecutive locations of a
linear storage medium such as a disk or a tape. We
identify each location by a number i, 1 d i G N; it
may correspond to a block (for files in magnetic
tape), bucket, page, or cylinder (for files in a disk).
We must service a batch of n queries on this file;

the queries are of various origins and degrees of
complexity, e.g. queries based on single or range
primary key values, secondary key retrievals, etc.

Each query q, is satisfied by a set of records
residing at a subset of the N locations. In fact,
most file organization schemes provide mecha-
nisms for determining quickly the set of locations

0020-0190/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 141

Volume 36. Number 3 INFORht.+TION PROCESSING LETTERS 1 November 1990

containing the records satisfying the query. Thus,
for each query q, we can assume that we know the
first (leftmost) location that satisfies it. call it L,,
as well as the rightmost. R,. We assume that, in
order to answer q,, the head must traverse all
locations between R, and L, without interrup-
tions and from left to right. In other words, we

rule out techniques that would interleave searches
for more than one query, or that may traverse the
records in reverse order (we later relax this latter
assumption). We assume that in the beginning the
head is positioned at location 0, and it need not
return after the end (actually, the problem in
which the head returns to position 0 after
processing all queries can be solved in a similar-

in fact, slightly simpler-manner). The problem
is, how to sequence the queries so as to optimize

the travel time of the head? Naturally, there is no

way to save the travel time from L, to R, for each
query q,; however, the precise order of answering
the queries can have a dramatic effect on the total
travel time between queries.

For example, take the six queries shown in
Table 1. Satisfying them in the order q,, q2, q3,
q4, qs, q6 would require the head to travel be-
tween answering queries from location 0 to L,
(remember, the head resides initially in location
0), from R, to L,, from R, to L,, from R, to L,,
from R, to L,, and from R, to L,, which would
result in a total travel time between queries of
12 + 85 + 13 + 33 + 30 + 8 = 181. The optimal

order, q2, q4, q3, ql, qs, q6 (which we shall
explain how to find easily) requires only 5 + 10 +

3 + 41 + 20 + 8 = 87 travel time between queries.
The query sequencing problem is to find the se-
quence that results in the smallest travel time.

In another variant of the problem, we allow the
head to answer a query by traversing its range in

Table 1

An Example

Query

41

q2

q3

q4

45

%

4 R,
12 90

5 30

43 53

20 40

70 80

72 82

142

reverse order. In other words, we do not care if the
records of a query are retrieved in reverse order.
as long as they are not intermixed with records

from other queries. In this case, a better traversal

sequence is possible, namely q2. q,. q6, q5, q3. q4
(of which only the first two are traversed in the
forward direction, and all others backwards) with
extra travel of 49. We call this the two-way quec)
sequencing problem.

These problems have been studied extensively
in the past (see, for example, [2,3] and the survey

paper by Wong [15]). The thrust of previous work
was to devise simple motion rules for the head
(example: “Service next the query with starting
record closest to the current head position.“) whose

performance is good on the auerage, under the
assumption that Ri’s and L,‘s are somehow uni-

formly distributed. It is easy to see that these
rules, although efficient on the average, are in
general suboptimal with respect to worst case (this
observation motivated our work). In fact, if the
queries originate from many different families.

such as range queries, individual queries, batches
of primary key queries, secondary key queries.
etc., it should be expected that their statistical
parameters may differ significantly from the uni-
formly distributed case. The main asset of the

rules analyzed in the literature, besides their good
average-case performance under probabilistic as-
sumptions, has been their simplicity. In this paper,
we show that finding the exact optimum processing
sequence does not require much more sophisti-
cated algorithms for head motion; the most com-
plex operations of our algorithm involve sorting
the Li’s and R,‘s and manipulating in an elemen-
tary way a balanced tree containing the R,‘s and

Li ‘s.
The algorithm that we propose is of a sort

rather common in the traveling salesman litera-
ture, sometimes called subtour patching (see [9,
Chapter 41). The basic idea is to find the optimal
assignment (which may be disconnected), and then
“patch” the pieces in an optimal way. This tech-
nique has been used in the past in order to solve
other variants of the traveling salesman problem,
including one that is superficially very similar to
ours: Optimize head motion in a circular storage

-medium. in which record N coincides with record

Volume 36. Number 3 INFORMATIOS PROCESSING LETTERS 1 No\smber 1990

0 [5.6]. However, the technique in these papers
does not apply to the linear storage medium prob-
lem. which we discuss and solve in this paper.

2. The algorithm

The query sequencing problem can be for-
mulated as a traveling salesman problem [9]: We

create a “city” c, for every query q,, and an extra
city c0 (for the initial position of the head at

location 0). The distance from c, to c,, i, j > 1.
i#j, is taken to be 1 R, - L,]-the amount of
extra travel between queries that results if query q,
is serviced immediately after q,. The distance from
c,, to c, is L,-the initial extra travel-and the
distance between c, and ca is O-no charge for
ending up at R,. Notice that the distances are not
symmetric. We wish to find the shortest tour start-

ing from ce, visiting all cities, and ending in cO.
The shortest tour is obviously the query sequence
that induces the least extra travel time.

A tour can be considered as a connected di-

rected graph with all nodes having indegree one
and outdegree one. A directed graph with all

nodes having indegree and outdegree one (but not
necessarily connected) is called an assignment. As
with many algorithms for special cases of the

traveling salesman problem (see [9, Chapter 41)
our algorithm first finds an optima1 assignment.
and then enforces connectivity in an optima1 way.
There is a polynomial-time algorithm for finding
the shortest assignment (see, e.g., [lo]), but in our
special case it can be done much easier as follows:
We sort the Lj’s and the R,‘s in increasing orders
separately, and call the two resulting permutations
X and p: i < j implies Rpti, < RpCj, and LA(,) <

LACj,. We let p(0) = X(n + 1) = cO.

Lemma 1. The shortest assignment contains the arcs

(p(i), X(i+ l)), i=O ,..., n.

Proof. See, e.g., [8]. 0

We shall be constructing the optimum tour of
the cities, as a set of arcs (c,, cj), where we say
that (ci, c,) is in the tour if we visit city c, im-
mediately following city ci. From the optimum

tour. we can derive immediately the optimum head
motion: Initially. the head goes to L,. where

(cl). c,) is in the tour. After this, if the head is on

L,, then it should move to R, answering query q,.
If the head is in R,, then it should next go to L,.

where (c,, c,) is in the tour. Finally, if (c,. c,) is in

the tour, the process is over, and the head may
stay at R,. Up to now. the “tour” under construc-
tion contains the arcs in the optimum assignment.

Recall that the optimum assignment may con-
sist of several disconnected cycles. denoted

K ,, . . ., K,. In the example of Table 1 the opti-
mum assignment consists of the arcs (c,,, c?),

(cz. c,),(c,, CO).(Cl, C‘$).(CJ, CJ), (cg. c,). (c,. cs)*
and thus has four cycles, namely (cO. c2. c,), (c3).
(c.,). and (c,. cs). Our next task is to “patch”
these cycles together in an optima1 way. to obtain
the shortest tour. The cycle involving c0

((co. c2. c,) in our example) is called the basic

cycle, and is denoted K,; it also contains cx(,) and
cP(,) (the queries with the leftmost and rightmost

endpoints). Our algorithm will repeatedly merge
nonbasic cycles among themselves and with the

basic cycle, until there is only one cycle. namely
the optimum tour.

The merging is done in two phases. In the first
phase we perform mergings that add nothing to
the cost of the final solution, and in the second
phase we perform mergings that increase the cost.

Define the span of a nonbasic cycle K, to be the
interval between the leftmost L, and the rightmost
Rj in the cycle. The span of the basic cycle is a set
of intervals. namely the union of all intervals
[R,, L,] for each consecutive pair of cities c,, c, in
K, (this special treatment of K, reflects the fact
that there is no travel from RpCn) back to location

0).
In the first phase we repeat the following step:

Find a pair of cycles with intersecting spans, and
merge them at no extra cost. The merging is done

by finding two arcs (c,, c,) and (ck, c,). one in
each cycle, such that the intervals [L,. R;] and

[L,, Rk] intersect (this is always possible for cycles
with intersecting spans). We then merge the two
cycles by replacing the two arcs (c,, c,) and (c~, c,)
by (c,, c,) and (ck. cj). For example, we notice
that the span of cycle (cq) overlaps with the span
of the basic cycle, and thus we replace arcs (c2, c,)

143

Volume 36. Number 3 INFORMATION PROCESSING LET-I-ERS 1 November 1990

and (cd. cJ) by (c?. cd) and (c,, c,); the two of L,‘s and R,‘s to its left is balanced (and thus to
cycles are thus merged in one (basic) cycle, its right also), these portions will make up an

(c,, cz, c43 c,). Obviously, this results in no extra assignment of the cities involved, and therefore a
cost. Repeating this as many times as possible, we tour. Also, again because of the balanced L,‘s and
end up with an optimal assignment whose cycles R,‘s, there is an arc leaving and an arc coming
have disjoint spans. (Notice that we postpone the into each span, both from the same boundary. It
description of the efficient way to implement these follows that any tour can be decomposed into
manipulations until the detailed analysis of the tours of the cycles of the assignment, plus pairs of
running time of the algorithm.) In the first phase, arcs connecting the spans. Since the constructed
therefore, we do nothing more than finding a tour optimizes both parts (it consists of the opti-
particular optimal assignment (the one that has mal assignment, plus a shortest spanning tree of
the fewest possible cycles). the cycles), it is optimum. q

In the second phase we find the optimum tour

by repeatedly merging cycles with disjoint spans.
Define the distance of two cycles to be the smal-

lest distance between two points of the corre-
sponding spans. For example, the distance be-

tween cycles (cj) and (c,, cg) is 17, and the dis-
tance between (c,) and the basic cycle is 3. We
consider thus the cycles as nodes with these dis-
tances, and find their minimum spanning tree
[&lo]. Finally, for each two cycles that are con-
nected in the minimum spanning tree, we find two
arcs, (c,, c,) and (c~., c,), one in each cycle, such
that the points R, and L, realize the distance of

the cycles. We then merge the two cycles by re-

placing the two arcs (ci, cj) and (ck, c,) by (ci, cI-)
and (ck, c,). In our example, the shortest distance

3 will definitely be in the spanning tree, and thus

we replace (c,, c,) and (c,, cj) by (c,, cj) and
(c,, c,), thus merging the two cycles at a cost of 6,
twice the distance. We continue merging the cycles

that are connected in the shortest spanning tree,
until a single cycle results.

It remains to describe how we can implement
all these steps efficiently. Sorting the L,‘s and R,‘s
can be done in O(n log n) time. We can search
for cycles with intersecting spans by inserting the

endpoints of the spans in a balanced search tree
one after the other, and merging each time an

intersection is detected. Insertion and detection
takes O(log n) time, and there are at most 2n of
these. The resulting tree will also contain the
spans from left to right, and thus information

concerning the leftmost and rightmost points and
the distances is also immediately available. Phase

two can be similarly carried out in 0(n log n)
time.

Theorem 3. The query sequencing problem can be
solved exactly in O(n log n) time.

That the algorithm described above yields an

optimal tour can be shown as a consequence of [9,
Chapter 4, Theorem 151. However, we shall give

an independent proof.

The two-way query sequencing problem can
also be solved by a very similar algorithm, which

we outline below. In this case we find not the
optimal assignment, but the optimum matching of
the L,‘s and Ri’s, now considered as members of
one set. We then merge the resulting cycles exactly
in the same way. The details, very similar to those

above, are omitted.
Lemma 2. The tour resulting from repeatedly merg-
ing the cycles of the optimum assignment as de-
scribed above is optimum.

Theorem 4. The two-way queT sequencing problem
can be solved in 0(n log n) time.

Proof. Given any tour, consider the spans of the
cycles. Since the tour is connected, there are arcs
of the form (Ri, Lj) going in and out from each
span. Consider then the portions of the arcs within
the span. Since at each span boundary the number

Finally, as an open problem, we propose the
intermediate case, in which certain queries must
be answered in the forward direction, and the rest
in the backward direction. The techniques used
above do not appear to generalize to this variant.

144

Volume 36. Number 3 INFORMATION PROCESSING LETTERS 1 November 1990

References

[I] A.V. Aho, Y. Sagiv and J.D. Ullman. Equivalence among

relational queries. SIAlM J. Compur. (1978).

[2] J. Bitner and C.K. Wong. Optimal and near-optimal al-

gorithms for batched processing in linear storage, SIAM

J. Comput. 8 (4) (1979).

[3] F.W. Burton and J.G. Kollias, Optimizing disk head

movements in secondary key retrievals. Comput. J. 22 (3)

(1979).

[4] A. Chandra and C. Merlin, in: Proc. 1977 STOC Con-

ference (1977).

[5] S.H. Fuller, An optimal drum-scheduling algorithm. IEEE

Trans. Compur. 21 (1972) 1153-1165.

[6] R.S. Garfinkel, Minimizing wallpaper waste, Part I: A

class of traveling salesman problems. Oper. Res. 25 (1977)

741-751.

[7] J.G. Kollias, An estimate of seek time for batched search-

ing of random or indexed sequential files, Compur. J. 21

(2) (1978).

[S] E.L. Lawler. Combinatorial Optimkarion: Networks and

Marroids (1977).

[9] E. Lauler. J.K. Lenstra. A. Rinooy Kan and D. Shmoys.

eds.. The Trawling Salesman Problem (Prentice-Hall.

Englewood Cliffs. NJ. 1986).

[lo] C.H. Papadimitriou and K. Steiglitz. Combrnororial Opri-

mixtion: Algonthms and Complexiry (Prentice-Hall.

Englewood Cliffs. NJ. 1982).

[ll] B. Schneiderman. Reduced combined indexes for efficient

multiple attribute retrieval. Irr/orm. Slsrenu 2 (2) (1977)

149-154.

1121 B. Schneiderman and V. Goodman. Batched searching of

sequential files of tree-structured files. ACID Trans.

Darabase SJsrems 1 (3) (1978) 268-275.

[13] D.E. Smith and M.R. Genesareth, Ordering conjunctive

queries. drrl/rcial Intelligence 26 (1985) 171-215.

[14] J.D. Ullman. Principles of knowledge-based systems.

Manuscript (1988).

[15] C.K. Wong. Minimizing expected head movement in one-

dimensional and two-dimensional mass storage systems.

Comprtr. Surrqvs 12 (2) (1980).

145

