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Abstract:

Multi-modal Social Networks (MSNs) allow users to form explicit (by
adding new friends in their network) or implicit (by similarly co-rating
items) social networks. Previous research work was limited either to
the prediction of new relationships among users (i.e. Link Prediction
problem) or to the prediction of item ratings (i.e. Rating Prediction
problem and Item Recommendations). Recent link prediction methods
infer future relationships among users, by also exploiting information
from their implicit networks (i.e. user-item rating network). On the other
hand, Rating Prediction methods predict the user’s rating behavior on
items, by also exploiting information from their explicit network (i.e.
friendship network).

In this paper, we develop a framework to incorporate both research
directions into a unified model. We extend our Social-Union algorithm,
which initially focused on the rating prediction problem, in order
to be applied also on the link prediction problem. Social-Union
combines similarity matrices derived from heterogeneous (unipartite and
bipartite) explicit or implicit MSNs. Moreover, we propose an effective
weighting strategy of MSNs influence based on their structured density.
We also generalize our model for combining multiple social networks. We
perform an extensive experimental comparison of the proposed method
against existing link and rating prediction algorithms, using synthetic
and two real data sets (Epinions and Flixter). Our experimental results
show that our Social-Union framework is more effective in both rating
and link prediction.
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1 Introduction

Multi-modal Social networking sites, like Epinions and Flixter, have attracted huge
attention after the widespread adoption of Web 2.0 technology. In such systems,
people often belong to multiple explicit or implicit social networks because of
different interpersonal interactions. For example, in Epinions and Flixter, people
add each other as friends constructing a large unipartite friendship network.
However, besides the explicit friendship relations between the users, there are also
other implicit relations. For example, users can co-comment on products and they
can co-rate products.

There are two main research directions on MSNs. The first concerns the link
prediction task, whereas the second refers to the rating prediction and item
recommendation task. In the following, we present the motivation of our work in
both directions, i.e. the link and rating prediction.

There is a little work in link prediction from multiple social networks. Recently,
Lu et al. (2010) proposed supervised link prediction using multiple heterogeneous
sources (i.e. auxiliary networks) of information. However, they have not exploited
the ability of their model to take into account features other than path counts.

There are many studies (Goldbeck, 2005; Jamali and Ester, 2010; Vasuki
et al., 2010) on rating prediction and item recommendation from two or
more social networks. Recently, Vasuki et al. (2010) proposed affiliation/group
recommendations based on the friendship network among users, and the
affiliation/group network between users and groups. However, as they mentioned
their method focuses only on path counts and does not exploit other features and
network characteristics which can be informative for link formation (i.e.local graph
characteristics). Moreover, Yuan et al. (2009) proposed a linear method to integrate
explicit social relationships into Collaborative Filtering methods. However, they
did not use a weighting strategy of MSNs influence based on their structured data
density.

1.1 Contribution

In this paper, we develop a framework to incorporate both research directions into
a unified model. We extend our Social-Union algorithm (Symeonidis et al., 2011),
which initially focused on the rating prediction problem, in order to be applied
also on the link prediction problem. In particular, we decompose the main parts of
Social-Union in order to support the link prediction task. Social-Union framework
takes into account the local and global characteristics of the graphs such as graph
density, user’s profile density, nodes structure etc. Moreover, we present a well-
defined framework for combining heterogeneous social networks, i.e. unipartite and
bipartite networks. It is obvious that not all social networks contribute equally
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or contain valuable information. In addition, even though a social network is
informative, particular features may be irrelevant and noisy for a specific user. For
these reasons, we propose an effective automatic weighting strategy of the social
networks influence based on their structured density. In particular, we take into
account the local (i.e. user’s profile density) and global (i.e. network’s density)
characteristics of multi-modal social graphs. Based on these characteristics, for
each target user we analogously calibrate the influence of each social network. For
example, a user could have very few friends in the friendship network, but many
interactions in co-commenting or co-rating products (i.e. user-items rating network).
In such a case, the weighting strategy of our model promotes the information given
by the user-item rating network. Finally, we generalize our model for combining
multiple social networks. In particular, our model can incorporate many unipartite
(e.g. user-user) or bipartite (e.g. user-item) social networks.

This new Social-Union framework extends our previous work (Symeonidis et
al., 2011) as follows:

• We extend our framework in order to provide either friend recommendations
(i.e. link prediction) or item recommendations (i.e. rating prediction) based
on the user’s profile characteristics. That is, if a user has few friend and
high interaction with other users on co-rating products, we can exploit
the information from the user-item rating network to leverage the friend
recommendation task. In contrast, if the user has many friends and low
interaction with other users on co-rating products, we can exploit the
friendship network to leverage the item recommendation task.

• We propose a new algorithm (i.e. Social-Union-Link-Prediction) which is
suitable for link prediction and we present a new toy example that shows
how our Social-Union framework can leverage both the rating and the link
prediction tasks. Moreover, we provide details about the complexity of the
proposed algorithms and we discuss in details about other implementation
issues.

• We have experimentally compared our method with both state-of-the-art
rating and link prediction algorithms, following two different experimental
protocols which are suitable for each different recommendation task (i.e. friend
and item recommendation). Moreover, we have also experimentally tested
the performance of other aggregation functions (i.e. AggrMin, AggrMax and
AggrAvg) for the combination of similarities matrices.

The rest of this paper is organized as follows. Section 2 summarizes the related
work, whereas Sections 3 and 4 present how link and rating prediction is performed
from bipartite and unipartite graphs, respectively. Our proposed algorithm, which
is based on heterogeneous social networks,several extensions, complexity and other
implementation issues are described in Section 5. Experimental results are given in
Section 7. Finally, Section 8 concludes this paper.

2 Related work

In this Section, we review related work on link and rating prediction.
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2.1 Link Prediction

The research area of link prediction in unipartite social networks, tries to infer
which new interactions among members of a social network are likely to occur
in the near future. There are two main approaches (Liben-Nowell and Kleinberg,
2003) that handle the link prediction problem. The first approach is based on local
features of a network, focusing mainly on the nodes structure. There is a variety of
local similarity measures (Liben-Nowell and Kleinberg, 2003) such as Adamic and
Adar index (Adamic and Adar, 2005), Friend of a Friend (FOAF) algorithm (Chen
et al., 2009), Preferential attachment (Liben-Nowell and Kleinberg, 2003) etc. The
second approach is based on global features, detecting the overall path structure
in a network. There is a variety of global approaches (Liben-Nowell and Kleinberg,
2003) such as Random Walk with Restart algorithm (Pan et al., 2004), SimRank
algorithm (Jeh and Widom, 2002), Katz status index (Katz, 1953) etc.

Besides the aforementioned link prediction algorithms that are based solely on
single-type graph structure, there are also other methods which exploit also other
data sources such as messages among users, co-authored paper, common tagging
etc. For instance, Gue et al. (2009), proposed a novel user interface widget for
providing users with recommendations of people. Their people recommendations
were based on aggregated information collected from various sources across IBM
organization (i.e. common tagging, common link structure, common co-authored
papers etc.). Chen et al. (2009) evaluated four recommender algorithms (Content
Matching, Content-plus-Link, FOAF algorithm and, SONAR) to help users discover
new friends on IBM’s OSN. Recently, Lu et al. (2010) proposed supervised
link prediction using multiple heterogeneous sources (i.e. auxiliary networks) of
information. However, as they mentioned their method focuses only on path counts
and does not exploit other features and network characteristics which can be
informative for link formation (i.e. local graph characteristics).

2.2 Rating Prediction

In this Section, we review related work on item recommendation in social networks.
We first review memory-based approaches in collaborative filtering (CF), which
have been used for recommendation in bipartite social networks (i.e. user-item
networks). The GroupLens system (Resnick et al., 1994) implemented a CF
algorithm based on common users preferences, known as user-based CF, which
employed users’ similarities for the formation of the neighborhood of nearest users.
Many improvements of user-based CF have been suggested, e.g., (Breese et al.,
1998). Moreover, item-based CF (Sarwar et al., 2001; karypis, 2001) is based on
the items’ similarities for a neighborhood generation of nearest items. Many model-
based algorithms have been also developed (Breese et al., 1998). Sarwar et al. (2000)
proposed a Matrix Factorization model based on Singular Value Decomposition
(SVD) for generating rating predictions. Koren (2008), who is member of the
winning team in the Netflix prize, proposed SVD++ method, which adds in the
plain SVD also information taken from user/item bias and other implicit feedback.
As the Netflix prize competition has demonstrated, matrix factorization models are
superior to classic nearest-neighbor techniques (Koren, 2008).
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There are several methods (Goldbeck, 2005; Jamali and Ester, 2010; Vasuki
et al., 2010; Ma et al., 2009, 2011; Yang et al., 2011), that combine information
from unipartite and bipartite graphs, focusing in the rating prediction (i.e.
item/group recommendation) problem. For example, TidalTrust (Goldbeck, 2005)
and MoleTrust (Massa and Avesani, 2004) combine the rating data of collaborative
filtering systems with the link data of trust-based social networks to improve
the item recommendation accuracy. In particular, TidalTrust (Goldbeck, 2005)
performs a modified breadth first search in the trust network to compute a rating
prediction. Furthermore, MoleTrust (Massa and Avesani, 2004) considers paths of
friends to a user-defined maximum-depth. Recently, Vasuki et al. (2010) proposed
affiliation/group recommendations based on the friendship network among users,
and the affiliation/group network between users and groups. In particular, they
suggested two models of user-community affinity for the purpose of making
affiliation recommendations: one based on graph proximity, and another using
latent factors to model users and communities. Ma et al. (2009, 2011) proposed
a probabilistic matrix factorization framework for recommender systems, which
naturally fuses the users tastes and their trusted friends favors together. In the
same direction, Jamali and Ester (2010) proposed also a probabilistic matrix
factorization technique with trust propagation for leveraging item recommendations
in social networks. They explored a model-based approach for item recommendation
in social networks, employing matrix factorization techniques, by incorporating
the mechanism of trust propagation into their model. However, they have not
theoretically considered the ability of their model to take into account more than
two social networks. Finally, recently Yang et al. (2011) proposed a probabilistic
framework (Friendship Interest Propagation- FIP) for both handling the link and
rating prediction problem. However, in contrast to our work, they control the
influence and impact of each social network in their model, through a user-defined
parameter, which additionally requires user-controlled parameter tuning.

3 Link and Rating Prediction based on user-item bipartite graph

As described in Section 1, users can form several implicit social networks through
their daily interactions like co-commenting on people’s post, co-rating similarly
products, and co-tagging people’s photos. These implicit relations, contain edges
between two types of entities, such as a user-item bipartite graph. An example can
be seen in Figure 1, which presents the ratings of users on items and will be also
used in our running example.

The user-item bipartite graph of our running example, can be also presented by
a matrix R, where the rating of a user u over an item i is given from the element
R(u, i). An example of such a matrix is given in Figure 2, where I1−2 are items and
U1−4 are users. The null cells (no rating) are presented with dash.

Related work in Collaborative Filtering (Herlocker et al., 2002; McLauglin and
Herlocker, 2004; Mobasher et al., 2001; Sarwar et al., 2001) has used Pearson
correlation or Cosine similarity to compute similarity among users of a bipartite



6 Panagiotis Symeonids, Eleftherios Tiakas and Yannis Manolopoulos

 

U1 
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2 
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U2 

Figure 1 Example of a user-item bipartite network.

I1 I2
U1 4 5
U2 2 1
U3 - 5
U4 3 -

Figure 2 Running example: User-Item matrix R.

graph. In our implementation, we will use the cosine similarity (Equation 1), which
measures the similarity between two users, u and v.

sim(u, v) =

∑

∀i∈Iu∩Iv

(ru,i · rv,i)

√

∑

∀i∈Iu

(ru,i)
2

√

∑

∀i∈Iv

(rv,i)
2

(1)

Note that Iu, Iv are the sets that contain the rated items by the users u and v,
respectively. Therefore, Iu ∩ Iv denotes the co-rated items by u, v.

The application of Equation 1 to our running example, constructs the rating
similarity matrix simR, which is depicted in Figure 3.

U1 U2 U3 U4

U1 1 0.908 0.781 0.625

U2 0.908 1 0.447 0.894

U3 0.781 0.447 1 0

U4 0.625 0.894 0 1

Figure 3 simR similarity matrix based on rating matrix.

For the link prediction task, in our running example, let’s assume that we want
to propose new friends to user U4. As shown in Figure 3, we can rank the similarities
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of user U4 with the other users (i.e. U1, U2). Then, we can recommend to U4 as top
friend user U2.

For the rating prediction task, in our running example, let’s assume, that we
want to predict the rating of user U4 on item I2. We can also take into account
the similarities between users (see Figure 3). Then, we can compute the predicted
rating of a user u for an item i by using Equation 2:

pu,i =

∑

v∈U

[sim(u, v) · rv,i]

∑

v∈U

sim(u, v)
(2)

Note that in Equation 2 only the users v that have rated the item i are involved
in the summations.

Based on Equation 2, and by selecting two users as the neighborhood of U4 (i.e.
nearest users U2 and U1, the rating prediction of U4 on item I2, is equal to 2.646
[(0.894 ∗ 1 + 0.625 ∗ 5)/(0.894 + 0.625) = 2.646].

4 Link and rating prediction based on user-user unipartite graph

As described in Section 1, users can form an explicit social network by adding each
other as friends. Let G be a graph with a set of nodes V and a set of edges E .
Every edge is defined by a specific pair of graph nodes (vi, vj), where vi, vj ∈ V.
An example of such a graph can be seen in Figure 4, which presents a friendship
network and will be used as our running example.

We assume that the graph G is undirected and un-weighted, thus the graph
edges do not have any weights, plus the order of nodes in an edge is not important.
Therefore, (vi, vj) and (vj , vi) denote the same edge on G. Moreover, graph G can not
have multiple edges that connect two nodes, thus if two nodes vi, vj are connected
with an edge of E , then there can not exist another edge in E also connecting them.
Finally, we assume that there can not be loop edges on G (i.e. a node can not be
connected to itself).

U1 

U4 

U3 

? ? 

U2 

1 

1 

1 

Figure 4 Example of a unipartite friendship Network.
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A common graph representation is the adjacency matrix A. It is an n× nmatrix,
where n = |V| is the number of nodes in G. Therefore, it has n rows and n columns
labelled by the graph nodes. For an un-weighted non-multiple graph (such as G),
the adjacency matrix values are set as follows:

A[vi, vj ] =

{
1, if (vi, vj) ∈ E

0, if (vi, vj) /∈ E

Following all previous assumptions and definitions, the adjacency matrix of an
undirected and un-weighted graph such as G, is a symmetric matrix with values 1
and 0, if two nodes are neighbors or not, respectively. In addition, as there are not
any loop edges, the main matrix diagonal have zero values. The adjacency matrix
of our running example is depicted in Figure 1.

U1 U2 U3 U4

U1 0 0 1 1
U2 0 0 1 0
U3 1 1 0 0
U4 1 0 0 0

Table 1 Running example: User-User Adjacency matrix A.

For the link prediction task, let’s assume in our running example, that we
want to recommend new friends to user U4. As discussed in Section 2, there
is a variety of local similarity measures (Liben-Nowell and Kleinberg, 2003)
(i.e. Adamic/Adar index, Jaccard Coefficient, Common Neighbors index etc.) for
analyzing the “proximity” of nodes in a network. We use an extension of the Jaccard
Coefficient (i.e. Tanimoto coefficient (Tanimoto, 1957)), which is a cosine similarity
metric that measures the degree of overlap between node vectors, as shown in the
following Equation:

sim(vi, vj) =

{
0, if (vi, vj) /∈ E

1
deg(vi)+deg(vj)−1 , otherwise

(3)

where deg(vi) and deg(vj) are the degrees of nodes vi and vj , respectively.
Collecting all similarity values between the nodes of a graph G, we construct the

basic node similarity matrix simA of G, which is an n× n matrix having n rows and
n columns labeled by the graph nodes. In our running example, simA is depicted
in Figure 5.

As shown, we can not infer new interactions for user U4, since there are no
connections between the corresponding users. Notice also that the similarity values
between all non-adjacent nodes are zero. For instance, in our running example, the
similarity value between nodes U4 and U3 is zero, because they do not share any
edge. However, users U4 and U3 have both user U1 as a common friend, and thus
they could be related in some way.

By using a transitive similarity we can efficiently solve this problem. We can
define a transitive node similarity, between two nodes vi and vj , denoted as extended
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U1 U2 U3 U4

U1 0 0 0.333 0.5

U2 0 0 0.5 0
U3 0.333 0.5 0 0

U4 0.5 0 0 0

Figure 5 simA Similarity Matrix based on Adjacency Matrix.

similarity. Extended similarity is calculated by the product of the basic similarities
between the nodes of the shortest path from vi to vj (if there are more than 1
shortest paths it is averaged).

In our running example, the extended similarity between nodes U4 and U3

equals:

sim(U4, U3) = sim(U4, U1) · sim(U1, U3) =
1

2
·
1

3
=

1

6
= 0.167

Moreover, the extended similarity between nodes U4 and U2 equals:

sim(U4, U2) = sim(U4, U1) · sim(U1, U3) · sim(U3, U2) =

=
1

2
·
1

3
·
1

2
=

1

12
= 0.083

Collecting all the extended similarity values between the nodes of a graph G, we
can update simA with the new extended similarity values. In our running example,
the updated simA is depicted in Figure 6. As shown in Figure 6, we can recommend
to user U4 as top friend user U3.

U1 U2 U3 U4

U1 0 0.167 0.33 0.5

U2 0.167 0 0.5 0.083
U3 0.33 0.5 0 0.167

U4 0.5 0.083 0.167 0

Figure 6 Updated simA Similarity Matrix with the extended similarities.

For the rating prediction task, we can predict the rating of a user on an item
based on the above similarity matrix by taking also into account the ratings of
the target user’s nearest neighbors using Equation 2. Based on Equation 2, and by
selecting two users as the neighborhood of U4 (i.e. nearest users are U1 and U3, the
rating prediction of U4 on item I2, is equal to 5 [(0.5 ∗ 5 + 0.167 ∗ 5)/(0.5 + 0.167) =
5].

5 The Social-Union Framework

In the previous two Sections, we have shown that based on different explicit or
implicit social networks (i.e. user-user unipartite network or user-item bipartite
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network) we can infer different conclusions. For example in our running example,
for the link prediction task, based on the user-item bipartite network in Section 3,
we recommend to U4 as top friend user U2. In contrast, based on the user-user
unipartite network in Section 4, we recommend to U4 as top friend user U3. The
same stands also for the rating prediction task. Based on the user-item bipartite
network, we predict the rating of U4 on item I2 to be equal to 2.646, whereas based
on the user-user unipartite graph we predict a value equal to 5. It is obvious that
each different explicit or implicit social network can be informative and contribute
a different aspect of reality.

In this Section, we present our approach, Social-Union, which combines multiple
similarity matrices from heterogenous unipartite and bipartite graphs, as discussed
in sections 4 and 3, respectively. The multi-modal graph expressing (i) friendship
among users and (ii) user ratings on items, can be seen in Figure 7.
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1
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1 

Figure 7 Example of a multi-modal Network.

In our running example, both similarity matrices, i.e. similarity matrix simR

which is based on the user-item network, and similarity matrix simA, which is
based on friendship network, contain valuable information. There are several basic
aggregation functions (i.e. Min, Max, Average etc.) that could be used to combine
the values of the two similarity matrices. In this paper, to compute the similarity
between two users u and v, we linearly combine simA and simR matrices into a
single one similarity matrix, as shown by Equation 4:

sim(u, v) = (1− au) · simA + au · simR (4)

In Equation 4, au takes values between [0,1]. This parameter can be adjusted
by the user. When au takes values greater than 0.5, then the similarity values
based on ratings matrix have much more impact in the final similarity values
than the similarity values based on adjacency matrix. When au becomes zero, the
final similarity values are exactly the similarity values based on adjacency matrix
only. When au becomes one, the final similarity values are exactly the similarity
values based on ratings matrix only. Notice that we have also tested experimentally
other simple aggregation functions such as Min(simA,simR), Max(simA,simR), and
Avg(simA,simR), which do not incorporate parameter au.
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In several cases the distribution of the similarity values in the interval [0,1]
between simA and simR differ significantly. For example, consider the case that the
most similarity values in A are normally distributed between 0 and 0.3, whereas the
most similarity values in R are normally distributed between 0.4 and 0.7. Then, it
is unfair to take a simple weighted average of them using Equation 4, because the
similarity values of A will always be dominated by those of R, and only few small
values of the au parameter can be chosen for equivalence. In opposition, we want
the user to be able to use the au parameter freely in the whole range. Therefore, in
that case, we use the following transformation procedure for X = A and X = R:

• We compute the mean similarity value mX of the matrix X.

• We compute the standard deviation value sX of the matrix X.

• Wemake the following transformations to all similarity values of theX matrix:

simX(u, v) =
simX(u, v)−mX

sX
(5)

• Finally, we scale and translate the derived similarity values back in the interval
[0,1]:

simX(u, v) =
simX(u, v)−minX

maxX −minX

where minX ,maxX are the minimum and the maximum derived similarity
values in matrix X after the transformation of Equation 5, respectively.

5.1 Auto adjustment of the au parameter

The adjustment of au parameter by the user is definitely useful when the user
requires to calibrate manually the similarity calculations. For example, consider the
scenario that the final similarity values are used in a clustering application. Then, by
varying the au parameter, the user can calibrate the number of final derived clusters
to the desired. However, there are also applications where the manual adjustment
of the au parameter does not have a visual impact into their results, thus the user
cannot manage the variations and requires an auto-adjustment.

As described in Section 2, there are local and global features of social networks.
By Equation 6, we provide an independent automatic adjustment of au parameter
that takes into account the local (i.e. user’s density) and global (i.e. network’s
density) characteristics of multi-modal graphs:

au =
dR

dA+ dR
(6)

where:

• dA = localA
globalA

is the local to global density coefficient of the selected user u
into the adjacency matrix A. localA is the local density of the selected user
u into the adjacency matrix, i.e. the number of non-zero values in its row
divided by the number of users (deg(u)/n). globalA is the global density of
the adjacency matrix, i.e. the number of non-zero values in the full A matrix
divided by the square of number of users (/n2).
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• dR = localR
globalR

is the local to global density coefficient of the selected user u
into the ratings matrix R. localR is the local density of the selected user u
into the ratings matrix, i.e. the number of non-zero values in its row (non-zero
ratings) divided by the number of items |I|. globalR is the global density of
the ratings matrix, i.e. the number of non-zero values in the full R matrix
divided by the number of users and the number of items (/(n|I|)).

The construction and derivation of Formula 6 is simple: The denominator
expresses the total weighted density from both R and A data, whereas the
nominator expresses the total weighted density only from theR data, as au expresses
the ratio of the similarity values based on R (see Equation 4).

By substitution of dA, dR in Equation 6 we have:

au =
localR · globalA

localA · globalR+ localR · globalA
(7)

in case we want to express the au parameter using only the local and global densities.

5.2 Generalization of Social-Union for more similarity matrices

As already mentioned, au corresponds to the ratio of the similarity based on the
ratings matrix in Equation 4. Therefore, let us denote it as au,R, i.e. au,R = au.
Moreover, (1− au) corresponds to the ratio of the similarity based on the adjacency
matrix in Equation 4. Therefore, let us denote it as au,A, i.e. au,A = 1− au.
By substituting parameter au in Equation 4 with Equation 6, the Social-Union
similarity becomes:

sim(u, v) =
dA

dA+ dR
· simA +

dR

dA+ dR
· simR

or equivalently:

sim(u, v) = au,A · simA + au,R · simR (8)

Therefore, we have a specific general rule for the auto adjustment of the
ratio similarity coefficients: au,X is always equal to its corresponding final density
coefficient dX divided by the sum of all existing final density coefficients.

Now, Equation 8 can be generalized for any number of additional similarity
matrices as follows:

sim(u, v) = au,S1
· simS1

+ au,S2
· simS2

+ ...+ au,Sk
· simSk

(9)

where:

au,Si
=

dSi

dS1 + dS2 + ...+ dSk

(10)

and

dSi =
localSi

globalSi

(11)

and localSi, globalSi are the local and global densities for the matrix Si, ∀i =
1, 2, ..., k as defined previously.
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5.3 The Social-Union Algorithm for Link Prediction

Figure 8 depicts the outline of the algorithmic procedure of the proposed
methodology. In lines 1− 8, the similarity values of each source network are
calculated separately for the selected user u. In lines 9-11, the density values and
the coefficients are calculated for the selected user u. In lines 12-13, the unified
similarity values are calculated.

Algorithm Social-Union-Link-Prediction
Input
u: the selected user
SNi, i = 1, ..., k: k unipartite or bipartite social networks (including the ratings R)
Output
US: Unified Similarity Matrix

01. for i = 1 to k
02. if SNi is unipartite then
03. compute the similarity values (simSi

) of SNi, using Eq. 3 or any
other link prediction similarity measure for user u. (i.e. Adamic/
Adar, Common Neighbors, Random Walk with Restart, Katz etc.)

04. else if SNi is bipartite then
05. compute the similarity values (simSi

) of SNi, using Eq. 1 or any
other user-based collaborative filtering similarity measure
(i.e. Pearson Correlation, Jaccard Coefficient etc.) for user u.

06. end if
07. apply transformation of Eq. 5 in all similarity values of u.
08. end for
09. for i = 1 to k
10. compute the local and global densities localSi, globalSi and their

ratio dSi using Eq. 11 for the user u.
11. end for
12. compute the coefficients au,Si

using Eq. 10 for the user u.
13. compute final similarity values of user u using Eq. 9 in US
14. return US.

Figure 8 Outline of the Social Union Link Prediction Algorithm.

5.4 Using Social-Union results for Rating Prediction

To derive rating predictions for a specific user u we take into account the ratings
of the top-m similar users to u, where m < n is a user-defined parameter. This
methodology was used also in (Breese et al., 1998; Herlocker et al., 1999, 2002).

More specifically, let s1, s2, ..., sm the corresponding final similarity values
of the top-m similar users u1, u2, ..., um to u (those values have already been
calculated with the Social-Union methodology, i.e. si = sim(u, ui)). Let also, rij
the corresponding known ratings, and avgi the average ratings value, of the user ui
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in the ratings matrix R, for i = 1, 2, ...,m. Let also avg the average known ratings
of the user u in the ratings matrix. Then, the predicted ratings for the user u are
defined as follows:

r̂u,j = avg +

m∑

i=1

si · |rij − avgi|

m∑

i=1

si

(12)

where j is any unrated item by the user u.
Finally, we sort the predicted ratings r̂u,j of user u and we suggest the top-e

items, where e is a desired cardinality value.

5.5 The Social-Union Algorithm for Rating Prediction

Figure 9 depicts the outline of the algorithmic procedure of the proposed framework
for the rating prediction task. The input is the Unified Similarity Matrix US
computed from the Social-Union-Link-Prediction algorithm. The predicted ratings
are calculated and the top items are returned to the user.

Algorithm Social-Union-Rating-Prediction
Input
u: the selected user
US: Unified Similarity Matrix computed from Social-Union-Link-Prediction
algorithm (including the ratings R)
Output
E: a set of suggested items

1. find the top-m similar users u1, ..., um to u.
2. get corresponding final similarity values s1, ..., sm from US.
3. get corresponding known ratings rij of ui from R.
4. compute the average ratings of the users ui and u in R.
5. compute the predicted ratings for the user u using Eq. 12
6. put the top-e items with the highest predicted ratings in E.
7. return E.

Figure 9 Outline of the Social Union Rating Prediction Algorithm.

6 Complexity and Implementation Issues

The complexity of the proposed algorithms is strongly depended from (i) the
selected similarity measures and algorithms used for processing the corresponding
unipartite and bipartite networks, and (ii) the structures that are used for keeping
the network data and the corresponding indices in memory.
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For example, let us assume the case that: (i) we combine one unipartite
(user per user) and one bipartite (user per item) network, (ii) we use the FOAF
algorithm (Chen et al., 2009) and the user-based Collaborative Filtering (user-
based CF) algorithm (Breese et al., 1998) for processing the unipartite and bipartite
networks respectively, and (iii) we use an adjacency list for the representation of
structures in memory for all networks (using dynamic memory allocation).

The Social-Union-Link-Prediction Algorithm will have the following time
complexity:

• (lines 1-8 loop): (i) a complexity O(deg(u) ∗ (N +M)) is required for the
FOAF calculations, where deg(u) is the degree of the selected user, N is the
total number of users, and M is the total number of edges, in the unipartite
network, plus (ii) a complexity O(N + L) is required for the user-based CF
calculations, where L is the total number of edges in the bipartite network.

• (lines 9-12): these calculations require a complexity of O(N +M) +O(N +
L), as we have to scan the two adjacency lists of the networks. Note that
this can be done once (in a preprocessing level) and all density values and
coefficients can be stored, for later predictions.

• (line 13): the calculation of the final similarity values require a complexity of
O(N).

Putting altogether the total required time complexity for the Social-Union-Link-
Prediction Algorithm (for this example) will be: O(deg(u) ∗ (N +M) + L).

The complexity of the Social-Union-Rating-Prediction Algorithm is independent
from how many bipartite and unipartite networks are used or their selected
measures for similarity calculations, as its input is the unified similarities of the
user u (a vector of N similarity values). More specifically, the time complexity of
this algorithm is:

• (lines 1-2): the top-m similar users are found after sorting the similarity values
in the input vector by using a sorting algorithm (quick-sort) with complexity
O(N logN).

• (line 3-5): these calculations require a complexity of O((m+ 1) ∗ I), where I
is the total number of items in R.

• (line 6): the top-e recommendation items are found after sorting the predicted
ratings by using a sorting algorithm (quick-sort) with complexity O(I log I)
(note that in the worst case the user u may have no rankings, thus all I items
remain unranked and take predicted values).

Putting altogether the total required time complexity for the Social-Union-
Rating-Prediction Algorithm is: O(N logN + I log I) (note that usuallym is a small
number in comparison with log I). The space complexity is depended only from how
many networks we have. For the previous example it is O(N +M) +O(N + L) as
an adjacency list representation is used for both networks.
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7 Experimental Evaluation

In this Section, in the area of the rating prediction task, we compare experimentally
our approach, denoted as Social-Union with 3 other algorithms. Our experiments
were performed on a 3 GHz Pentium IV, with 2 GB of memory. All algorithms
were implemented in C. To evaluate the examined algorithms, we have generated
synthetic data sets and chosen two real data sets from Epinions and Flixster web
sites. In particular, we consider the following comparison partners:

• SVD++: SVD++ (Koren, 2008) is applied on the bipartite user-items rating
network. It combines traditional SVD with implicit information taken from
implicit user preferences (i.e which items users rate, regardless of their rating).
SVD++ was shown to offer accuracy superior to SVD (Koren, 2008). It models
users as latent features, while adding implicit feedback. The exact model is
as follows:

r̂ui = bui + qTi · (pu +N(u)−0.5
∑

j∈N(u)

yj), (13)

where bui is the user/item bias, pu is a user-factors vector and qi is an item-
factors vector, N(u) denotes the set of items for which user u expressed
an implicit preference. Model parameters are determined by minimizing the
associated regularized squared error function through stochastic gradient
descent with extra parameters γ, λ5, and λ6 (for more information see (Koren,
2008)). For Epinions data set, the best values of parameter γ, λ5, and λ6 are
fixed at 0.006, 0.007 and 0.02, respectively. For the Flixter data set, the best
values of parameters are fixed at 0.004, 0.006 and 0.03.

• FriendTNS: This is a graph-based algorithm (Symeonidis et al., 2010), which
takes into account the friendship network. In particular, FriendTNS defines a
similarity measure that captures effectively local and global graph features,
introducing transitive node similarity. Notice that for the rating prediction
evaluation task, we assign the FriendTNS similarity scores in Equation 12.

• tKatz: This is a truncated version of Katz (Vasuki et al., 2010) algorithm
that uses information from two networks, i.e. user-item rating network and
user-user friendship network. It mainly counts paths between networks from
different sources, where the heterogeneity of the two types of links is reduced
to a single parameter λ ≥ 0, that controls the ratio of the weight of friendship
to the weight of item membership. The Katz (Katz, 1953) measure directly
sums over all paths between any pair of nodes, exponentially damped by
length, to count short paths more heavily (using parameter β). Truncated
Katz (i.e. tKatz) chooses to stop after reaching paths of length ℓmax. The
similarity between two nodes vx and vy, can be computed by Equation 14:

tKatz(vx, vy) =

ℓmax∑

ℓ=1

βℓ ·
∣∣∣pathsℓvx,vy

∣∣∣ , (14)
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where
∣∣∣pathsℓvx,vy

∣∣∣ is the number of all length-ℓ paths from vx to vy. The best

values of the parameters of tKatz algorithm, for the Epinions and Flixter
data sets, have been learnt after appropriate parameters tuning. This tuning
has been made by varying the value of one parameter, while having the other
parameters fixed. For Epinions data set, the best performance of tKatz has
been reached with values of parameter β, λ, and ℓmax at 0.01, 0.3 and 4,
respectively. For the Flixter data set, the best values of parameters are set to
0.05, 0.2 and 3.

Moreover, in the area of the link prediction task, except the User-based CF and
FriendTNS algorithms, we also consider the following comparison partner, which is
an state-of-the-art algorithm for link prediction:

• SL-H(HS) : This is a supervised learning (SL) algorithm (Lu et al., 2010) for
link prediction that uses information from multiple networks. It mainly counts
paths between networks from different sources. We employ a special version
of the SL algorithm that uses hybrid color paths and hierarchical structured
regularization(H-HS).

7.1 Real Data Sets and multi-Social Generator

To evaluate the examined algorithms, we have generated synthetic data sets and
chosen two real data sets from Epinions and Flixster web sites.

We used the Epinions1 data set, which is a who-trusts-whom social network. In
particular, users of Epinions.com express their Web of Trust, i.e. reviewers whose
reviews and ratings they have found to be valuable. It contains 49K users with
487K edges among them, and 140K items with 665K ratings.

Moreover, we use the Flixster2 data set, which is a social networking service
in which users can rate movies and add other users to their friend list creating a
social network. It contains 1M users with 7M edges among them, and 49K items
with 8.2M ratings.

In contrast to purely random (i.e., Erdos-Renyi) graphs, where the connections
among nodes are completely independent random events, our synthetic model
ensures dependency among the connections of nodes, by characterizing each node
with a m-dimensional vector with each element a randomly selected real number in
the interval [-1,1]. This vector represents the initial user profile which will be used
for the construction of the friendship and ratings profiles.

For the construction of the friendship network, two nodes are considered to be
similar and thus of high probability to connect to each other if they share many
close attributes in their initial user profile. Given a network size N and a mean
degree k of all nodes, we start with an empty network with N nodes. At each time
step, a node with the smallest degree is randomly selected (there is more than one
node having the smallest degree). Among all other nodes whose degrees are smaller
than k, this selected node will connect to the most similar node with probability
1− p, while a randomly chosen one with probability p. The parameter p ∈ [0, 1]
represents the strength of randomness in generating links, which can be understood
as noise or irrationality that exists in almost every real system.

For the construction of the user-item rating network, we follow a similar
procedure. In addition, we use the following parameters: (i) the ratings range, (ii)
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the mean number of rated items by all users. Notice that each user can rate different
items from others and has in his profile a different number of rated items.

Based on the above procedure, we have produced a unipartite user-user
(friendship) network and a bipartite user-item network. They contain 5K users with
125K edges among them, and 500 items with 250K ratings in the range [1, 5], and
mean number of rated items 50. The parameter p is fixed to 0.2. We calculated
several topological properties of the synthetic and real data sets for the friendship
network, presented in Figure 10a. As shown, Epinions 49K and Flixter 1M present
(i) a large clustering coefficient (LCC) equal to 0.26 and 0.18 respectively, and (ii) a
small average shortest path length (ASD) equal to 4.0 and 3.16 respectively. These
topological features can be mainly discovered in small-worlds networks. Small-world
networks have sub-networks that are characterized by the presence of connections
between almost any two nodes within them (i.e.high LLC). Most pairs of nodes are
connected by at least one short path (i.e. small ASD). Moreover, we calculated basic
statistics for the user-item network of the tested data sets, presented in Figure 10b.

TOPOLOGICAL PROPERTIES OF FRIENDSHIP NETWORKS:

N = total number of nodes

E = total number of edges
ASD = average shortest path distance between node pairs

ADEG = average node degree
LCC = average local clustering coefficient 
GD = graph diameter (maximum shortest path distance)

GGS = global graph sparsity (number of zero values in adjacency matrix / N2)

Data-Set Type N E ASD ADEG LCC GD GGS

Epinions 49K Directed 49288 487183 4.00 19.77 0.26 14 99.96%

Flixter 1M undirected 1049511 7058819 3.16 13.45 0.18 9 99.97%

Synthetic 5K undirected 5000 125000 2.69 50 0.01 5 99%

(a)
PROPERTIES OF USER-ITEM BIPARTITE NETWORKS:

N = total number of Nodes (users) 

R = total number of Ratings 

I = total number of Items 

MINR = minimum rating value 

MAXR = maximum rating value 

AVGR = average rating value 

GGS = global graph sparsity (number of zero values in matrix / existing users x items) 

Data-Set N R I MINR MAXR AVGR GGS 

Epinions 49K 49288 664824 139738 1 5 3.99 99.98%

Flixter 1M 1049511 8196077 100000 0.5 5 3.58 99.95%

Synthetic 5K 5000 250000 500 1 5 3.00 90% 

(b)

Figure 10 Topological properties of (a) friendship and (b) user-item networks.

7.2 Experimental Protocol and Evaluation for the rating prediction task

Our evaluation considers the division of rated items of each target user into two
sets: (i) the training set ET is treated as known information and, (ii) the probe set
EP is used for testing and no information in the probe set is allowed to be used
for prediction. It is obvious that, E = ET ∪ EP and ET ∩ EP = ⊘. Therefore, for a
target user we generate the item recommendations based only on the items in ET .
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Real and synthetic data sets do not have time stamps of the edges. The
performance of the algorithms is evaluated by applying double cross-validation
(internal and external). Each data set was divided into 10 subsets. Each subset (EP )
was in turn used for performance estimation in the external cross-validation. The
9 remaining subsets (ET ) were used for the internal cross-validation. In particular,
we performed an internal 9-fold cross-validation to determine the best values of
the algorithms’ needed parameters. We chose as values for the parameters those
providing the best performance on the internal 9-fold cross-validation. Then, their
performance is averaged on the external 10-fold cross-validation. The presented
results, based on two-tailed t-test, are statistically significant at the 0.05 level.

For the experimental evaluation of ratings prediction task, we used the Root
Mean Squared Error (RMSE), which has the nice property to amplify the larger
prediction error i.e. the larger difference between real and predicted rating. The
RMSE is defined as follows:

RMSE =

√∑
(u,j)∈EP (ru,j − r̂u,j)2

|EP |
(15)

where EP is the set of all pairs (u, j) in the probe set.

For the experimental evaluation of the item recommendation task, we use the
classic precision/recall metrics, which measure how well the system can identify
items that the user prefers. For a test user receiving a list of e recommended items
(top-e list), precision and recall are defined as follows:(i)Precision is the ratio of
the number of relevant items in the top-e list (i.e., those in the top-e list that belong
in the probe set EP of items of the target user) to e. (ii)Recall is the ratio of the
number of relevant items in the top-e list to the total number of relevant items (all
items in the probe set EP of the target user).

7.3 Social-Union Sensitivity Analysis for the rating prediction task

In this Section, we test (a) the performance of different aggregation functions
(i.e. AggrMin, AggrMax, and AggrAvg) for the combination of similarity matrices,
which do not incorporate parameter a and (b) how the performance of Social-Union,
user-based CF and FriendTNS are affected, when we apply different controllable
density in the friendship and in the user-item rating network, respectively.

In section 5, we presented the definition of our linear combined similarity
measure (see Equation 4). In this section, we test simple aggregation functions in
order to discover the best precision values that we can attain when we recommend
a top item to a user. In particular, we have tested the following possible aggregation
functions: (i) AggrAvg which averages the similarity values across the similarity
matrices (i.e. parameter a=0.5) (ii) AggrMax, which takes into account the
maximum entry across the two similarity matrices and (iii) AggrMin, which takes
into account the minimum entry between entries of the two similarity matrices.
The aggregation functions’ performance can be seen in Figure 11 for the synthetic
5K, Epinions and Flixter data sets, respectively. As shown, the best performance
in all data sets is attained by AggrAvg, which indicates that appropriate tuning of
parameter a could further leverage the precision performance.
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Figure 11 Precision comparison of AggrAvg, AggrMax, AggrMin aggregation
functions for the synthetic 5K, Epinions and Flixter data sets.

For the user-item rating network, we have created in our 5K synthetic data
set 5 different density cases (i.e 0.2, 0.4, 0.6, 0.8, 1) by changing the fraction of
rated items, as shown in Figure 12a. y-axis depicts %precision@1, which means
the precision we get, when we recommend one item. As expected, as the fraction
of rated items increases, precision of Social-Union and SVD++ algorithms increases
too. This is reasonable, since every prediction algorithm is expected to give higher
accuracy for a denser network. Notice that FriendTNS is stable in all density levels,
since it is applied only on the friendship network, whose density is fixed to 0.01.
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Figure 12 Comparing Social-Union, FriendTNS, and User-based CF with the 5K
synthetic data for Precision vs. fraction (a) of rated items (b) of nodes degree
and (c) nodes degree and rated items.
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Similarly, for the friendship network, we have tested 5 different density cases (i.e
0.2, 0.4, 0.6, 0.8, 1) by changing this time the fraction of edges observed, as shown
in Figure 12b. As expected, as the fraction of edges observed increases, precision of
Social-Union and FriendTNS algorithms increases too. Notice that SVD++ is stable
for all density levels, since it is applied only on the user-rating network, whose
density is fixed to 0.1.

Next, we study the performance of Social-Union as we simultaneously increase
the fraction of rated items and edges observed in the user-item and friendship
networks, respectively. That is, if one parameter’s value (i.e. fraction of nodes degree
observed) is fixed, we can find the recommendation accuracy of Social-Union varies
as we change the other parameter (i.e. fraction of rated items observed). As shown
in Figure 12c, Social-Union increases as we increase the fraction of rated items in
the user-item network and the fraction of edges observed in the friendship network.
We can see there is indeed useful information contained in both friendship and user-
item networks topology. This result clearly demonstrates that there is, a significant
improvement to be gained by using information from multi-modal social networks.

7.4 Comparison with other Methods for the rating prediction task

In this Section, we proceed with the comparison of Social-Union with the other
comparison partners i.e. FriendTNS, SVD++ and tKatz algorithms, in terms of
precision and recall. This reveals the robustness of each algorithm in attaining high
recall with minimal losses in terms of precision. We examine the top-e ranked item
list, which is recommended to a target user, starting from the top item. In this
situation, the recall and precision vary as we proceed with the examination of the
top-e list.

For the Epinions data set, in Figure 13a we plot a precision vs. recall curve
for all four algorithms. As expected, all algorithms’ precision falls as e increases.
In contrast, as e increases, recall for all algorithms increases as well. Social-Union
attains the best results with impressive high precision. The reason is that Social-
Union exploits features of both friendship and user-item networks exploiting also
local characteristics of the graphs such as node structured density. In contrast,
tKatz focuses only on path counts and does not exploit other local network
characteristics. Moreover, FriendTNS exploits only information from the friendship
network, missing to capture characteristics of the user-item graph. Finally, SVD++
does not take into account information from the friendship network.

For the Flixter data set, in Figure 13b we also plot a precision vs. recall diagram.
Social-Union outperforms again the other methods. Notice that the results for
Flixter are lower than the results for Epinions for all methods, possibly because the
latter has more ratings per user (13.4) and bigger ADEG.

Finally, Table 2 reports the RMSE values of all algorithms on Epinions and
Flixter data sets. Again, Social-Union clearly outperforms the other algorithms in
terms of RMSE.

7.5 Experimental Protocol and Evaluation for Link Prediction

Our evaluation considers the division of friends of each target user into two sets:
(i) the training set ET is treated as known information and, (ii) the probe set EP

is used for testing and no information in the probe set is allowed to be used for
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Figure 13 Accuracy performance of algorithms in terms of precision/recall for the (a)
Epinions and (b) Flixter data sets.

Table 2 RMSE values for all algorithms on 2 real data sets.

Algorithm Epinions data set Flixter data set

Social-Union 0.765 0.812

tKatz 0.844 0.885

SVD++ 0.903 0.941
FriendTNS 1.079 1.121

prediction. It is obvious that, E = ET ∪ EP and ET ∩ EP = ⊘ . Therefore, for a
target user we generate the recommendations based only on the friends in ET .

We follow a similar evaluation procedure as described in Section 7.2. We again
use the same metrics such as precision and recall.

7.6 Social-Union Sensitivity Analysis for the link prediction task

In this Section, we compare the performance of (a) different aggregation functions
and (b) Social-Union with the other two comparison partners (i.e. SVD++ and
Friend-TNS), when we apply different controllable density in the friendship and in
the user-item network, respectively.

Similar to the procedure followed before for the rating prediction task, we test
the following basic aggregation functions: (i) AggrAvg (i.e. parameter a=0.5) (ii)
AggrMax (iii) AggrMin. The aggregation functions’ performance can be seen in
Figure 14 for the synthetic 5K, Epinions and Flixter data sets, respectively. As
shown, we reconfirm the same results with those we had in the rating prediction
task, which indicate that appropriate tuning of parameter a could further leverage
the precision performance.

For the user-item network, we have created in our 5K synthetic data set 5
different density cases (i.e 0.2, 0.4, 0.6, 0.8, 1) by changing the fraction of rated
items, as shown in Figure 15a. As expected, as the fraction of rated items increases,
precision of Social-Union and SVD++ algorithms increases too. This is reasonable,
since every prediction algorithm is expected to give higher accuracy for a denser
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Figure 14 Precision comparison of AggrAvg, AggrMax, AggrMin aggregation
functions for the synthetic 5K, Epinions and Flixter data sets.

network. Notice that FriendTNS is stable in all density levels, since it is applied
only on the friendship network, whose density is fixed to 0.01.
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Figure 15 Comparing Social-Union, FriendTNS, and User-based CF with the 5K
synthetic data for Precision vs. fraction (a) of rated items (b) of nodes degree
and (c) nodes degree and rated items.

Similarly, for the friendship network, we have tested 5 different density cases (i.e
0.2, 0.4, 0.6, 0.8, 1) by changing this time the fraction of edges observed, as shown
in Figure 15b. As expected, as the fraction of edges observed increases, precision of
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Social-Union and FriendTNS algorithms increases too. Notice that SVD++ is stable
for all density levels, since it is applied only on the user-rating network, whose
density is fixed to 0.5.

Next, we study the performance of Social-Union as we simultaneously increase
the fraction of rated items and edges observed in the user-item and friendship
networks, respectively. As shown in Figure 15c, Social-Union increases as we
increase the fraction of rated items in the user-item network and the fraction
of edges observed in the friendship network. We can see there is indeed useful
information contained in both friendship and user-item networks topology.

7.7 Comparison with other Methods for the link prediction task

In this Section, we proceed with the comparison of Social-Union with FriendTNS,
SVD++ and SL-H(HS) algorithms, in terms of precision and recall. This reveals the
robustness of each algorithm in attaining high recall with minimal losses in terms
of precision. We examine the top-k ranked list, which is recommended to a target
user, starting from the top friend. In this situation, the recall and precision vary as
we proceed with the examination of the top-k list.

For the Epinions data set, in Figure 16a we plot a precision vs. recall curve
for all four algorithms. As expected, all algorithms’ precision falls as k increases.
In contrast, as k increases, recall for all algorithms increases as well. Social-Union
attains the best results with impressive high precision. The reason is that Social-
Union exploits features of both friendship and user-item networks exploiting also
local characteristics of the graphs such as node structured density. In contrast,
SL-H(HS) focuses only on path counts and does not exploit other local network
characteristics. Moreover, FriendTNS exploits only information from the friendship
network, missing to capture characteristics of the user-item graph. Finally, SVD++
does not take into account information from the friendship network. For the Flixter
data set, in Figure 16b we also plot a precision vs. recall diagram. Social-Union
outperforms again the other methods.
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Figure 16 Accuracy performance of Social-Union in terms of precision/recall for the
(a) Epinions and (b) Flixter data sets.
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8 Conclusions

In this paper, we introduced a generalized framework that exploits multi-modal
social networks to provide link and rating prediction in MSNs. We performed
extensive experimental comparison of our method Social-Union, against existing
well-known link and rating prediction algorithms, using a synthetic and two real
data sets (Epinions and Flixter). We have experimentally shown that our Social-
Union framework yields to more accurate link and rating predictions. In the
future, except unipartite and bipartite graphs, we will extend this framework by
incorporating also other higher-order implicit social networks such as tri-partite
graphs (e.g. social tagging systems with users, items and tags).
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