
Parallel Query Processing on the Grid

Anastasios GOUNARIS a, Alvaro A.A. FERNANDES b,
Apostolos N. PAPADOPOULOS a, and Christos YFOULIS c

a Aristotle University of Thessaloniki, Greece
b University of Manchester, United Kingdom

c Technological Educational Institute of Thessaloniki, Greece

Abstract. Database queries offer an easy-to-use declarative manner for describing
complex data management tasks. Query processing technologies have been evolv-
ing for decades; however the emergence of the Grid creates a new setting in which
novel research issues and challenges have arisen. This chapter discusses how Grid-
oriented and/or service-based query processors differ from traditional ones, and fo-
cuses on three complementary research issues, namely, how to schedule parallel
database queries over non-dedicated, distributed resources; how to mitigate the im-
pact of increased data transfer cost; and how to perform load balancing in this new
setting. In addition, we discuss how parallel spatio-temporal query processing tech-
niques can be applied to a Grid environment. The discussion revolves around the
development of the OGSA-DQP system, which is a pioneer open-source service-
based query processing system that enables parallel query execution over Grid re-
sources, and the way some of the most prominent issues about its performance
were addressed. The unique characteristics of the scheduling problem of arbitrarily
parallel queries over heterogeneous resources have motivated the development of a
new hill-climbing algorithm. For the problems of increased data transmission cost
and load balancing, due to the highly volatile conditions, techniques founded on
control theory are examined. The emphasis of this chapter is on both the descrip-
tion of a real Grid-enabled parallel query processor and the presentation of the dif-
ferent approaches to tackling each of the afore-mentioned problems including the
limitations of the current state-of-the-art solutions.

Keywords. distributed query processing, adaptive query processing, query
scheduling, load balancing, OGSA-DQP, grid computing, control systems, hill
climbing

Introduction

Parallel query processing is a mature technology aiming at providing high performance,
high availability and scalability in database systems. The key concept is to allow database
management systems (DBMSs) to benefit from the use of multiple resources, such as
CPU cores, by executing (sub-)tasks concurrently. By pooling more resources to process
intensive queries, these queries can, in principle, run faster, while mitigating, in the ma-
jority of the cases, the impact of a single node’s failure or unavailability. Intensive queries
are queries that process large volumes of data or include complex and expensive pred-
icates or the combination of both. To date, parallel database systems are widely spread
and almost all commercial systems come with a parallel flavor, capitalizing on the fact
that parallel query processing is nowadays well understood.



Figure 1. Example of a 3-join query plan that retrieves data from 4 logical data sources.

Parallelism in database queries can be applied either at the inter-query level or at
the intra-query level, where the same query is parallelized across multiple resources.
Inter-query parallelism is very common in either centralized or distributed systems and
involves the concurrent execution of multiple queries with effective and efficient query
state sharing being one of the biggest persisting challenges [9]. In this chapter, we focus
on intra-query parallelism, which can be further divided into independent parallelism,
pipelined parallelism and partitioned parallelism. Typically, a query plan is represented
as a directed graph, in which the nodes correspond to algebraic operators and edges de-
note data flow. Independent parallelism occurs when two or more independent subgraphs
of the query graph corresponding to the user query are being executed concurrently. In
pipelined –or inter-operator parallelism–, two or more connected graph fragments are
executed in parallel, whereas, partitioned –or intra-operator– parallelism refers to the
case where a node in the query graph is cloned into several instances by partitioning the
input data and allowing each clone to operate on a different data partition. An example
is shown in Figure 1. Assuming that all joins in the figure are implemented as pipelined
hash joins, all three forms of intra-query parallelism can occur in this query plan: J1 and
J2 can be processed independently, J1 and J3 can be processed in a pipelined fashion,
and data from logical source A can be retrieved in a partitioned manner. Obviously, these
forms of parallelism can be applied to multi-threaded single processor systems as well;
however, in that case, they yield limited benefits.

The architectural choices that naturally support parallel query processing can be
classified in four broader categories: (i) shared nothing architectures, according to which
the processing elements are interconnected with some sort of network and are indepen-
dent from each other in the sense that they have exclusive access to their own primary and
secondary memory; (ii) shared memory architectures, which differ from the previous in
that the primary memory is shared across the processing elements; (iii) shared disk archi-
tectures, in which processors share only secondary memory devices while keeping full
autonomy over their primary memory; and (iv) shared everything architectures, which
refer to tightly coupled settings where both primary and secondary memory is common
to all processors. Parallel grid computing heavily relies on the first category [48,6], since
non-compromised autonomy of individual nodes and communication between various
nodes using standardized network interfaces are key aspects of the Grids. Nevertheless,
a main difference is that typically, in parallel shared nothing systems the nodes are ho-



mogeneous, whereas, in realistic Grids, the nodes belong to clusters that have different
characteristics, also in terms of access rights and local policies to be obeyed, and the
communication latency is non-negligible.

Parallel query processing on the Grid is also related to wide area query processing
and semantic data integration [25], which is out of the scope of this chapter. Additionally,
in distributed environments, there are two main architectural alternatives, namely client-
server systems and peer-to-peer ones. Peer-to-peer is the most general architecture allow-
ing every site to act both as a server that stores parts of the database and as a client that
executes application programs and initiates queries [29]. In classical distributed query
processing, some parts of the queries are executed at a central place, whereas other parts,
in the form of subqueries, are executed, after some translation steps, in the component
database engines. According to this model, both inter- and intra-operator parallelism are
limited. The latter occurs only in the case where a query retrieves data from a database
view that is physically partitioned across multiple nodes.

Grid query processing generalizes the afore-mentioned model and allows arbitrary
sites to participate in the execution; query engines can be spawned at nodes in a way that
permits individual operators to be mapped to Grid computational resources and places
no limit on the degree of intra-operator parallelism for any operator in the query plan.
This flexibility comes at the expense of higher complexity in the query processing strate-
gies and in the system architecture. In order for individual data sources to be capable
of dynamically joining a federation and computational resources to be capable of dy-
namically join the resource pool and execute query fragments, common interfaces and
mechanisms must be devised. A generic solution that has been adopted by systems such
as OGSA-DQP (Open Grid Service Architecture - Distributed Query Processing) [1,34],
is to expose both data sources and execution engines as Web Services with well defined
interfaces and standard access methodologies. However, these methodologies are more
usually based on exchanges of verbose messages resulting in significant communication
cost.

Consequently, an important challenge is to devise methods that tackle the issue of
increased cost of data transmission. Additional open issues with respect to query opti-
mization and execution include the need for novel algorithms for deciding the degree of
parallelism and the selection of remote machines to be employed, which is a problem
that does not arise in parallel homogeneous settings, and for balancing the load across
machines under highly volatile conditions. Complementarily to these, more efficient so-
lutions for placing and replicating the data must be developed. Other research challenges
stem from the fact that, in a Grid environment, the characteristics of the machines vary
and are subject to frequent changes calling for adaptive query processing techniques [9].
Also, the optimization criteria may be different from the traditional ones such as query
response time, some peers may be unreliable, and queries may be very expensive and
thus sharing query state across multiple queries becomes more important. It is worthy to
note that solving all these issues is of more generic interest, since other areas, such as
dataspaces [13,26], can benefit from such solutions.

This chapter aims to investigate research issues and directions for future work related
to parallel query processing in Grid environments by presenting possible solutions and
discussing the extent to which these solutions have addressed such issues. The solutions
have been developed in close relationship with the OGSA-DQP system [1,34], which is
a pioneer service-based query processing system that enables parallel query execution



over Grid resources and, indirectly, they reflect the early experiences with a real Grid
query processing prototype and its limitations. More specifically, in this chapter, first we
present the OGSA-DQP system (Section 1). Next, we deal with three of the research
issues mentioned before, namely techniques for reducing the data transfer cost in service-
based environments (Section 2), scheduling algorithms tailored to Grid query processing
(Section 3), and advanced load balancing solutions (Section 4). The need for parallel
query processing on the Grid is more felt in intensive queries, such as those expected to
occur in many scientific scenarios, which may deviate to a certain extent from textbook
SQL ones (e.g., spatio-temporal queries). In Section 5, we present how advanced spatio-
temporal techniques can be transferred to a Grid setting. The chapter conclusions are in
Section 6.

1. Service-based query processors: the OGSA-DQP case

This section describes one implemented approach to service-based distributed query pro-
cessing, viz., that embodied by OGSA-DQP [34]1.

1.1. Motivation

Service-oriented architectures were conceived along with the idea of service orchestra-
tion as the concrete specification mechanism to embody process models. Thus, if busi-
nesses expose their business processes as services, one could envisage a virtual organi-
zation emerging from the orchestration of services provided by different concrete orga-
nizations.

The most popular approach to service orchestration is based on workflows. Service-
based workflow languages have been developed that allow high-level service orchestra-
tion. Much effort has been devoted to making service orchestration simple. However,
because workflow languages are imperative, the risk is always present that expensive ex-
pertise is required to ensure that a workflow will be effective and efficient (i.e., that it
will, respectively, satisfy the functional and non-functional requirements placed upon it).

Arguably, the main motivation for deploying the distributed query processing (DQP)
paradigm in service-oriented architectures is the fact that it allows an important class
of concrete, effective and efficient service orchestrations to be derived from declarative
specifications (e.g., high-level SQL-like queries) in automated fashion by means of a
compiler/optimizer.

Given that many (if not most) service orchestrations will involve data resources vir-
tualized as data services, it follows that many service orchestrations will be characteriz-
able as computations that can be reduced to retrieval, transformation and transport oper-
ations applied to flows of data grounded on data services.

OGSA-DQP has indeed championed an approach that has been termed declarative
service orchestration and has been guided by an insight that there is mutual benefit to
be reaped by DQP from its deployment in Grid settings, as well as by the Grid vision
for distributed computing from being seen, where appropriate, as a generalization of dis-
tributed data management platforms. Thus, one can argue that DQP benefits from Grids
by building upon the sophisticated mechanisms for securely and transparently discover-

1This section is closely based on the account provided in [34]. For an earlier account of OGSA-DQP, see [1].



ing and harnessing heterogeneous data and computational resources, whereas Grids ben-
efit from DQP because the latter endows the former with a declarative interface that is
well-known to software engineers and well-known to admit of reliable, robust, efficient,
scalable implementations.

1.2. Approach

OGSA-DQP is service-based in two distinct senses. Firstly, externally, OGSA-DQP is
exposed as a data service (i.e., it exposes DQP capabilities as service invocations). In this
way, invoking OGSA-DQP capabilities is tantamount to having access to a full-blown
federated database whose components are data services, i.e., virtualized data resources.
Secondly, internally, OGSA-DQP capabilities are themselves implemented as service
orchestrations.

In this way, when OGSA-DQP receives a request to evaluate a distributed query,
it responds to that request by harnessing the services that front-end the computational
resources required to evaluate the distributed query execution plan derived for the re-
quested query. Thus, in any distributed query execution plan produced by OGSA-DQP,
the non-leaf nodes, i.e., the distributed plan fragments, are assigned to evaluator services
harnessed from the collection of available computational resources, and the leaves are
assigned to the virtualized data resources required to compute the answer to the query.

1.3. Usage scenarios

The SQL-based OGSA-DQP query language supports queries that (in their FROM clause)
make reference to data services (i.e., remote, autonomously-owned, virtualized data re-
sources such as, in bioinformatics, a protein sequence database) and to analysis ser-
vices, such as, again in bioinformatics, a virtualized computational resource that sup-
ports BLAST (Basic Local Alignment Search Tool) sequence analysis services. In addi-
tion, OGSA-DQP relies on another specific type of virtualized computational resource,
viz., evaluator services, to which the responsibility for evaluating a plan fragment can be
assigned.

OGSA-DQP has been designed and implemented to occupy a region in the space of
solutions for the problem of using the Grid for DQP that is characterized by two major
properties. Firstly, OGSA-DQP supports data integration at the low-entry-cost end of the
spectrum. In this sense, OGSA-DQP follows the Grid vision of agile assembly of vir-
tualized resources to form coherent but short-lived configurations thereof, in support of
applications whose lifecycle is far too compressed to justify the effort required in setting
up a meticulously-designed global schema. Thus, OGSA-DQP does not provide facilities
for schema matching and schema mapping that are required when such a specifically-
intended, long-lasting global schema needs to be exposed by the federated database. In-
stead, OGSA-DQP provides facilities for importing the union of participating schemas
without precluding that, downstream from the delivery of query results, schema mapping
services (in which such queries would be seen, e.g., as views) are additionally provided.
In this respect, OGSA-DQP is therefore most useful when deployed as middleware for
agile, efficient, expressive declarative access to multiple provider data services. Sec-
ondly, OGSA-DQP builds upon parallel database technology [44,45] that supports both
pipelined and partitioned parallelism. OGSA-DQP harnesses computational resources



Figure 2. A Data Service and its functionalities.

commensurate (as decided upon by the query optimizer) with the estimated magnitude
of the computational effort involved. In this sense, OGSA-DQP follows the Grid vision
of utility computing, i.e., one in which heterogeneous, distributed, autonomous resources
can be discovered, harnessed and combined to meet requirements as and when they arise.
In this respect, OGSA-DQP is therefore most useful when queries involve computation-
ally expensive operations (e.g., when the query contain many, or few particularly expen-
sive, joins or else when it requires a call to a computationally-intensive external function)
that can benefit from being executed in parallel.

1.4. Virtualizing data resources

We note that, in OGSA-DQP, data resources are virtualized using the OGSA-DAI (Open
Grid Service Architecture - Database Access and Integration) middleware [2]. However,
in the remainder of this section, rather than use the specific terms and describe the spe-
cific design choices taken in OGSA-DAI, we cast our descriptions at a slightly higher
abstraction level with a view towards avoiding the undesirable consequence of coupling
the research issues and challenges arising much too tightly to a particular software im-
plementation that is, in any case, still being actively developed and continuously im-
proved and enriched. We therefore encourage the reader to use [2] as a complement to
this section.

Figure 2 depicts the most important functionalities exposed by the process of virtu-
alizing a data resource; such resources appear in the leaves of OGSA-DQP plans. The
most important service invocation points are perform and transport. A client is any soft-
ware entity that submits a request to the data service. A request is typically a sequence
of activities (including, of course, query evaluation) conveyed in document form that,
because of its destination point, is often referred to as a perform document. The OGSA-
DAI implementation of a data service can link together (through the chain of inputs and
outputs) the sequence of activities conveyed in a perform document. The response as-
sociated with a request can be synchronously-delivered to the client upon return, or else
it can rely on the transport facilities for asynchronous retrieval of results. Such trans-
port facilities can also be used to implement third-party delivery of data. Thus, a pro-
ducer service can use its own transport mechanism to feed data into a data service and,



correspondingly, a data service can feed data into a consumer service using the latter’s
transport facilities.

Naturally, the most fundamental role played by a data service is that of virtualizing
a data resource by providing insulation against a range of heterogeneities. Thus, an ac-
tivity may submit a query to be evaluated in order to obtain an answer set for it without
much knowledge of the physical realization of the underlying data resource. The OGSA-
DAI implementation of this capability ranges over structured, semi-structured and un-
structured data resources (in particular, relational DBMSs, XML data repositories and
classical files). In this way, the virtualization process offers a degree of insulation not
only against the complexities of negotiating access to specific software and hardware in-
frastructure, since it also enables requests to be phrased one abstraction step above that,
which would lead considerations as to the nature of the data resource it virtualizes to be
required.

1.5. Virtualizing distributed query execution

OGSA-DQP introduces two new kinds of service, viz., coordinator services and evalua-
tor services. A coordinator service uses extensibility points provided by an OGSA-DAI
data service to support compilation, optimization, partitioning and scheduling of queries
for execution. An evaluator service corresponds to a query evaluation engine in a clas-
sical, centralized DBMS, i.e., it takes (possibly a fragment of) a query execution plan
and evaluates it. Within an evaluator, classical algebraic operators are evaluated using
pipelined parallelism insofar as every algebraic operator instantiates an iterator pattern
[23]. As a result, an algebraic operator tree is a tree in which every non-leaf node is an
iterator running its own thread of control. Partitioned parallelism is captured by cloning
query plan fragments that execute in parallel over data partitions of the original input(s).
Both communication and data partitioning are delegated to an exchange operator [22].

As hinted above, a distributed query execution plan maps to an orchestration of
evaluator services rooted on a coordinator service and grounded on data services and
analysis services. There are two phases to DQP using the OGSA-DQP approach. In the
one-off first phase, the client sets up a distributed query service with a document that
describes the schemas to be imported in order to form the federation (i.e., the component
data and analysis services) and configures the capabilities of the latter (principally by
assigning to it a pool of evaluator services over which the distributed query execution
plan fragments can be scheduled). The first phase follows a factory pattern and hence
it has as its outcome the return of a handle that can be used to invoke the instantiated
distributed query service. In the second phase, once the distributed query service is set
up, it can be used to evaluate queries over the virtual federated database for however long
the distributed query service is meant to be active for.

Figure 3 depicts the most important interactions that characterize the second phase
alluded to above, i.e., the figure illustrates the compile time and the run time behaviour
of OGSA-DQP. When a client wants to evaluate a query, it requests the evaluation of
the latter by means of a perform document sent to the distributed query service for
which the handle is held. The compilation, optimization and scheduling of a query is
described in more detail later in this section. Its outcome is the harnessing of as many
evaluator services as required by the fragmentation decisions made. In Figure 3, as an
example, four evaluator services were harnessed and there are three leaves, viz., two data



Figure 3. DQP Interactions: the compile time and the run time behaviour of OGSA-DQP.

services and one analysis service. Recall that query execution in OGSA-DQP amounts
to the execution of an orchestration. Thus, to the operator tree comprising iterator nodes,
there corresponds an orchestration such as exemplified in Figure 3. Execution proper
begins by invocation of the evaluate capability at the root of the orchestration. Because
of the iterator semantics it implements, this invocation cascades down to the children
services until the orchestration reaches the leaves. Note that this process is denoted by the
top-to-bottom solid arrows from the root to the leaves. As in classical query processing
based on iterators, to this downward cascade of invocations there corresponds an upward
cascade of data flows that culminate, at the root, with items being added to the result set.
This process is denoted by the bottom-to-top dashed arrows from the leaves to the root.
Note, furthermore, that the root delivers results to the coordinator using its transport
capability.

The compilation, optimization and scheduling of a query is structured into a two-
phase approach as follows. The query is first parsed and type-checked to yield a logical
query plan (in the form of an algebraic operator tree). This is rewritten (on the basis of
selectivity-driven estimates of intermediate result size) into a canonical form to obtain
a heuristically-efficient join order. A cost model then drives the assignment of concrete
join algorithms to the logical joins that occur in the canonical form. This concludes the
first phase: its outcome is a single-node query execution plan, i.e., one in which there is
no plan fragmentation and hence no need for inter-fragment communication either. The
second phase then takes over with the goal of partitioning the single-node query exe-
cution plan into fragments. In this phase, the optimizer considers whether parallelizing
joins or calls to analytical services could lead to significant speed-ups. Finally, schedul-
ing decisions are taken in the light of the characteristics (such as available memory) of
the computational resources that were imported as metadata when the federation was
configured at set-up time.

Given two data services that use OGSA-DAI to virtualize a protein sequence
database and an ontology (e.g., GO) on biological terms, and one analysis service virtu-
alizing a BLAST sequence comparison server, one might make use of them by means of
a query such as



Figure 4. An Example Distributed Query Execution Plan

select p.proteinID, blast(p.sequence) as blastResult
from Protein p, Ontology o
where p.proteinID = o.proteinID
and o.proteinTerm="GO:0008372"

Figure 4 depicts one possible outcome of the compilation, optimization and schedul-
ing of the above query2 over for computational nodes named N1, N2, N3, and N4. Note
that Figure 4 reflects decision to run the call to BLAST with degree of parallelism equal
to two, while the hash-join has not been parallelized.

1.6. Open and Research issues

The emphasis of OGSA-DQP is on enabling querying over dynamically created feder-
ations of autonomous databases and supporting parallel execution of such, potentially
intensive, distributed queries building upon a service-oriented architecture. In essence,
the OGSA-DQP system makes a trade-off between flexibility and performance. Service-
oriented solutions are very appealing in Grid environments where on the fly creation
of virtual organizations takes place; nevertheless they are not always tailored to high
performance applications because the message-based access method to services incurs a
high communication cost. Significant effort has been put in improving performance. This
effort is in two complementary directions. The first direction deals with the increased
data transfer cost, and, in the second direction, novel approaches to efficiently employing
parallelism, both at compile time and at runtime, are sought. The derived solutions are
described in the sequel of the chapter.

The open research issues are actually broader and apply to all parallel query pro-
cessors for the Grid (e.g. [30]). Grid is an inherently volatile and unpredictable envi-
ronment. As a result, the information required to take optimal decisions, either with re-
spect to query plan optimization (e.g., selectivities of operators over remote, autonomous
databases) or with respect to resource allocation (e.g., current and average load of remote
computations resources) may be inaccurate, or even, completely unavailable at compile

2In the OGSA-DQP physical algebra, project is referred to as reduce, an external call is represented by
operation_call and the scan operator generalizes the sequential and indexed versions of that operation.



time and only known at runtime. In this case, the compile time decisions should be con-
tinuously refined at runtime, in the light of the new information when this becomes avail-
able. In most cases, adaptive query processing (AQP) techniques are limited to a single
form of adaptation [9] and refer to centralized processing. Thus, it is important both to
extend AQP solutions for centralized processing so that they are applied to a Grid setting
and to combine them. Combination of different AQP techniques is a rather overlooked
subject. An adaptive extension of OGSA-DQP presented in [18] deals with combined
forms of adaptations (i.e., performing load balancing and adjusting the degree of parti-
tioned parallelism), but does not support runtime changes to the query plan. DQP systems
for Grids should also be coupled with Grid monitoring systems [54]. Finally, in OGSA-
DQP, certain simplifying assumptions are made: all data belong to reliable sources, shar-
ing of query state is not permitted and the query processing objective is to evaluate a
query as quickly as possible. Obviously, a more generic solution should include solu-
tions for handling unreliable peers, performing more efficient multi-query optimization
and applying multiple optimization criteria, such as monetary cost (e.g., as in Mariposa
[47]) and resource utilization along with query response time, possibly defined through
a Service Level Agreement (SLA) [41].

2. On mitigating the impact of increased data transfer cost

Although web/grid services provide one of the most practical solutions for accessing
remote data sources and programs spanning multiple administration domains, the fact
that they are slow (due to high communication costs and parsing overheads) makes their
use in high performance applications problematic. Minimizing the data transmission cost
for queries over web services is of high significance for modern parallel and distributed
database applications, because, when data transmission cost dominates, parallel solutions
may not scale well and become inferior to non-parallel ones. A mechanism that can miti-
gate the impact of high data transfer cost is to pull data from a service-wrapped database
(e.g., [2]) or submit calls to a service to perform data processing (e.g., [46]) in a block-
based manner. In this mode, the data transmission cost per se can decrease, whereas ap-
plications can also benefit from pipelined parallel processing, i.e., the actual transmission
cost both decreases and is easier to be hidden as it overlaps with computation cost.

Consider a client that submits a data retrieval task to an OGSA-DAI wrapped
MySQL DBMS. The client resides on a randomly chosen PlanetLab node [6] in Switzer-
land, and the retrieval task consists of an inexpensive (in order not to incur significant
CPU load) scan-project query over the entire Customer relation of the TPC-H bench-
mark, when this is deployed with scale set to 1, i.e., in total, 150K tuples are retrieved.
The server is in the UK. This query is executed in a pull mode, i.e., the client continu-
ously requests for new data chunks that can have different size each time, until the com-
plete result set is retrieved. The main challenge in optimizing the chunk-based data trans-
mission stems from the fact that the graph describing the aggregate transmission cost of
a given dataset in time units with regards to the block size, has a concave shape with
various local minima and high noise. Figure 5(a) shows the performance degradation
and the increased concavity of the response time graph with regards to the block size,
when the client submits two queries at the same time. The quadratic effect is even more
obvious when there are three concurrent queries and the server received more load in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000

block size (#tuples)

re
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
s
)

1 query

2 queries

 
(a)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

50000

100000

150000

200000

250000

300000

350000

0 2000 4000 6000 8000 10000

block size(#tuples)

re
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
s
)

1 query

2 queries

3 queries

 
(b)

Figure 5. The response times when (a) 2 queries and (b) 3 queries are being responded concurrently (figure
from [21]).

terms of memory utilization between the second and the third query (see Figure 5(b)). In
this case, not only the shift of the optimum size is larger, but the effect of a suboptimal
decision can be detrimental. For example, under these conditions, if the optimum size for
two concurrent queries is chosen, and one more query is submitted, then, for the same
block size, the response time would be an order of magnitude higher than the optimum.

In [20], adequate evidence is provided that, in practice, the optimal point changes
for each query submitted due to the differences in the tuple size and the network and
server conditions at each time point. Moreover, the optimal points changes during query
evaluation, as well. In this section3, we present adaptive solutions to the problem of
finding the volatile optimum block size, with a view to providing robust runtime solutions
for minimizing query tasks that involve the transmission of large datasets to and from
services. These solutions are minimally intrusive; they operate at the client site, and thus
require no additional monitoring of and extensions to the servers.

The approach followed is a control theoretical one. The problem under investiga-
tion falls into the broader vision of developing autonomic, self-managing solutions for
data management [33]. In principle, autonomic computing can benefit a lot from con-

3This section is largely based on the work in [20,21].



Algorithm 1 Pseudo-code at the client side
blockSize = initialBlockSize
while !end-of-results do

t1 = timestamp()
WebService.requestNewBlock(blockSize)
t2 = timestamp()
blockSize = Controller.computeNewSize(t2 − t1)

end while

trol theory techniques, which are well-established in engineering fields and are typically
accompanied by theoretical investigations of properties such as stability, accuracy, and
settling time. Applying techniques inspired by control theory to the complex problems
of distributed computing is not something new; actually there is a recent booming in de-
velopment control theoretical approaches to solve problems in computing systems, soft-
ware engineering and software services. This is due to the trend of going beyond ad hoc
and heuristic techniques towards an autonomic computing paradigm [11]. Exploitation
of the rich arsenal of techniques, methods, ideas and foundations of control theory, devel-
oped for many decades since the second world war, has already led to improved designs
in many areas and problems, such online adjustments of web, application and database
servers.

In control systems, the main part is the controller, which receives system measure-
ments, and provides a system configuration that impacts on system performance. There
are several orthogonal dimensions across which controllers can be characterized and
compared. A controller can be either single-input or multiple-input, and similarly, single-
output or multiple-output. The controller inputs are adjustable configurations of key sys-
tem parameters, such as block size or proportion of tuples or memory allocated to a ma-
chine, whereas the outputs are measurable properties of the system, such as response
time, CPU utilization, and so on. When the measured outputs impact on the controller
input, then the controller is termed as feedback or closed-loop, otherwise it is called feed-
forward or open-loop. The former does not require the development of accurate complex
models and can tolerate relatively high model inaccuracies, thus it is more practical for
use in volatile environments. The controllers can be either continuous-time or discrete-
time; mostly all controllers of computing systems belong to the latter category due to
the nature of computing systems. Finally, controllers can be adaptive themselves in the
case where runtime measurements can lead to changes in their own design. In our case,
the controller is a single-input single-output feedback one, which receives as input the
response time of each block size. Based on this value, it decides the size of the next block
to be pulled from the service that wraps the database. More specifically, the solutions de-
veloped are inspired by extremum control [3], which can yield results and track a varying
optimum operating point even in the absence of a detailed analytic model.

2.1. Solution description

To provide the extremum control solution to this particular runtime optimization
problem, we adopt a control-theoretical approach, according to which a lightweight con-
troller is encapsulated in the client (see Algorithm 1). Extremum control [3] can yield
results and track a varying optimum operating point even in the absence of a detailed



analytic model; it is based upon numerical optimization but goes beyond that since it
can be blended with well known control approaches, including variable setpoint (op-
timum tracking) controllers, feedforward controllers, perturbation analysis, self tuning
and adaptive techniques, so that noise, model uncertainties and time variations can be
dealt with. Filtering and averaging are also typically included in the aforementioned
techniques.

Let y be the performance metric, such as response time or, equivalently, the per tuple
cost in time units, and x denote the size of the data block. Then, there is a typically un-
known function f , such as y = f(x). The role of an extremum controller is to manipulate
the input x to the performance function f(x), as a function of this output. In switching
extremum control, the value of x at the kth step, xk is given by the following formula:

xk = xk−1 − g · sign(∆yk−1 ·∆xk−1) (1)

where ∆u = uk−uk−1. The function sign() returns 1 if its argument is positive and−1
otherwise. g corresponds to the gain and can be either constant or adaptive. The formula
above can detect the side of the optimum point where the current block size resides on.
The rationale is that the next block size must be greater than the previous one, if, in
the last step, an increase has led to performance improvement, or a decrease has led to
performance degradation. Otherwise, the block size must become smaller.

Several heuristics are applied to enhance the performance switching extremum con-
trol. To mitigate the impact of the noise in the graphs, the measured output and the con-
trol input are firstly averaged over a sequence of n measurements. However, there is a
trade-off between noise removal and speed of response. In addition, maximum and mini-
mum limits can be imposed to avoid overshooting with detrimental effects, as there is no
guarantee that the controller will not reach a very high or very low value before converg-
ing. Finally, to facilitate the controller to be capable of continuously probing the block
size space, since the optimum point may move during query execution, a dither signal
may be added.

Complementarily, another direction can be explored, after observing that, despite the
volatility, local peaks, jitter etc., the performance graphs can be represented by smooth
quadratic (or sometimes monotonically decreasing) concave curves. In this direction,
runtime system identification techniques are developed to fit the online data to smooth
profiles. The latter can subsequently be processed analytically. For example, the curves
describing the response time as a function of the block size can be approximated as
quadratic or parabolic functions. Then, the client submits several test calls to the service
with different block sizes (from rather small ones to rather large ones), so that a small
set of samples is created. These samples can be used to estimate the model parameters
by applying least-squares method.

2.2. Discussion

The extremum control-based techniques can be distinguished between techniques em-
ploying constant gain g in Eq. (1) and those employing adaptive gain, proportional to the
performance changes due to the last decisions. The trade-offs between these two types
can be summarized as follows (the interested reader can refer to [20] for more details).
Adaptive gain policies seem to be the most suitable choice when the near optimal region



Figure 6. Comparison of the behavior of constant and adaptive gain switching extremum controllers.

can be approximated. However, in this case the performance benefits may not exceed
10% decrease in response times. Larger improvements, over 100% decrease in perfor-
mance degradation, can be provided when this region is not a priori known. In this case,
adaptive gain policies have nice transient (i.e., they converge quickly) and stability (i.e.,
they do not oscillate after convergence) properties but their accuracy and capability of
convergence are quite sensitive to noise and non-smooth profile shapes (i.e., they do not
converge always). On the other hand, constant gain policies can perform well even with-
out proper tuning, but their transient behavior and steady state stability can deviate from
the optimum point. In summary, both approaches improve on the static case, where deci-
sions on the block size are taken at compile time and are not subject to runtime modifica-
tions, but none of these two types of switching extremum control is robust with respect
to different settings. Figure 6 depicts the typical behavior of the two flavors when the
initial block size is not close to the optimal. Other adaptive approaches that can be fol-
lowed include Newton-based hill-climbing techniques. However, such techniques are not
suitable for systems exhibiting noisy, non-monotonical behavior, and are outperformed
by switching extremum control [20].

The severe limitation regarding the controller robustness is addressed in [21], which
proposes a novel hybrid controller that aims at combining the strengths of both constant
and adaptive gain controllers, with a view to improving robustness and average perfor-
mance. The hybrid controller is still described by the model in Eq. (1), but the gain is
now defined as follows:

g =

{
b1, in transient phase
b2‖∆yk−1

yk−1
∆xk−1‖, in steady-state phase

(2)

In the hybrid model, while trying to detect the optimal region, the gain is a constant
(positive) tuning parameter, so that this region is detected both accurately and quickly.
After converging, the gain is switched to adaptive and proportional to the product of
the performance change and the change in the block size. In this way, oscillations are
avoided. The drawback is that a mechanism for deciding whether steady-state phase
has been reached must be developed. To this end, building upon the observation that
a constant gain switching extremum controller oscillates around the stability point in a
saw-tooth manner, the following criterion can be applied, which operates over a horizon
of length n (s is a small integer, and, k the step number):



static static static const. adapt. hybrid best
1K 10K 20K gain gain model

53.3% 81.5 % 226.8 % 21.3 % 37.5 % 13.5 % 0.7 %
Table 1. Performance degradation for different approaches to block size selection (from [21]).

‖
k−1∑

i=k−n

sign(∆yk ·∆xk)‖ ≤ s (3)

The performance of the hybrid controller is superior to simple constant and adaptive
gain controllers. However, the performance can be further improved if combined with
model-based solutions as reported in [21], where evidence is provided that the perfor-
mance can be similar to the case that the optimal block size is a-priori known. More
specifically, in Table 1, the adaptive solutions are compared against three static cases,
for several representative cases, as explained in [21]. The three static cases correspond
to blocks of fixed size: 1K, 10K and 20K tuples, respectively. For the model-based so-
lutions, both quadratic and parabolic models were examined. Interestingly, if a self-
configuring mechanism was in place to decide at runtime which is the best performing
model in each case (i.e., either the quadratic or the parabolic one), then the performance
would be very close to the optimal. Note that the construction of the models is rather
inexpensive compared to SOAP-based data transmission.

Nevertheless, there are some open issues remaining. In particularly long-running
queries, the near-optimal region may change during execution significantly . This phe-
nomenon impacts on both the hybrid controller and the model-based solutions. The hy-
brid controllers may need to extend and enhance their switching state criterion to detect
cases when the controller should re-enter a transient phase. Also, model-based solutions
should periodically refine their estimates, possibly using methodologies such as recursive
least squares. Finally, complementary efforts to minimize the data transfer cost are de-
scribed in [42] and [28]. The former suggests improvements to the basic communication
mechanism for web services, whereas the latter investigates solutions based upon run-
time selection of the transfer protocol. A promising avenue for future work is to combine
all these different approaches into a single unified solution.

3. Scheduling parallel queries over non-dedicated distributed resources

3.1. Background and motivation

OGSA-DQP provides middleware parallel DQP functionality, rather than database so-
lutions to specific Grid problems, as in, e.g., [37]. As such, it can be used by different
applications, each with its own computational requirements. In order to be capable of
efficiently supporting all kinds of applications (i.e., both the less and the more compu-
tationally demanding), OGSA-DQP can support arbitrary degrees of parallelism. Paral-
lelism is inserted in the query plans through the exchange operator [22]. By default, the
evaluator services that are responsible for retrieving data from their source are responsi-
ble for the evaluation of the rest of the query plan as well; however, any node in this plan
can be cloned as many times as there are machines available [17]. Scheduling parallel



queries in Grids involves issues that are not applicable to traditional DQP and parallel
query processing4.

Note that the problems of defining the execution order of subplans and exploiting
pipelined parallelism are addressed by adopting well-established execution models, such
as iterators [23], and thus, need not be part of query schedulers. In other words, in query
processing in which the tasks (either at the level of subplans or at the level of individual
operators) are interdependent, both inter-operator and intra-operator parallelism are ap-
plied as explained previously; however the scheduling problem deals mostly with intra-
operator parallelism. More specifically, the resource scheduling problem in databases
for the Grid is reduced to a resource allocation problem of (i) choosing resources and
(ii) matching subplans with resources. Existing scheduling algorithms and techniques,
either from the database or the Grid or the parallel research communities, seem inad-
equate for parallel query processing on the Grid basically because the way they select
machines and allocate tasks compromises partitioned parallelism in a heterogeneous en-
vironment. Generic directed acyclic graph (DAG) schedulers (e.g., [48]), and their Grid
variants (e.g., [49]) tend to allocate a graph vertex to a single machine instead of a set
of machines, which leads to no partitioned parallelism. More comprehensive proposals
(e.g., GrADS [7]) still rely on application-dependent “mappers” to map data and tasks
to resources, and thus come short of constituting complete scheduling algorithms. Other
proposals for mixed-parallelism scheduling (e.g., [39]) and parallel database scheduling
(e.g. [12,10]), are restricted to homogeneous settings. For all these reasons, simple so-
lutions, such as minimum completion time, opportunistic load balancing, min-min, max-
min, are not useful.

Trivial solutions, such as choosing the maximum degree of parallelism, not only
harm the efficiency of resource utilisation, but can also degrade performance, similarly to
what holds in homogeneous settings [51]. In general, the problem of resource scheduling
on the Grid is actually more complicated than choosing the correct degree of parallelism.
Grid schedulers should decide not only how many machines should be used in total, but
exactly which these machines are, and which parts of the query plan each machine is
allocated, leaving aside the problem of devising optimal workload distribution among
the selected machines. The three dimensions (i.e., how many, which and for which part
of the query) cannot be separated from each other to simplify the algorithm in a divide-
and-conquer fashion. For example, it is meaningless to determine the number of selected
nodes from a heterogeneous pool without specifying these machines; this is in contrast
to what can be done in homogeneous systems since in a heterogeneous setting each ma-
chine may have different capabilities. Another difficulty has to do with the efficiency
of parallelisation, which is of significant importance especially when the available ma-
chines belong to multiple administrative domains and/or are not provided for free. Thus,
the aim is, on one hand to provide a scheduler that enables partitioned parallelism in het-
erogeneous environments with potentially unlimited resources, and on the other hand to
keep a balance between performance and efficient resource utilisation. As the problem is
theoretically intractable [32], effective and efficient heuristics need to be employed, like
the one proposed in the sequel.

3.2. A novel scheduling algorithm

4This section is based on material from [16].



Algorithm 2 High level description of the scheduling algorithm.
1: repeat
2: get costliest parallelisable operator
3: define the criteria for machine selection
4: repeat
5: get the set of available machines
6: check if more parallelism is beneficial
7: until no changes in the degree of parallelism of the costliest operator
8: until no changes in which operator is the costliest

The complexity of the problem of resource selection and scheduling on Grids justi-
fies resorting to heuristics, as an exhaustive search for all the possible combinations of
machines, workload distributions and query subplans is an obviously inefficient solution.
An acceptable solution will be one that can scale well with the number of machines that
are available.

The algorithm proposed here receives a query plan which can be partitioned into
subplans that can be evaluated on different machines. For the shape of the query plan we
assume the existence of a query optimiser which first constructs a single-node plan, and
then transforms the single-node plan into a multi-node one, in order to reduce the search
space. This method has been widely adopted in parallel and distributed query processors
[29], as it performs well in a wide range of cases [8]. The scheduler that will be presented
deals with the second stage, where the single node plan is parallelised. As such it extends
and does not replace optimisers that produce non-parallelised query plans. The algorithm
operates at compile time, i.e., it is static.

The algorithm follows a hill climbing approach. Initially, each of the operators of the
query plan is scheduled on one machine, i.e., the initial condition a query plan with min-
imum partitioned parallelism; such a query plan is unlikely to perform well for intensive
computations. After this initial resource allocation, it enters a loop as shown in Algorithm
2. In that loop, the algorithm estimates the cost of the query plan and of each physical
operator of the query plan individually. Then, it takes the most costly operator that can
be parallelised, and defines which criteria should be used for selecting machines for this
operator. For example, some operators place more importance on memory requirements
than others, whereas other operators may be more computationally and communication
intensive. Following this step, a greedy procedure is performed in which the algorithm
increases the operator’s degree of parallelism by one degree if that increase improves the
performance of the query plan above a certain threshold. When no more changes can be
made for that operator, the algorithm re-estimates the cost of the plan and the operators
in order to do the same for the new most costly operator. The loop exits when no changes
in the parallelism of the most costly operator can be made, and the system proceeds im-
mediately to the execution phase. Full details are provided in [16]. From a higher level
point of view the algorithm transforms an existing plan to a more efficient one at each
step, by modifying the set of resources allocated to a part of the query plan.

To estimate the cost of the query plan and individual operators, the algorithm re-
quires a decoupled cost model which (i) assigns a cost to a parallel query plan, and (ii)
assigns a cost to every physical operator of that query plan. Any such cost model is suit-
able, as the scheduler is not based on any particular one. In other words, although the
algorithm depends on the existence of a cost model, it is cost model-generic. By decou-



pling the cost model and the scheduler algorithm, enhancements in both these parts can
be developed and deployed independently. The cost model is also responsible for defin-
ing the cost metric, which directly corresponds to the optimization criterion. As such, the
scheduler algorithm is independent of any specific optimization criteria.

This proposal effectively addresses the resource scheduling problem for Grid
databases in its entirety, allowing for arbitrarily high degrees of partitioned parallelism
across heterogeneous machines. The practicality of the approach lies in the fact that it is
not time-consuming. The algorithm comprises two nested loops. The outer loop can be
repeated up to n times, where n is the number of physical operators in the query plan.
The inner loop can be repeated up to m times, where m is the number of available ma-
chines. So, the worst-case complexity of the algorithm is of O(n×m), which makes it
suitable for complex queries and when the set of available machines is large. Its main
novelty is that it does not restrict the degree of intra-operator to any extent and does take
into account the fact that the resources available are heterogeneous, along with empirical
evidence that the algorithm leads to performance improvement and robustness.

Empirical evidence is based on experiments against other typical choices. These
choices include scheduling that use all machines available, or they do not support parti-
tioned parallelism, or they use only machines that store data, or they use only the top-k
machines in terms of CPU power, or they parallelise only the most expensive operator
[16]. More specifically, the evaluation presented in [16] showed that the approach yields
query response time improvements of several factors when no, or limited, partitioned
parallelism is employed, and can outperform extensions from parallel databases that use
all the resources available. It can also mitigate the effects of slow machines and con-
nections. By being able to choose only the nodes that contribute significantly to the per-
formance, it uses the machines more efficiently, and thus can be easily adapted to cases
where the resources are not provided for free.

3.3. Discussion

The scheduler algorithm presented previously is the first step towards efficient and ef-
fective scheduling solutions for DAGs that are executed on heterogeneous nodes with
arbitrary degrees of partitioned parallelism. It follows a hill climbing approach, where
the degree of parallelism of each operator is decided separately in a greedy manner.

Nevertheless, it is characterized by several weak points that can be regarded as di-
rections for future work. First, no formal bounds on its worst case performance have
been defined; defining such bounds is a difficult but necessary issue in order to supple-
ment the complexity analysis of the algorithm. Second, it is unclear what is the behav-
ior of the algorithm when it is called at runtime and whether it can lead to instability if
applied dynamically during query evaluation. In addition, although the algorithm scales
linearly with the number of available machines, in a Grid setting, this number may be too
high. So, it may be desirable to develop algorithms that consider only a subset of such
machines in order to reduce complexity. Efficient selection of such subsets is an open
issue.

Finally, there are several issues related to the cost model employed by the algorithm.
A suitable cost model for Grid settings should not only model efficiently all forms of
parallelism, but also, it should be robust to uncertainties of machine characteristics. More
importantly, it should be able to support multi-objective scheduling in a clear manner,
which also requires extensions to the basic scheduling algorithm.



4. Balancing parallel queries over non-dedicated distributed resources

In the previous section, a scheduling algorithm was presented that is capable of efficiently
allocating resources for parallel query processing on Grids. Its key aspect is that it allows
queries to benefit from intra-operator parallelism, which may be of a different degree
for different subplans. However, when the optimization criterion is query response time
and in order to fully exploit the potential of partitioned parallelism, work needs to be
assigned to machines in a way that reflects their capabilities, which is challenging in an
environment with heterogeneous and potentially autonomous, non-dedicated resources.
Key characteristics of a typical such environment include unpredictable fluctuations in
the load of available machines. A consequence of this fact is that it is not efficient to
divide a task into several partitions and to stick with this division until completion. In
addition, the information about the machine characteristics that describe performance
capacity and loads is typically incomplete and/or inaccurate at compile time; thus a load
balancer with responsibility for efficient work assignment should rely mostly on run-
time feedback. Finally, due to the fact that the instances of subgraphs are stateful, the
cost of workload re-assignments, which typically depends on the size of the state, is not
negligible in general.

One of the most notable examples trying to address the aforementioned character-
istics is the Flux approach [43], which introduces a new operator that monitors the ex-
ecution speed and the idle time of each participating machine at runtime, and adjusts
the workload allocation accordingly, with a view to equalizing machine utilization. Ad-
ditional heuristics are applied to smooth the workload allocation changes. Flux tries to
guarantee that the time spent enforcing adaptivity decisions (i.e., moving state from one
machine to another as a result of a workload reallocation) does not exceed the time of
query processing; this is done by keeping the same workload allocation for a period that
is at least equal to the time spent carrying out the adaptation that brought it about. Note
that this heuristic may not always prevent performance degradation. Indeed, Flux may
adapt in a non-beneficial manner in response to transient and periodic imbalances, as it
may keep shifting the state partitions.

Several attempts have been made to improve the behavior in these situations. In [38],
some extensions to the Flux approach are described. More specifically, a change to the
Flux algorithm is proposed, to carry out replication during the probe phase in opera-
tors involving hash tables. In other words, the adaptivity decisions are taken in the same
way but the operator state is not moved as in Flux, rather it is replicated at the expense
of higher memory usage. This may reduce the number of future state movements, and,
consequently, it performs significantly better when many adaptations are needed during
execution, assuming that there are no memory limitations. As such, it may be quite suc-
cessful in some cases, but is suboptimal where the build phase is long compared with
the probe phase, or where memory is not abundant, or where the operators are window-
based. In general, its application space is rather narrow. Another proposal is the use of a
dynamic hash table approach in which all hash table inserts and probes take place twice.
However, this seems not to be a winner, since it is characterized by a significant response
time overhead where no load balancing is required, and by creating considerable amounts
of extra work reduces throughput in a loaded environment.

Typically, the load balancing problem in a single query environment is transformed
to the problem of making the execution times of parallel subtasks equal, as their maxi-



Figure 7. An example of balancing stateful operators.

mum defines the overall execution time.The spirit of Flux is the same, although the adap-
tivity steps are not based on a corresponding balancing function, but on a heuristic, as
mentioned previously. Such approaches essentially adopt a definition of balanced execu-
tion, which does not take into account the inherent overhead for enforcing the balanc-
ing decisions. This limitation, which is particularly felt in unpredictably volatile imbal-
ances, needs to be addressed; otherwise, any load balancing approach will not perform
well under randomly and rapidly changing load imbalances. In the sequel, the load bal-
ancing problem is formalized in a way that the enforcing overhead is directly taken into
consideration.

4.1. Problem Description

Consider two relations, A and B, which are joined remotely using a hash join; the hash
table is built on A. Let us assume that the hash join operator is parallelised over two
physical nodes, and that these two nodes are capable of processing tuples at the same
speed. Then, in a balanced execution, the two nodes should receive and process the same
amount of workload. However, if, during execution, the first machine becomes three
times as fast as the second machine, then the workload distribution should change to
reflect that. The problem is that a workload distribution that is proportional to the nodes’
execution speed can yield the lowest response times only if the operators are stateless. In
stateful operators, like hash joins, which create internal state in the form of hash tables,
any workload re-allocation triggers state movements, which incur some cost (see Fig.
7). Consequently, a more efficient load balancer should take into account this cost when
deciding on workload re-allocations with a view to reducing the query execution time.

The load balancing problem can be formalized as follows. Let P be the degree of
intra-operator parallelism of an operator o, and m1,m2, · · · ,mP the P nodes partici-
pating in its execution. The workload proportion that each of these nodes receives at the
kth adaptivity step is p1(k), p2(k), · · · , pP (k), with the constraints

∑P
i=1 pi(k) = 1, ∀k

and pi(k) ≥ 0,∀k. pi(k), i = 1 . . . P is defined through a hash function hk(). Each
node possesses a certain amount of state si(k), i = 1 . . . P , which is needed to eval-
uate pi(k). si(k) depends on pi(k). ci(k) denotes the cost (overhead) to reach state
si(k) from state si(k − 1), as a result of a change in pi(k). The measured output is



y1(k), y2(k), . . . , yP (k) and defines the expected value for the completion time of each
of the participating nodes given the workload allocation of the kth adaptivity step. If the
query is continuous (e.g., over data streams) the expected completion time refers to the
time to complete the evaluation of a fixed aggregate workload. Without loss of generality,
we can assume that y(i) strictly monotonically increases with p(i), i.e., assigning more
workload to a node leads to an increase in its expected completion time. The role of the
load balancer is to minimize the following

max(yi(k + 1) + ci(k + 1)), i = 1 . . . P (4)

and estimate hk+1 accordingly. To date, there is no practical methodology to solve Eq.
(4) analytically. Empirical evaluation proves that approaches such as Flux, or the one
described in [17] are efficient if the load imbalance is static. But when the imbalance
changes frequently and unpredictably, these approaches are unsuitable.

4.2. A control theoretical approach

Essentially, the load balancing objective defined in Eq. (4) includes a trade-off between
(a) reaching the optimal workload allocation, in which the expected completion times are
equalized across all participating nodes, and (b) the cost for reaching such an allocation,
which is mainly due to state movements. In addition, rapidly changing applications are
characterized by non-negligible dynamics, which can be addressed by control theoreti-
cal approaches. There exist a control theoretical approach that is particularly tailored to
trade-offs such as the one mentioned above. More specifically, to meet the objective in
Eq. (4), we can employ a state space model, with a linear quadratic regulator (LQR) [27]
designed on top of it. LQR controllers are in general capable of accurately finding the
controller settings that minimize a cost function, which can capture both the deviations
from the optimal state and the cost to reach such a state. In essence, they do not try to
postpone adaptations due to the cost they are expected to incur but to modify the response
actions so that any adaptations applied are beneficial. Such an approach is described in
[19].

Nevertheless, the load balancing problem can be deemed as a constrained optimiza-
tion problem. In the LQR approach, the constraints are incorporated in an indirect way.
There exist some other methodologies in the literature which treat constraints directly,
such as suboptimal constrained LQR and model predictive control (MPC) or receding
horizon control [35]. Orthogonally to this issue, any scalable adaptivity solution oper-
ating in distributed environments, must be distributed itself; as such, investigation of
distributed MPC [4], may lead to significant improvements.

Finally, the solutions mentioned thus far in this section refer to intra-operator par-
allelism, whereas more global load balancing solutions should consider both intra- and
inter-operator parallelism in a unified manner. This is a significant open research issue.
The work in [18] can be seen as a first step towards this direction, although it suffers
from serious limitations (e.g., no runtime changes in the shape of the query plan and the
operator execution order are supported).



5. Spatio-temporal query processing

The fundamental goal of spatio-temporal data management is the representation, storage
and processing of queries involving the spatial (e.g., location) and/or the temporal (e.g.,
time instance) characteristics of objects, effectively and efficiently [31]. Many real-world
applications are characterized by spatio-temporal behavior such as: traffic monitoring,
fleet management, land ownership, monitoring of physical phenomena (e.g., hurricanes,
tornados) to name a few [52]. The basic property of the underlying data is that the loca-
tion and/or the shape of the objects may change with respect to time.

In spatio-temporal applications, queries may be expressed by posing constraints on
the spatial, temporal or spatio-temporal data characteristics. As an example, consider the
following ad-hoc queries that may be expressed in a fleet management application: "de-
termine all trucks that have been passed through area 66 the last seven days" or "deter-
mine all trucks with similar trajectory to that of truck X". In the aforementioned queries,
both spatial and temporal characteristics have been used. To answer such queries effi-
ciently, appropriate query processing techniques are required which are usually enhanced
by sophisticated spatio-temporal indexing schemes [31]. In many cases, these indexing
schemes are enhanced or extended versions of efficient spatial access methods that have
been successfully applied in spatial-only applications [14]. In other cases, the time at-
tribute is considered as just another dimension, enabling the direct utilization of conven-
tional spatial access methods. Although such schemes may provide the necessary per-
formance improvements for query processing, there is an additional requirement to keep
the data up to date subject to frequent changes in their spatial characteristics. In addition
to ad-hoc queries, which may involve past, present or future (predicted) data characteris-
tics, some applications may require the processing of continuous queries. A continuous
query remains active for a time period and its answer needs to be updated in a continu-
ous manner. For example, the query "show me the five closest vehicles for the next two
hours" is characterized as continuous, because its result should be updated every time
there is a change. Continuous query processing requires different mechanisms than ad-
hoc processing in order to guarantee efficiency and to avoid unnecessary computational
costs.

In addition to the performance boosting offered by indexing, spatio-temporal data
management, as any other data-oriented application, has a lot to gain by introducing par-
allelism. Although this alternative has been successfully used in the past, there is rel-
atively little work performed in parallelizing spatio-temporal databases. Some of these
efforts are briefly described in the sequel. Parallel processing of spatio-temporal queries
is one of the major research directions in spatio-temporal data management, as it has
been pointed out in [40]. In [24] the authors study the provisioning of spatio-temporal
services in a shared-nothing environment composed of clusters of workstations (COW).
One of the machines is the master site whereas the rest are termed storage sites. Although
the performance of spatio-temporal query processing is improved, the usage of a master
server introduces a single point of failure and it may also introduce bottlenecks. In [55]
distributed algorithms have been studied to answer similarity queries among trajectories
of moving objects. The space is partitioned into cells, and cells are assigned to different
processors (or sites). A similarity query initiated by a querying node triggers the process-
ing of the cells that intersect the trajectory of the query. The experimental results have
demonstrated that the proposed techniques have significant performance improvements



over the centralized method. However, this approach does not consider load balancing or
adaptive query processing issues which are ubiquitous in a Grid environment. Moreover,
there is no provisioning for handling frequent updates due to changes in the location of
moving objects.

In [5] a framework has been proposed for processing historical spatio-temporal
queries in sensor networks. Three algorithms have been proposed and their performance
has been studied by performing a series of simulation-based experiments. The proposed
framework assumes that each sensor stores its own data locally, and therefore there
are limited possibilities for load balancing, which is considered very important in non-
centralized architectures. Moreover, in sensor network applications, low energy con-
sumption is considered more important than query response time, towards increasing the
life-time of sensors.

Regarding continuous query processing, the work in [53] studies a framework for
distributed processing of continuous spatio-temporal range queries. The proposed model
framework is based on PLACE [36]. The space is divided to regions, and each region is
covered by a regional PLACE server. The study reports results for range queries only.
An important extension to this work is the consideration of other important queries like
k-nearest-neighbors and joins. Another interesting work in this area has been carried out
in [15]. The novelty of this approach is that moving objects are capable of performing
computations and therefore, the load posed to each server is reduced significantly. This
idea can be applied when each moving object is equipped with devices like PDAs, which
can perform simple spatio-temporal computations.

Parallel Grid architectures offer significant flexibility in query processing, allow-
ing sites that are autonomous and heterogeneous to participate in query execution in a
uniform and straightforward manner. However, issues like load balancing and adaptive
query optimization should be tackled towards efficient response times. Spatio-temporal
data are characterized by frequent updates, large volumes and costly operations (e.g.,
spatio-temporal joins). These features require efficient query optimization algorithms
and load balancing techniques to guarantee acceptable performance. So far, these issues
have been partially studied on specialized environments, like parallel processors, clusters
of workstations, multi-disk systems and sensor networks. Although these architectures
show significant similarities with parallel Grids, the challenges posed by the latter re-
quire a more thorough investigation of performance evaluation issues. The performance
of spatio-temporal data management algorithms should be evaluated by using meaning-
ful and reliable benchmarks. Although such benchmarks have been proposed for conven-
tional spatio-temporal systems [50], there is a lack of benchmarks for spatio-temporal
data managements in parallel Grid architectures.

6. Conclusions

This chapter describes a parallel query processing system for Grids, namely OGSA-DQP
and emphasizes on several complementary research issues that have a strong impact on
the performance of DQP systems running on Grids. These issues include reduction of
the data transmission cost, advanced scheduling strategies and load balancing policies
for distributed, heterogeneous and rapidly evolving settings. Several solutions to these
issues are described. In addition, the chapter discusses spatio-temporal queries, which



is an important class of advanced queries that are likely to be included in data- and
computation-intensive scenarios running on Grids. Overall, parallel query processing on
Grids seems to be a technology in evolution, and more advances are expected in the
following years.

Apart from the aforementioned topics, there are several additional open issues. Per-
haps one of the most interesting one is the blending of adaptive query processing tech-
niques that respond to updated or modified information about data statistics with dy-
namic techniques that adapt to changes in the execution environment. Also, query opti-
mization on the Grid should be multi-objective and possibly driven by SLAs. Construct-
ing and enforcing SLAs is a far from trivial task and novel techniques are required to this
end. Finally, since the Grid is an unpredictable volatile environment, autonomic solutions
(especially self-configuring and self-optimizing ones) to all these problems are required.
Control theory, which is tailored to rapidly changing situations, seems to be a promising
tool to achieve that. Indeed, early experiences with control theoretical solutions in Grid
data managing problems (e.g., [21]) are encouraging.

Acknowledgements

We would like top thank our coworkers who have contributed to the work described
in this chapter, our understanding of parallel query processing in Grid settings and the
implementation of the OGSA-DQP system, including Rizos Sakellariou, who also kindly
offered suggestions to improve this chapter, Norman W. Paton, Paul Watson, Nedim
Alpdemir, Desmond Fitzgerald, Steven Lynden, Arijit Mukherjee, and Jim Smith.

References

[1] M. N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. A. Fernandes, A. Gounaris, and J. Smith.
Service-based distributed querying on the grid. In Proc. of 1st International Conference on Service
Oriented Computing - ICSOC, pages 467–482. Springer, 2003.

[2] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N.P. Chue Hong, B. Collins, N. Hardman, A.C.
Hulme, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan, N.W. Paton, D. Pearson, T. Sugden,
P. Watson, and M. Westhead. The design and implementation of Grid database services in OGSA-DAI.
Concurrency: Practice and Experience, 17:357–376, 2005.

[3] K. J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley, Reading, MA, USA, 1995.
[4] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar. Distributed model predictive control. IEEE Control

Systems Magazine, 22(1):44–52, 2002.
[5] A. Coman, M.A. Nascimento, and J. Sander. A framework for spatio-temporal query processing over

wireless sensor networks. In Proceedings of the Data Management in Sensor Networks Workshop, pages
104–110, 2004.

[6] D. E. Culler. PlanetLab: An open, community-driven infrastructure for experimental planetary-scale
services. In USENIX Symposium on Internet Technologies and Systems, 2003.

[7] H. Dail, O. Silvert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Dongarra, C. Liu, L. Yang,
D. Angulo, and I. Foster. Scheduling in the grid application development software project. In
J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid resource management: state of the art and future
trends. Kluwer Academic Publishers Group, 2003.

[8] A. Deshpande and J. M. Hellerstein. Decoupled query optimization for federated database systems. In
Proceedings of the 18th International Conference on Data Engineering, 26 February - 1 March 2002,
San Jose, CA, pages 716–732. IEEE Computer Society, 2002.

[9] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and Trends in
Databases, 1(1):1–140, 2007.



[10] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna. GAMMA -
a high performance dataflow database machine. In VLDB’86 Twelfth International Conference on Very
Large Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings., pages 228–237. Morgan Kaufmann,
1986.

[11] Y. Diao, J. L. Hellerstein, S. S. Parekh, R. Griffith, G. E. Kaiser, and D. B. Phung. Self-managing
systems: A control theory foundation. In Proc of IEEE International Conference and Workshop on the
Engineering of Computer Based Systems ECBS 2005, pages 441–448, 2005.

[12] R. S. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a relational data base
system. In Proceedings of the 1978 ACM SIGMOD International Conference on Management of Data,
Austin, Texas, May 31 - June 2, 1978, pages 169–180. ACM, 1978.

[13] M. J. Franklin, A. Y. Halevy, and D. Maier. From databases to dataspaces: a new abstraction for infor-
mation management. SIGMOD Record, 34(4):27–33, 2005.

[14] V. Gaede and O. Guenther. Multidimensional access methods. ACM Computing Surveys, 30(2):170–231,
1998.

[15] B. Gedik and L. Liu. Mobieyes: Distributed processing of continuously moving queries on moving
objects in a mobile system. IEEE Transactions on Mobile Computing, 5(10):1384–1402, 2006.

[16] A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. A. Fernandes. A novel approach to resource
scheduling for parallel query processing on computational grids. Distributed and Parallel Databases,
19(2-3):87–106, 2006.

[17] A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, A. A. A. Fernandes, and P. Watson. Adapting to
changing resource performance in grid query processing. In Data Management in Grids, First VLDB
Workshop, DMG, pages 30–44, 2005.

[18] A. Gounaris, J. Smith, N.W. Paton, R. Sakellariou, A.A.A. Fernandes, and P. Watson. Adaptive workload
allocation in query processing in autonomous heterogeneous environments. Distributed and Parallel
Databases, to appear, 2009.

[19] A. Gounaris, C. Yfoulis, and N.W. Paton. Efficient load balancing in partitioned queries under random
perturbations. Submitted for publication.

[20] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D. Dikaiakos. A control theoretical approach to self-
optimizing block transfer in web service grids. ACM Transactions on Autonomous and Adaptive Systems,
TAAS, 3(2), 2008.

[21] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D. Dikaiakos. Robust runtime optimization of data
transfer in queries over web services. In 24th International Conference on Data Engineering, ICDE,
pages 596–605, 2008.

[22] G. Graefe. Encapsulation of parallelism in the volcano query processing system. In Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, May 23-25,
1990., pages 102–111. ACM Press, 1990.

[23] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):73–170, 1993.
[24] M. Hadjieleftheriou, V. Kriakov, Y. Tao, G. Kollios, A. Delis, and V.J. Tsotras. Spatio-temporal data

services in a shared-nothing environment. In Proceedings of the 16th International Conference on
Scientific and Statistical Database Management, 2004.

[25] A. Y. Halevy. Data integration: A status report. In BTW 2003, Datenbanksysteme für Business, Tech-
nologie und Web, Tagungsband der 10. BTW-Konferenz, 26.-28. February 2003, Leipzig, pages 24–29.
GI, 2003.

[26] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace systems. In Symposium on Principles
of Database Systems PODS, pages 1–9, 2006.

[27] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing Systems. John
Wiley & Sons, 2004.

[28] T. Kosar and M. Livny. Stork: Making data placement a first class citizen in the grid. In 24th Interna-
tional Conference on Distributed Computing Systems ICDCS, pages 342–349. IEEE Computer Society,
2004.

[29] D. Kossmann. The state of the art in distributed query processing. ACM Comput. Surv., 32(4):422–469,
2000.

[30] N. Kotowski, A. A. B. Lima, E. Pacitti, P. Valduriez, and M. Mattoso. Parallel query processing for
OLAP in grids. Concurrency and Computation: Practice and Experience, 20(17):2039–2048, 2008.

[31] M. Koubarakis, T. K. Sellis, A. U. Frank, S. Grumbach, R. Hartmut Güting, C. S. Jensen, N. A. Lorent-
zos, Y. Manolopoulos, E. Nardelli, B. Pernici, H. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona,



editors. Spatio-Temporal Databases: The CHOROCHRONOS Approach, volume 2520 of Lecture Notes
in Computer Science. Springer, 2003.

[32] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multiproces-
sors. ACM Comput. Surv., 31(4):406–471, 1999.

[33] S. Lightstone, B. Schiefer, D. Zilio, and J. Kleewein. Autonomic computing for relational databases:
the ten-year vision. In Proc.of the IEEE Workshop Autonomic Computing Principles and Architectures
(AUCOPA), pages 419–424, 2003.

[34] S. Lynden, A. Mukherjee, A. C. Hume, A. A. A. Fernandes, N. W. Paton, R. Sakellariou, and P. Wat-
son. The design and implementation of ogsa-dqp: A service-based distributed query processor. Future
Generation Comp. Syst., 25(3):224–236, 2009.

[35] J. Maciejowski. Predictive control with constraints. Prentice Hall, 2001.
[36] M.F. Mokbel, X. Xiong, and W.G. Aref. Continuous query processing of spatio-temporal data streams

in place. Geoinformatica, 9(4):343–365, 2005.
[37] M. A. Nieto-Santisteban, J. Gray, A. S. Szalay, J. Annis, A. R. Thakar, and W. O’Mullane. When

database systems meet the grid. In Conference on Innovative Data Systems Research CIDR, pages
154–161, 2005.

[38] N. W. Paton, J. Buenabad-Chavez, M. Chen, V. Raman, G. Swart, I. Narang, D. M. Yellin, and A. A. A.
Fernandes. Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity
options. VLDB J., 18(1):119–140, 2009.

[39] A. Radulescu and A. J. C. van Gemund. A low-cost approach towards mixed task and data parallel
scheduling. In Proceedings of the 2001 International Conference on Parallel Processing, ICPP 2002,
3-7 September 2001, Valencia, Spain, pages 69–76. IEEE Computer Society, 2001.

[40] J.F. Roddick, M.J. Egenhofer, E. Hoel, D. Papadias, and B. Salzberg. Spatial, temporal and spatio-
temporal databases-hot issues and directions for phd research. SIGMOD Record, 33(2):126–131, 2004.

[41] R. Sakellariou and V. Yarmolenko. Job scheduling on the grid: Towards sla-based scheduling. In Lucio
Grandinetti, editor, Volume 16 in the Advances in Parallel Computing series, pages 207–222. IOS Press,
2008.

[42] B. Seshasayee, K. Schwan, and P. Widener. SOAP-binQ: High-performance SOAP with continuous
quality management. In 24th International Conference on Distributed Computing Systems ICDCS, pages
158–165, 2004.

[43] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An adaptive partitioning
operator for continuous query systems. In Proceedings of the 19th International Conference on Data
Engineering, March 5-8, 2003, Bangalore, India, pages 25–36. IEEE Computer Society, 2003.

[44] J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes, and R. Sakellariou. Distributed query
processing on the grid. Intl. J. High Performance Computing Applications, 17(4):353–368, 2003.

[45] J. Smith, S. Sampaio, P. Watson, and N.W. Paton. The polar parallel object database server. Distributed
and Parallel Databases, 16(3):275–319, 2004.

[46] U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization over web services. In Int.
Conference on Very Large Data Bases VLDB, pages 355–366, 2006.

[47] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system. VLDB J., 5(1):48–63, 1996.

[48] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – a distributed job scheduler. In Thomas
Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press, 2002.

[49] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In Fran Berman, Geoffrey Fox, and Tony
Hey, editors, Grid Computing: Making the Global Infrastructure a Reality. John Wiley & Sons Inc.,
2003.

[50] Y. Theodoridis. Ten benchmark queries for location-based services. The Computer Journal, 46(6):713–
725, 2003.

[51] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallelism in a main-memory DBMS: The perfor-
mance of prisma/db. In 18th International Conference on Very Large Data Bases, August 23-27, 1992,
Vancouver, Canada, Proceedings., pages 521–532. Morgan Kaufmann, 1992.

[52] M.F. Worboys. A unified model for spatial and temporal information. The Computer Journal, 37(1):26–
34, 1994.

[53] X. Xiong, H.G. Elmongui, X. Chai, and W.G. Aref. Place*: a distributed spatio-temporal data stream
management system for moving objects. In Proceedings of the International Conference on Mobile
Data Management, pages 44–51, 2007.



[54] S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems. Future Generation Comp.
Syst., 21(1):163–188, 2005.

[55] D. Zeinalipour-Yazti, S. Lin, and D. Gunopoulos. Distributed spatio-temporal similarity search. In
Proceedings of the International Conference on Information and Knowledge Management, pages 14–23,
2006.


