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Abstract

The last years there is an increasing interest for query processing techniques that take
into consideration the dominance relationship between items to select the most promising
ones, based on user preferences. Skyline and top-k dominating queries are examples of
such techniques. A skyline query computes the items that are not dominated, whereas
a top-k dominating query returns the k items with the highest domination score. To
enable query optimization, it is important to estimate the expected number of skyline
items as well as the maximum domination value of an item. In this article, we provide
an estimation for the maximum domination value under the distinct values and attribute
independence assumptions. We provide three different methodologies for estimating and
calculating the maximum domination value and we test their performance and accuracy.
Among the proposed estimation methods, our method Estimation with Roots outperforms
all others and returns the most accurate results. We also introduce the eliminating dimen-
sion, i.e. the dimension beyond which all domination values become zero, and we provide
an efficient estimation of that dimension. Moreover, we provide an accurate estimation
of the skyline cardinality of a data set.

Keywords: top-k dominating queries, skyline, cardinality estimation

1 Introduction

Top-k and skyline queries are two alternatives to pose preferences in query processing. In
a top-k query a ranking function is required to associate a score to each item. The answer
to the query is the set of k items with the best score. A skyline query does not require a
ranking function, and the result is based on preferences (minimization or maximization)
posed in each attribute. The result is composed of all items that are not dominated.
For the rest of the work we deal with multidimensional items, where each dimension
corresponds to an attribute. Formally, a multidimensional item pi = (xi1 , xi2 , ..., xid) ∈ D
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Figure 1: The hotel data set.

dominates another item pj = (xj1 , xj2 , ..., xjd
) ∈ D (pi ≺ pj) when:

∀a ∈ {1, ..., d} : xia ≤ xja ∧ ∃b ∈ {1, ..., d} : xib < xjb
,

where d is the number of dimensions. A top-k dominating query may be seen as a
combination of a top-k and a skyline query. More specifically, a top-k dominating query
returns the k items with the highest domination scores. The domination value of an item
p, denoted as dom(p), equals the number of items that p dominates [18, 19].

The maximum domination value is the number of items dominated by the top-1 (best)
item. More formally, let us assign to each item t of the data set D a score, m(t), which
equals the number of items that t dominates:

m(t) = |{q ∈ D : q ≺ t}|.

Then, if p is the item with the maximum domination value we have:

p = arg max
t
{m(t), t ∈ D}.

An example is illustrated in Figure 1. A tourist wants to select the best hotel according
to the attributes distance to the beach and price per night. The domination values of all
hotels A, B, C, D, E, F , G, H, I, J are 0, 1, 0, 0, 2, 0, 4, 6, 2, 3 respectively, thus the
hotel with the maximum domination value is H. This hotel is the best possible selection,
whereas the next two best choices are hotels G and J .

In this work, we focus on estimating the maximum domination value and the skyline
cardinality in multi-dimensional data under the distinct values and attribute independence
assumptions. Estimating the maximum domination value and the skyline cardinality
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contributes in: (i) optimizing top-k dominating and skyline algorithms, (ii) estimating
the cost of top-k dominating and skyline queries, (iii) developing pruning strategies for
these queries and algorithms. Moreover, we show that the maximum domination value is
closely related to the cardinality of the skyline set.

A preliminary version of this study appears in [16], where we have presented the es-
timation methods for the maximum domination value only. The current version is more
complete with the following new material: (i) the proposed estimation method is further
extended to provide efficient estimations for the skyline cardinality also, (ii) additional
experimental results are presented to study the accuracy of all estimation methods (includ-
ing the proposed) for the skyline cardinality, (iii) a study for the eliminating dimension,
i.e., the dimension after which there are no dominations between the items is presented.
Additionally, an efficient estimation formula for the eliminating dimension is provided.

The rest of the article is organized as follows. Section 2 briefly describes related work
in the area. Section 3 studies in detail different estimation methods, whereas Section 4
contains performance evaluation results. Finally, Section 5 concludes the work.

2 Related Work

As we will show in the sequel, the maximum domination value is related to the skyline
cardinality which has been studied recently. There are two different approaches for the
skyline cardinality estimation problem: (i) the parametric methods, and (ii) the non-
parametric methods.

Parametric methods use only main parameters of the data set, like its cardinality N
and its dimensionality d. Bentley et al. [1] established that the skyline cardinality is
O((ln N)d−1). Buchta [3] proved another asymptotic bound of the skyline cardinality,

which is: Θ
(

(ln N)d−1

(d−1)!

)
. Bentley et al. [1] and Godfrey [5, 6], under the assumptions of

attribute value independence and that all attributes in a dimension are unique and totally
ordered, established that the skyline cardinality can be estimated with harmonics: ŝd,N =

Hd−1,N . Godfrey [5, 6] established that for sufficient large N , ŝd,N = Hd−1,N ≈ (ln N)d−1

(d−1)!
. Lu

et al. [14] established specific parametric formulae to estimate the skyline cardinality over
uniformly and arbitrary distributed data, keeping the independence assumption between
dimensions.

Non-parametric methods use a sampling process in the data set to capture its charac-
teristics and estimate the skyline cardinality. Chaudhuri et al. [4] relax the assumptions
of statistical independence and attribute value uniqueness, and they use uniform random
sampling in order to address correlations in the data. They assume that the skyline
cardinality follows the rule: s = A logB N for some constants A,B (which is an even

more generalized formula of (ln N)d−1

(d−1)!
), and using log sampling they calculate the A,B

values. Therefore, this method can be seen as a hybrid method (both parametric and
non-parametric). Zhang et al. [20] use a kernel-based non-parametric approach that it
does not rely on any assumptions about data set properties. Using sampling over the
data set they derive the appropriate kernels to efficiently estimate the skyline cardinality
in any kind of data distribution.

3



Both directions sometimes produce significant estimation errors. Moreover, in non-
parametric methods there is a tradeoff between the estimation accuracy and the sampling
preprocessing cost over the data. In this article, we focus on estimating the maximum
domination value using only parametric methods. To the best of our knowledge, this is the
first work studying the estimation of the maximum domination value and its relationship
with the skyline cardinality.

3 Estimation Methods

In this section, we present specific methods to estimate the maximum domination value
of a data set. We first explain how the maximum domination value is strongly connected
with the skyline cardinality of the data set. Next, we present two estimation methods
inspired from [5, 6, 14], and finally we propose a novel method that is much simpler, more
efficient and more accurate than its opponents.

For each presented estimation method, the main task is to produce a formula that
includes only the main data set parameters, which are: the number of items of the data
set (cardinality N), and the number of the existing attributes (dimensionality d). In this
respect, several properties and results are derived for the maximum domination value and
the item having this value.

For the remaining part of this study we adopt the following assumptions:

• All attribute values in a single dimension are distinct (domain assumption).

• The dimensions are statistically independent, i.e. there are no pair-wise or group
correlations nor anti-correlations (independence assumption).

Let pi, i ∈ {1, ..., N} be the N items of the data set, and (xi1 , xi2 ,..., xid) their correspond-
ing attributes in the d selected dimensions. Under our assumptions, no two items share a
value over any dimension, thus the items can be totally ordered on any dimension. There-
fore, it is not necessary to consider the actual attribute values of the items, but we can
conceptually replace these values by their rank position along any dimension. Thus, let
(ri1 , ri2 ,..., rid) be the corresponding final distinct rank positions of item pi in the selected
dimensions (where rij ∈ {1, ..., N}). Without loss of generality, we assume that over the
attribute values in a dimension minimum is best. Then, the item with rank position 1
will have the smallest value on that dimension, whereas the item with rank position N
will have the largest one. We also assume that in a specific dimension and in a specific
rank position all items have equal probability to be placed. Note that this assumption
does not necessary require the original attribute values to be uniformly distributed within
a specific domain.

3.1 Maximum Domination Value and Skyline Cardinality

Here we study how the maximum domination value is related to the skyline cardinality
of the data set. Figure 2 reveals this relationship.

Let p be the item with the maximum domination value. A first important property is
that p is definitely a skyline item. This was first proved in [2] for any monotone ranking
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function over the data set, and also shown in [18, 19] for the top-1 item in top-k dominating
queries.

Moreover, p dominates all items lying in the marked area. This area is called the
domination area of item p. No other item dominates more items than p does. Let dom be
the exact domination value of p, which is the number of all items that lie in its domination
area (i.e., the maximum domination value of the data set). On the other hand, the skyline
items are the items that lie in the dotted line. Let s be the number of the skyline items
(i.e., the skyline cardinality).

As p does not dominate any item contained in the skyline, its domination value satisfies
the relation:

dom ≤ N − s

Therefore, a simple overestimation of the maximum domination value is d̂om = N − s,
and can be computed when the skyline cardinality s is already known (or it has been

efficiently estimated d̂om = N − ŝ).
The error rate of this estimation depends only on the items that lie neither in the

skyline nor in the domination area of p, like item q for example. These items are called
outliers.

Moreover, as the data set cardinality N increases, the number of outliers becomes
significantly smaller than N , and the estimation becomes more accurate. On the contrary,
as the data set dimensionality d increases, the number of outliers also increases, and the
estimation becomes less accurate.

O

 q

y

x

 p

Figure 2: Maximum domination value and skyline items.
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3.2 Estimation with Harmonics

Here, we present an estimation approach using harmonic numbers and their properties,
inspired from [5, 6]. The analysis reveals the intrinsic similarities between the maximum

domination value and the skyline cardinality, and shows that d̂om = N − ŝ. Let domd,N

be the random variable which measures the number of items dominated by the top-1 item
(the maximum domination value). We denote as d̂omd,N the expected value of domd,N .

Theorem 1. In any data set under the domain and independence assumptions, the ex-
pected value d̂omd,N satisfies the following recurrence:

d̂omd,N =
1

N
d̂omd−1,N + d̂omd,N−1

for d > 1, N > 0, where d̂om1,N = N − 1 and d̂omd,1 = 0.

Proof. If d = 1, then we have only one dimension and the item with rank position 1 is
the top-1 item that dominates all other N − 1 items. Thus it holds that d̂om1,N = N − 1.

If N = 1, then we have only one item and none item to dominate, thus, d̂omd,1 = 0. In
the case where d > 1 and N > 1, there is an item with rank position 1 on dimension
1. This item has the maximum domination value as it dominates all other items on that
dimension. The probability that this item will remain a top-1 item is the probability that
no other item has a greater domination value in any other dimension (2, ..., d), given the

independence assumption. However, d̂omd−1,N is the maximum domination value out of
these d − 1 dimensions. Thus, as any item has equal probability to be placed in rank
position 1 on dimension 1, we have 1

N
d̂omd−1,N to be the probability that this item has

the maximum domination value. Since, the first ranked item on dimension 1 cannot
be dominated by any other item, the maximum domination value is determined by the
remaining N − 1 items which is estimated by d̂omd,N−1. Therefore, we have:

d̂omd,N =
1

N
d̂omd−1,N + d̂omd,N−1

The recurrence for d̂omd,N is strongly related with the harmonic numbers:

• The harmonic of a positive integer n is defined as: Hn =
∑n

i=1
1
i
.

• The k-th order harmonic [15] of a positive integer n for integers k > 0 is defined as:

Hk,n =
∑n

i=1
Hk−1,i

i
, where H0,n = 1, ∀n > 0 and Hk,0 = 0, ∀k > 0. Note also that:

H1,n = Hn,∀n > 0.

In order to retrieve the fundamental relation of d̂omd,N with the harmonic numbers, we

compute d̂om2,N , d̂om3,N and using mathematical induction we derive the final formula.

For the d̂om2,N value we have:

d̂om2,N =
1

N
d̂om1,N + d̂om2,N−1 =

N − 1

N
+ d̂om2,N−1 =
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=
N − 1

N
+

1

N − 1
d̂om1,N−1 + d̂om2,N−2 =

N − 1

N
+

N − 2

N − 1
+ ... +

1

2
=

= 1− 1

N
+ 1− 1

N − 1
+ ... + 1− 1

2
= N − 1−

N∑
i=2

1

i
= N − 1−

(
N∑

i=1

1

i
− 1

)
= N −HN

For the d̂om3,N value we have:

d̂om3,N =
1

N
d̂om2,N + d̂om3,N−1 =

N −HN

N
+ d̂om3,N−1 =

=
N −HN

N
+

N − 1−HN−1

N − 1
+ ... +

2−H2

2
= 1− HN

N
+ 1− HN−1

N − 1
+ ... + 1− H2

2
=

= N − 1−
N∑

i=2

Hi

i
= N −

N∑
i=1

Hi

i
= N −

N∑
i=1

H1,i

i
= N −H2,N

Let us assume that the following equation holds for a specific k, (i.e. d̂omk,N =
N − Hk−1,N). We will prove that the previous equation holds also for the next natural
number k + 1. We have:

d̂omk+1,N =
1

N
d̂omk,N+d̂omk+1,N−1 =

1

N
d̂omk,N+

1

N − 1
d̂omk,N−1+

1

N − 2
d̂omk,N−2+... =

=
N∑

i=1

1

i
d̂omk,i =

N∑
i=1

1

i
(i−Hk−1,i) =

N∑
i=1

(
1− Hk−1,i

i

)
= N −

N∑
i=1

Hk−1,i

i
= N −Hk,N

Therefore, for any d > 1, N > 0 it holds that:

d̂omd,N = N −Hd−1,N (1)

Equation 1 generates some important properties for the maximum domination value:

• d̂omd,N is strongly related to the skyline cardinality of the data set. As shown in
[5, 6], if ŝd,N is the expected value of the skyline cardinality, then it holds that:
ŝd,N = Hd−1,N . Therefore, we have:

d̂omd,N = N − ŝd,N (2)

In particular, d̂omd,N and ŝd,N share the same recurrence equation of Theorem 1
but with different initial conditions.

• as proved in [15], it holds that limd−→∞Hd,N = N . Therefore, we have:

lim
d−→∞

d̂omd,N = N − lim
d−→∞

Hd−1,N ⇔ lim
d−→∞

d̂omd,N = 0 (3)

Equation 3 is a validation of the fact that as the dimensionality d increases, the
maximum domination value (and consequently all the following domination values)
decreases until reaching zero. In particular, the dimensionality d beyond which all
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domination values become equal to zero, is a small number. We call that dimen-
sion the eliminating dimension, and denote it as d0. Moreover, we will later prove
using Stirling’s approximations [7] that the eliminating dimension can be efficiently
approximated by the following formula:

d0 ≈ 2dln Ne+ 2

From the skyline point of view, after the eliminating dimension, all items of the
data set become skyline items as there are not any dominations between them.

In the sequel, we focus in the computation of d̂omd,N . Since it holds that d̂omd,N =
N − Hd−1,N , the main task is the efficient computation of the harmonic term Hd−1,N .
There are three different methods to follow for this task:

Recursive Calculation: The calculation of Hd−1,N can be achieved by running a recur-
sive algorithm that follows the direct definition formula:

Hk,n =
n∑

i=1

Hk−1,i

i

where H0,n = 1 and k > 0. We can also use a look up table at run-time, however, these
recurrence computations are expensive. The algorithmic time complexity is exponential:
O(Nd−1). As shown later in the experimental results section, the calculation time is not
acceptable even for small dimensionality values.

Bound Approximation: This method was proposed in [5, 6] and is based on asymptotic
bounds of Hk,N . Bentley et al. [1] established that: ŝd,N is O((ln N)d−1). Bentley et al.
[1] and Godfrey [5, 6] established that: ŝd,N = Hd−1,N , thus:

Hd−1,N is O((ln N)d−1)

Buchta [3] and Godfrey [5, 6] improved this asymptotic bound as follows:

Hd−1,N ≈ Θ

(
(ln N)d−1

(d− 1)!

)

Therefore, we can instantly estimate d̂omd,N using the following formula, for an appro-
priate real number λ:

d̂omd,N ≈ N − λ

(
(ln N)d−1

(d− 1)!

)
(4)

This is not a concrete estimation and generates a significant error rate. Moreover, by vary-
ing the dimensionality range it will be shown that this estimation is not even a monotone
function and changes its monotonicity after the half of the eliminating dimension (i.e.,
for any d > d0

2
). Therefore, it provides wrong theoretical results. However, surprisingly,

this ”error” helps in approximating the eliminating dimension d0, and contributes sub-
stantially in our analysis.
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Generating Functions Approximation: This method was also proposed in [5, 6] and
is based on Knuth’s generalization via generating functions [12, 7], which established that:

Hk,N =
∑

c1,c2,...,ck

k∏
i=1

Hci
i,N

ici · ci!
, c1, c2, ..., ck ≥ 0 ∧ c1 + 2c2 + ... + kck = k (5)

where Hi,N is the i-th hyper-harmonic of N and is defined as:

Hi,N =
N∑

j=1

1

ji
(H1,N = H1,N = HN)

Note that c1, c2, ..., ck are positive (or zero) integer numbers, whereas the number of terms
of the sum in Equation 5 stems from all possible combinations of c1, c2, ..., ck that satisfy
the equation c1 + 2c2 + ... + kck = k. This number is ℘(k) and expresses the number
of all possible ways to partition k as a sum of positive integers. Therefore, Hk,N can be
expressed as a polynomial of ℘(k) terms which contain the first k hyper-harmonics Hi,N

, (i = 1, ..., k). For example:

H2,N =
1

2
H2

1,N +
1

2
H2,N

H3,N =
1

6
H3

1,N +
1

2
H1,NH2,N +

1

3
H3,N

This approximation of Hk,N is remarkably accurate. In particular, with this method
we reach almost exactly the theoretical values of Hk,N when computed with the recursive
approach. This will be also evaluated in the experimental results section. For any given
dimension d, the time cost to compute the d required hyper-harmonics is O(dN). Then,
having the previous formulae, we can immediate calculate Hd,N . The only requirement is
to generate the appropriate formula for the dimension d with the ℘(d) terms.

Godfrey [5, 6] mentioned that this number of terms (℘(d)) grows quickly, and, thus,
it is not viable to compute the required formula this way, and suggests not using this
approximation for large values of d. However, motivated by the accuracy of this approx-
imation of Hk,N , we first developed a dynamic-programming algorithm that efficiently
produces these equations. Then, we took advantage of the fact that this derivation is
based on the well known integer partition problem, and we developed an even more fast
algorithm that generates the formulae, based on Kelleher’s accelerated algorithms [10, 11].
To demonstrate this fact, we present in an Appendix the first 12 equations.

Therefore, we can almost instantly estimate d̂omd,N with hyper-harmonics using the
previous approximation formula:

d̂omd,N ≈ N −
∑

c1,c2,...,cd−1

d−1∏
i=1

Hci
i,N

ici · ci!
(6)

by taking special care to all possible floating point overflow values, and by using the
derived equations which recorded through the automation.
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3.3 Estimation with Multiple Summations

In this section we present an estimation approach using a specific formula with multiple
summations inspired from the study of [14]. For compatibility reasons we will keep all
previous notations and variables.

Y. Lu et al. [14] introduced an estimation approach of the skyline cardinality that
relaxes the domain assumption of our basic model. The statistical independence assump-
tion still remains, but now the data can have duplicate attribute values. Their study is
based in probabilistic methods, and it uses the value cardinality of each dimension. Their
first main result is the following:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

(
d∏

i=1

1

ci

)(
1−

d∏
j=1

tj
cj

)N−1

(7)

where N ≥ 1, d ≥ 1, and cj is the value cardinality of the j-th dimension.
They also generalized this result in case of having the probability functions fj(x) of

the data over each dimension, but always keeping the independence assumption:

ŝd,N = N ·
c1∑

t1=1

c2∑
t2=1

...

cd∑
td=1

f1(t1)f2(t2)...fd(td)

(
1−

d∏
j=1

tj∑
x=1

fj(x)

)N−1

(8)

However, in both cases, the computational complexity is O(c1 · c2 · ... · cd), which is not
acceptable even if in few dimensions the value cardinality is high (close to N). They also
tried to relax this complexity cost by introducing high and low cardinality criteria, but
this cost remains high, and this is why their experimental results are restricted to small
dimensionality and cardinality variations (d = 1, 2, 3 and N ≤ 1000). We will see in our
experimental results that even if we have high cardinality in 3 dimensions and up to 1000
items the estimation time is not acceptable.

Although the method of [14] works efficiently for small cardinalities and dimensionali-
ties, it would be very interesting to apply this method in our model and study its accuracy.
Therefore, under the domain assumption of our model, all value cardinalities cj will be
equal to N and Equation 7 gives:

ŝd,N = N ·
N∑

t1=1

N∑
t2=1

...

N∑
td=1

(
1

Nd

)(
1− t1t2...td

Nd

)N−1

or equivalently:

ŝd,N =
1

Nd−1
·

N∑
t1=1

N∑
t2=1

...

N∑
td=1

(
1− t1t2...td

Nd

)N−1

Thus, using the property of the estimated maximum domination value of equation 2, the
final estimation formula is:

d̂omd,N ≈ N − 1

Nd−1
·

N∑
t1=1

N∑
t2=1

...

N∑
td=1

(
1− t1t2...td

Nd

)N−1

(9)
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Figure 3: Total ordering of items by rank positions

which has an exponential computational complexity (O(Nd)).
In our experimental results we will see that equation 9 returns values very close to the

harmonic Hd−1,N values. In addition, by increasing N , the returned values converge to
Hd−1,N , thus it must be related somehow with the k-th order harmonics. This strong rela-
tion remains unproven. Finally, as the two methods return almost the same estimations,
their accuracy is similar.

3.4 Estimation with Roots

In this section we present a novel estimation approach using a simple formula, which
provides more accurate estimation results.

Let p be the item with the maximum domination value, and (rp1 , rp2 , ..., rpd
) be its

corresponding final rank positions in the total ordering along any dimension. Let also a
be the maximum rank position of p through all dimensions (i.e., a = max{rp1 , rp2 , ..., rpd

}).
Then, a splits the total ordering of the items in two parts as in Figure 3: (i) the (a)-area,
and (ii) the (N − a)-area. Any item q having all its rank positions in the (a)-area, will be
an outlier or a skyline item. Note that the opposite does not hold, thus not any skyline
or outlier item lies in the (a)-area.

The probability Pa that an item pi lies in the (a)-area is:

Pa = P (ri1 ≤ a ∧ ri2 ≤ a ∧ ... ∧ rid ≤ a)

Due to the independence assumption and by generalizing Lemma 4.1 of [9] we have:

Pa = P (ri1 ≤ a) · P (ri2 ≤ a) · ... · P (rim ≤ a) =
a

N
· a

N
· ... · a

N
=

ad

Nd
=

( a

N

)d

Moreover, any item r that all its rank positions lie in the (N − a)-area, will definitely be
dominated by p. Thus r lies in the domination area of p. Note that the opposite does not
hold, thus not any item of the domination area of p, lies also in the (N − a)-area. The
probability PN−a that an item pi lies in the (N − a)-area is:

PN−a = P (ri1 > a ∧ ri2 > a ∧ ... ∧ rid > a)

Due to the independence assumption we have:

PN−a = P (ri1 > a) · ... · P (rid > a) =
N − a

N
· ... · N − a

N
=

(N − a)d

Nd
=

(
1− a

N

)d
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Therefore, the expected number of items lying in the (a)-area (Ca), and in the (N−a)-
area (CN−a) will be:

Ca = bN · Pac = bN
( a

N

)d

c and CN−a = bN · PN−ac = bN
(
1− a

N

)d

c

respectively.
However, as it holds that all items lying in the (N − a)-area are dominated by p, we

have d̂om(p) ≥ CN−a, or equivalently:

d̂om(p) ≥ bN · PN−ac ⇔ d̂om(p) ≥ bN
(
1− a

N

)d

c (10)

for the expected domination value of p.
Additionally, as p definitely lies in the (a)-area, at least one item is expected to be

inside that area, thus it must hold that Ca ≥ 1, or equivalently:

bN · Pac ≥ 1 ⇔ bN
( a

N

)d

c ≥ 1 (11)

To efficiently estimate the maximum domination value, we have to maximize the lower
expected value of Inequality 10 under the a variable, respecting the condition of Inequality

11 for the a variable. Let us define the function f(a) = N
(
1− a

N

)d
which expresses the

lower expected values, where a ∈ [0, N ]. It has f(0) = N, f(N) = 0. By taking the first
derivative we get:

f ′(a) = −d
(
1− a

N

)d−1

We have f ′(a) < 0,∀a ∈ (0, N), thus f is a monotone descending function in [0,N ], and
returns values also in [0,N ].

Moreover, the condition of Inequality 11 gives:

( a

N

)d

≥ 1

N
⇔ a

N
≥ d

√
1

N
⇔ a ≥ N

d

√
1

N

Thus, f must be restricted in [N d

√
1
N

, N ]. Due to the descending monotonicity of f , it

takes its maximum value when amax = N d

√
1
N

. Therefore, we have:

f(amax) = N
(
1− amax

N

)d

= N

(
1− d

√
1

N

)d

=
(

d
√

N − 1
)d

and the final estimation of the maximum domination value is:

d̂omd,N ≈
(

d
√

N − 1
)d

(12)
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3.4.1 Generalization of the Root Method

To get even more accurate estimations, we can generalize the root method by allowing

the a variable to take values slightly smaller than N d

√
1
N

. This left shift of the a variable

breaks the condition of Inequality 11, but allows the possibility of taking into account
items that are not lying in the (a), (N − a)-areas and are dominated by p increasing its
domination value.

We further studied this estimation improvement making exhaustive experimental tests
with different a values, and we concluded that the estimation is very accurate when:

ashifted = N d

√
1

N
√

N

Then f gives:

f(ashifted) = N
(
1− ashifted

N

)d

= N

(
1− d

√
1

N
√

N

)d

=
1√
N

(
d

√
N
√

N − 1

)d

This hidden square root factor enhances the estimation accuracy and provides the most
accurate results for the maximum domination value. Thus, the final proposed estimation
formula is:

d̂omd,N ≈ 1√
N

(
d

√
N
√

N − 1

)d

(13)

3.4.2 Estimation of the skyline cardinality with the Root Method

Having an efficient approximation of the maximum domination value, we can efficiently
approximate also the skyline cardinality using Equation 12 or 13 and the property of
Equation 2, which give:

ŝd,N = N − d̂omd,N ≈ N −
(

d
√

N − 1
)d

or

ŝd,N = N − d̂omd,N ≈ N − 1√
N

(
d

√
N
√

N − 1

)d

,

respectively.
However, the estimation accuracy of the skyline cardinality can be further improved

by shifting more the a parameter. We studied this estimation improvement making ex-
haustive experimental tests with different a values, and we concluded that the skyline
cardinality estimation is very accurate when:

asky = N d

√
1

N1+ 1
10

log N+ 2
100

log2 N
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Then f gives:

f(asky) = N
(
1− asky

N

)d

= N

(
1− d

√
1

N1+ 1
10

log N+ 2
100

log2 N

)d

Thus, the final proposed estimation formula for the skyline cardinality is:

ŝd,N ≈ N −N

(
1− d

√
1

N1+ 1
10

log N+ 2
100

log2 N

)d

(14)

The additional terms: 1
10

log N and 2
100

log2 N in the exponent of N (which is the
only difference from the original roots method), enhances the estimation accuracy of the
skyline cardinality, and provides the most accurate results.

4 Performance Evaluation

To test the estimation accuracy, we perform several experiments using synthetic data
sets of N = 100, 1K, 10K, 100K, 1M items with independent attributes. We generated
the data sets using the methodology reported in [2]. We used various distributions to
generate the attribute values in a dimension (Uniform, Gaussian, ZipF, etc.). We varied
the dimensionality from 1 to values beyond the eliminating dimension d0. We recorded
the exact (average of 10 same type data sets) and the estimated maximum domination
values. For brevity, we present only a small set of representative results, which depict
the most significant aspects. All experiments have been conducted on a Pentium 4 with
3GHz Quad Core Extreme CPU, 4GB of RAM, using Windows XP. All methods have
been implemented in C++. Table 1 summarizes the methods compared. All estimation
methods are parametric, thus they do not require algorithms to manage the datasets into
the main memory or in disk. The real values (RealAvg) have been computed using the
top-k dominating algorithms of [17], and the skyline algorithms of [13].

Notation Description
RealAvg Real Averaged Values (No Estimation)
HarmRecc Estimation with Harmonics (Recursive Calculation)
HarmBound Estimation with Harmonics (Bound Approximation)
HarmGenF Estimation with Harmonics (Generating Functions Approximation)
CombSums Estimation with Multiple Summations
Roots Estimation with Roots (Simple)
RootsGen Estimation with Roots (Generalized with the square root)
RootsSky Estimation with Roots (Generalized for the skyline cardinality)

Table 1: Summary of methods evaluated.

Figures 4,5 depict the maximum domination value estimation results for all estimation
methods, varying the cardinality and the dimensionality of the data sets. Table 2 presents
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Figure 4: Maximum domination value estimation for N=100,1K,10K (uniform)

the detailed estimation values of the corresponding graph for N=1K, for further inspec-
tion. We have not recorded the values where the computational time is more than 10
minutes. Figure 6 presents the estimation error of the 4 methods that return values into
the full range for N=1M, for uniform data. Figure 7 presents the corresponding estima-
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Figure 5: Maximum domination value estimation for N=100K,1M (uniform)

tion errors for Gaussian and Zipf data. We have similar results for the other cardinality
variations. Based on the previous results we observe the following:

• The HarmRecc method, due to the exponential computation complexity, returns
values in short time only for small dimensionality and cardinality values. Moreover,
after 3 dimensions the estimation error becomes significant.

• The HarmBound method returns estimation results instantly, but it is the most
inaccurate method for estimation. However, it helps to approximate the eliminating
dimension as shown in the sequel.

• The HarmGenF method computes its results very efficiently. It produces almost
exactly the theoretical values of Hk,N when computed recursively. Therefore, it re-
turns the same estimation results with the HarmRecc method. However, we observe
that as we increase the cardinality of the data set, the estimation error increases
and becomes significant in almost all the dimensionality range.

• The CombSums method fails to return values even in small dimensionality and
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d RealAvg HarmRecc HarmBound HarmGenF CombSums Roots RootsGen
1 999.0 999.000 999.000 999.000 999.418 999.000 999.968
2 955.6 992.515 993.092 992.515 993.431 937.754 988.785
3 875.2 971.162 976.141 971.166 - 729.000 908.100
4 623.1 923.542 945.064 923.556 - 456.931 732.128
5 434.4 - 905.128 842.585 - 235.430 510.298
6 294.2 - 868.930 730.456 - 102.204 308.870
7 190.3 - 849.100 598.636 - 38.198 164.043
8 110.7 - 851.089 463.172 - 12.510 77.312
9 73.2 - 871.420 338.813 - 3.642 32.674
10 33.1 - 901.311 235.082 - 0.954 12.498
11 23.8 - 931.828 155.378 - 0.227 4.362
12 18.5 - 957.189 98.316 - 0.049 1.399
13 10.1 - 975.356 59.879 - 0.010 0.415
14 6.5 - 986.905 32.465 - 0.002 0.114
15 3.6 - 993.539 21.465 - 0.000 0.029
16 2.2 - 997.025 15.645 - 0.000 0.007
17 1.5 - 998.715 9.416 - 0.000 0.002
18 0.9 - 999.478 4.196 - 0.000 0.000
19 0.8 - 999.800 2.123 - 0.000 0.000
20 0.0 - 999.927 0.170 - 0.000 0.000

Table 2: Maximum domination value estimation for N = 1K (uniform)

cardinality selections, due to its multiple exponential computational complexity
(we can see only 4 values when N=100 and 2 values when N=1000). In addition,
the returned values are remarkably close to those of HarmGenF and HarmRecc.
By increasing the cardinality, the values converge to the harmonic values of the
previous methods, thus it must be related somehow with the k-th order harmonics.
However, again the estimation error increases and becomes significant in the whole
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Figure 6: Max domination value estimation error for N=1M (uniform).
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dimensionality range.

• The Roots method returns estimation results more efficiently than all the previous
methods. By increasing the cardinality, the estimation becomes more accurate, due
to the fact that the number of the outliers becomes significantly smaller than N .
On the contrary, as the dimensionality increases, the number of outliers increases as
well, and the estimation becomes less accurate. However, when we further move into
the dimensionality range and we approach the eliminating dimension, the estimation
becomes again accurate.

• The RootsGen method is the most efficient way to get estimation results and outper-
forms all previous methods. It manages to approximate the maximum domination
value with the smallest estimation error (under 10%) in the whole dimensionality
and cardinality range.
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Figure 7: Max domination value estimation error for N=1K (Gaussian & Zipf).
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4.1 Approximation of the Eliminating Dimension

We observe that the Bound Approximation Method creates non-monotone curves with
varying values in the whole range till the eliminating dimension d0. In particular we
observe that their monotonicity changes immediately after the half of the eliminating
dimension (for d > d0

2
). Although this fact contradicts the theoretical results, we benefit

from this error to efficiently estimate the eliminating dimension, by using differential
calculus and Stirling’s approximation methods [7].

Therefore, let us generalize and define as a function over the dimensionality the formula
of the bound approximation method:

f(x) = N − λ
(ln N)x

(x)!

where (x)! is the Stirling’s generalization of the factorial.
The point x that f(x) changes its monotonicity will be the root of its first derivative

f ′(x). Thus, we have:

f ′(x) = 0 ⇔ [(ln N)x]
′ · (x)!− (ln N)x · [(x)!]

′

(x)!2
= 0

⇔ (ln N)x · ln(ln N) · (x)! = (ln N)x · [(x)!]
′ ⇔ ln(ln N) · (x)! = [(x)!]

′

⇔ ln(ln N) =
[(x)!]

′

(x)!
⇔ ln(ln N) = [ln[(x)!]]

′

Now, using the Stirling approximation: ln[(x)!] = x ln x− x the last equation gives:

ln(ln N) = [x ln x− x]
′ ⇔ ln(ln N) = ln x + 1− 1 ⇔ ln(ln N) = ln x ⇔ x = ln N

Therefore, we concluded that function f takes its global minimum value for x = ln N ,
and then changes its monotonicity.

From the original integer dimensionality variable d of the function we have: d − 1 =
dxe = dln Ne, or equivalently: d = dln Ne+ 1 . But as d ≈ d0

2
we finally have:

d0 ≈ 2dln Ne+ 2 (15)

From the previous experiments we can evaluate the efficient estimation of the eliminat-
ing dimension using Equation 15. The recorded eliminating dimensions from the actual
domination data are: 12, 17, 22, 26, 30 for N=100, 1K, 10K, 100K, 1M, respectively. The
estimated eliminating dimensions for the same cardinality values are: 12, 16, 22, 27, 30
respectively, which are very close to the actual values. Therefore, by increasing the cardi-
nality N of the data set, the eliminating dimension is increased following the logarithmic
rule of Equation 15.
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Skyline cardinality estimation (N=100)
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Figure 8: Skyline cardinality estimation for N=100,1K,10K (uniform)

4.1.1 Estimation of the skyline cardinality

Figures 8,9 depict the skyline cardinality estimation results for all estimation methods,
varying the cardinality and the dimensionality of the data sets. Table 3 presents the
detailed estimation values of the corresponding graph for N=1K, for further inspection.
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Figure 9: Skyline cardinality estimation for N=100K,1M (uniform)

Again, we have not recorded the values where the computational time is more than 10
minutes. Figure 10 presents the estimation error of the 4 methods that return values
into the full range for N=1M, for uniform distributed data. Figure 11 presents the
corresponding estimation errors for normal and ZipF distributed data. We have similar
results for the other cardinality variations. Based on these results we observe the following:

• The HarmRecc method, returns accurate estimations of the skyline cardinality, but
due to its exponential computation complexity is inefficient.

• The HarmBound method again returns the most inaccurate skyline cardinality es-
timations, and wrong theoretical results after the half of the eliminating dimension
(its monotonicity changes).

• The HarmGenF method returns the same skyline cardinality estimation results with
the HarmRecc method. It can return results efficiently using the derived equations of
the accelerated algorithm (see Appendix). Therefore, we have accurate estimations
and efficient estimation time.
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d RealAvg HarmRecc HarmBound HarmGenF CombSums Roots RootsSky
1 1.0 1.000 1.000 1.000 0.582 1.000 1.000
2 8.2 7.485 6.908 7.485 6.569 62.246 1.310
3 26.3 28.838 23.859 28.834 - 271.000 9.627
4 81.1 76.458 54.936 76.444 - 543.069 49.859
5 181.7 - 94.872 157.415 - 764.570 141.924
6 294.3 - 131.070 269.544 - 897.796 282.934
7 430.4 - 150.899 401.364 - 961.802 449.703
8 582.8 - 148.911 536.828 - 987.490 611.820
9 708.9 - 128.580 661.187 - 996.358 748.911
10 816.2 - 98.689 764.918 - 999.046 850.324
11 877.3 - 68.172 844.622 - 999.773 917.460
12 921.2 - 42.811 901.684 - 999.951 957.723
13 950.6 - 24.644 940.121 - 999.990 979.809
14 971.2 - 13.095 967.535 - 999.998 990.975
15 982.1 - 6.461 978.535 - 999.999 996.212
16 992.3 - 2.975 984.355 - 1000.000 998.502
17 994.6 - 1.285 990.584 - 1000.000 999.440
18 996.2 - 0.522 995.804 - 1000.000 999.802
19 998.7 - 0.200 997.877 - 1000.000 999.933
20 999.9 - 0.073 999.830 - 1000.000 999.978

Table 3: Skyline cardinality estimation for N = 1K (uniform)

• The CombSums method returns similar estimation results with those of HarmGenF
and HarmRecc, but it is inefficient due to its multiple exponential computational
complexity.

• The Roots method without shifting the a parameter returns inaccurate estimation
results for the skyline cardinality.
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Figure 10: Skyline cardinality estimation error for N=1M (uniform).
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• The RootsSky method has the appropriate shifting of the a parameter which define
its final Equation 14, and is the most efficient way to get instantly accurate esti-
mation results for the skyline cardinality. It is more efficient than the HarmGenF
method, as it does not use any algorithm for computations, whereas it has a very
small estimation error in the whole dimensionality and cardinality range (under
10%). Consequently, it is the most preferable method as it combines high accuracy
with instant calculations.

5 Conclusions

This article studies parametric methods for estimating the maximum domination value
in multi-dimensional data sets, under the assumption of statistical independence between
dimensions and the assumption that there are no duplicate attribute values in a dimension.
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Figure 11: Skyline cardinality estimation error for N=1K (Gaussian & Zipf).
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The experimental results confirm that our proposed estimation method outperforms all
other methods and achieves the highest estimation accuracy, for both the estimation of
the maximum domination value and the skyline cardinality. Future work may include the
study of the maximum domination value estimation, the skyline cardinality estimation,
and the estimation of the eliminating dimension in arbitrary data sets by relaxing the
assumptions of independence and distinct values that have been used in this work.
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Appendix

Approximation Equations of Hk,N with hyper-harmonics
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