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ABSTRACT

The problem of ordering expensive predicates (or filter ordering) has recently received renewed attention due
to emerging computing paradigms such as processing engines for queries over remote Web Services, and cloud
and grid computing. The optimization of pipelined plans over services differs from traditional optimization
significantly, since execution takes place in parallel and thus the query response time is determined by the
slowest node in the plan, which is called the bottleneck node. Although polynomial algorithms have been
proposed for several variants of optimization problems in this setting, the fact that communication links are
typically heterogeneous in wide-area environments has been largely overlooked. The authors propose an at-
tempt to optimize linear orderings of services when the services communicate directly with each other and the
communication links are heterogeneous. The authors propose a novel optimal algorithm to solve this problem
efficiently. The evaluation of the proposal shows that it can result in significant reductions of the response time.
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INTRODUCTION

Technologies such as grid and cloud computing
infrastructures and service-oriented architec-
tures have become adequately mature and have
been adopted by a large number of enterprises
and organizations. This trend has altered, to an
extent, the way complex computational tasks
are formulated, giving rise to approaches that
rely on composition of services to be executed
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in a parallel and distributed manner (Alpdemir
etal.,2004;Ng, Ooi, Tan, & Zhou, 2003; Malik,
Szalay, Budavari, & Thakar, 2003). As a conse-
quence, there is a growing interest in systems
that are capable of processing complex tasks
formulated as Web Service (WS) workflows
utilizing remote computational resources. These
tasks may involve the complete management
of online sales, the cleaning of large volumes
of accumulated data from mistypes, incorrect
entries, etc., and the loosely-coupled integration
of'local applications with tools made available
on the Web.
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Figure 1. Services of example 1
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In Srivastava, Munagala, Widom, and
Motwani (2006), the notion of Web Service
Management System (WSMS) is introduced as
ageneral purpose system, which possesses such
advanced processing capabilities. Ina WSMS,
processing of data takes place through (remote)
calls to WSs. The latter provide an interface of
the form WS : X — Y ,where Xand Y are sets
of attributes, i.e., given values for attributes in
X, WS returns values for the attributes in Y, as
shown in the following example adapted from
Srivastava et al. (2006). In the generic case, the
input data items (or tuples) may have more
attributes than X, while attributes in Y are ap-
pended to the existing ones. Note that in the
rest of this article, we will use the terms tuple
and data item interchangeably.

Example 1. Suppose that a company wants to
obtain a list of email addresses of poten-
tial customers selecting only those who
have a good payment history for at least
one card and a credit rating above some
threshold. The company has the right to
use the WSs listed below (Figure 1) that
may belong to third parties. The input
data containing customer identifiers is
supplied by the user.

There are multiple valid orderings to per-
form this task, although there is one precedence
constraint: .S, must precede WS_. The optimi-
zation process aims at deciding on the optimal

(or near optimal) ordering under given optimi-
zation goals. Two possible WS linear orderings
that can be formed using the above services are
C,=WS, WS, WS, WS,and C,= WS, WS, WS,
WS,. In the first ordering, first, the customers
having a good payment history are initially
selected (WS,, WS)), and then, the remaining
customers whose credit history is below some
threshold are filtered out (through WS)). The
C, linear plan performs the same tasks in a
reverse order. The above linear orderings have
differentresponse time. In a subsequent section
it will be shown that C, is the optimal one.
Optimizing the order of WS calls in a
workflow is an important problem that arises
in many business and e-science problems.
Another example taken from bioinformatics
is presented in Craddock, Lord, Harwood, and
Wipat (2006), where, given a set of proteins
taken from twelve Bacillus bacterium species,
the goal is firstly to classify the secreted proteins
and then to analyze them through clustering.
The analysis of Bacillus bacteria is crucial not
only due to their industrial usages in the pro-
duction of enzymes and pharmaceuticals, but
also because of the diversity of their exposed
characteristics; the Bacillus genus includes spe-
cies that are capable of promoting plant growth
and producing antibiotics, as well as harmful
bacteria such as the Bacillus anthracis. The goal
of analysis is to identify families of Bacillus
bacteria with respect to the proteins that they
synthesize. In such a workflow, when the order
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ofthe performed checks foridentifying the kind
of a protein (e.g., lipoprotein) is modified, the
workflow efficiency changes, too.

In many cases, the problem of optimiz-
ing queries over WSs becomes equivalent to
that of an optimal ordering of a query’s WS
calls. Usually, the goal of the optimization is
to minimize the response time of queries, even
though there may be other metrics of interest,
such as total time, monetary cost and aggregate
resource utilization. In this work, we focus on
the minimization of query response time, exclu-
sively. Other problems of high significance for
industrial applications, such as the minimization
of detection time of malfunctioning components
based on pipelined tests can be easily reduced
to the same problem.

In one aspect, the problem of optimal
ordering of WS with a view to minimizing
the response time may resemble the problem
of ordering commutative filters in pipelined
queries with conjunctive predicates (Hellerstein
& Stonebraker, 1993; Krishnamurthy, Boral, &
Zaniolo, 1986), in the sense that the calls to WSs
may be treated in the same way as expensive
predicates. Ordering some types of relational
joins can be reduced to the same problem, as
well (Babu, Motwani, & Munagala, 2004). As
such, service-based queries can benefit from
database technology, and database solutions
have partially inspired our approach to optimiz-
ing service-based queries, as well. However,
there are also many substantial differences
between service-based and traditional database
queries given that there may exist precedence
constraints between the WSs, selectivities may
be higher than 1 (e.g., WS, in the example)
and, typically, the execution of queries over
WSs takes place in a both distributed and
parallel manner. More specifically, each WS is
executed on a different node and the results of
one WS may immediately be passed on to the
next service in a pipelined fashion, so that the
tuples already processed by a WS are processed
by the subsequent WS in the plan at the same
time as the former processes new input tuples.

Accordingto the pipelined execution mod-
el, when no data items (or tuples) are dropped

or new tuples are generated, the maximum rate
at which input tuples can be processed through
a single plan equals the minimum processing
rate of all services; the corresponding service,
i.e., the WS that spends, on average, the most
time per input tuple, is termed the bottleneck
WS. This model imposes new optimization
challenges. For example, the query response
time is no longer the sum of the cost in time
units of all the WSs in the pipelined plan, but
is determined by the slowest node (Condon,
Despande, Hellerstein, & Wu, 2009; Despande
& Hellerstein, 2008; Srivastava et al., 2006).
The problem of minimizing the bottleneck
cost has received significant attention recently.
In Srivastava et al. (2006), along with the intro-
duction of WSMSs, an efficient optimization
algorithm s presented that considers precedence
constraints among the WSs. Another charac-
teristic of this work is that it can deal with any
selectivity values and build plans where the
output of a service is fed to multiple services
simultaneously. The proposals in Condon et al.
(2009) and Despande and Hellerstein (2008)
introduce faster algorithms that maximize
the data flow by defining the set of interleav-
ing plans along with the proportion of tuples
routed to each plan in order to maximize the
aggregate processing rate; nevertheless, all the
plans are linear, i.e., each WS has at most one
input service and one output. More detailed
discussion of the related work is deferred in a
subsequent section. However,acommon feature
of all these algorithms is that they do not take
the potentially heterogeneous communication
links between the services into account, which
is significant when the execution is decentral-
ized given also that the communication cost
may be the dominant cost. This is in line with
the WSMS in Srivastava et al. (2006), which
assumes that the output of a service is fed to the
subsequent service indirectly through a central
management component thus annihilating the
need to consider the different communication
costs explicitly. As such, in existing proposals,
the bottleneck costdepends solely on the service
costsand selectivities, instead of taking also into
account the inter-service communication cost,
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especially when the execution occurs in a wide
are environment. In the previous example, the
optimal ordering may differ when all services
are at a single place, when they are all at a dif-
ferent place, and when, for instance, only WS,
and WS, are co-located.

The main contribution of this work is that
it addresses the afore-mentioned limitation by
proposing an efficient algorithm for the single
optimal ordering of services when the services
communicate directly with each other and the
communication costs between the services may
differ. Our algorithm is based upon the branch
and bound optimization paradigm and operates
regardless of any precedence constraints. It can
be deemed as an extension to Srivastava et al.
(2006) accounting for decentralized execution,
except that we are only interested in linear or-
derings. The evaluation of the proposal shows
that it is efficient and can result in significant
reductions of the response time up to an order
of magnitude in many realistic scenarios.

Theremainder ofthis article is structured as
follows. The problem we deal with is formally
introduced in the following section. After that,
we present the algorithm in detail discuss-
ing its main concept, correctness proofs, and
implementation issues. The evaluation section
discusses the performance benefits of our ap-
proach. Finally, we discuss the related work
on modern query optimization problems, as
well as extensions of the proposed algorithm
and future work.

PROBLEM FORMULATION

In our parallel execution model, each WS runs
on a different node in a separate thread that
processes input tuples and sends output tuples
to the next service sequentially; our solution
however can be applied to the case when sepa-
rate threads are responsible for data processing
and transmission in a straight-forward manner.
Let ¢, be the average time needed by WS, to
process an input tuple (also referred to as the

cost of WS)), o, the selectivity of S, and 7, the
time needed to transfer a tuple from S to WS/.].
The selectivity is defined as the average ratio
between the number of output and input data
items (i.e., tuples); if the selectivity is below
one, the service acts as a filter, whereas, if the
selectivity is above one, the service leads to
increase of the data volume. We assume that c,,
o, and 1,; are constants and independent of the
input attribute values. We further assume that
the selectivities of WSs are independent of each
other, and, in the generic case, can be greater
than 1. A constrained service WS has at least
one prerequisite service ws, which is denoted
as WS < WS, The precedence constraints are
part of the input (e.g., in the form of a DAG).

A plan S consists of a linear ordering
of the WSs, which respects any precedence
constraints and its response time is given by
the bottleneck cost metric, in accordance to
(Srivastava et al., 2006):

cosi($) = lﬁ??é k\WSl_e[P(s) (C ' Ultnﬂ)
k i

(1

where P (S) is the set of WSs that are invoked
before IS, in the plan S. Throughout the paper
we will refer to T,=c+tt, 0, as the aggregate
cost of WS, with respect to WSJ If ¢, is equal
for all service pairs, the problem can be solved
in polynomial time, as shown in Srivastava et
al. (2006). Here we deal with the generic --and
more realistic-- case, where 7, , may differ, for
which to the best of our knowledge there is no
polynomial solution. More specifically, the
problem we deal with in this work is formu-
lated as follows:

Problem Formulation: Given a set W of N WSs
W={ws,Wws,...,WS, }, whereeachone
of them is allocated on a host machine,
find the linear plan S, which minimizes the
bottleneck cost metric given by Eq. (1)
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OPTIMAL LINEAR PLAN
CONSTRUCTION ALGORITHM

The proposed algorithm is based on the branch-
and-bound optimizationapproach. Let C=WS, o
ws,,, ---WS,,, beapartial linear plan. k is used
throughout the paper to denote the mapping
from positions in the WSs to the indices of the
WSs at those positions.

Two cost metrics guide the plan building
process, € and €' respectively. The former cor-
responds to the bottleneck cost of C, while the
latter is the maximum possible cost that may
be incurred by WSs not currently included in
C.Cost ¢' isutilized to speed up the algorithm.
For simplicity, we will first discuss the case
where the selectivities are not greater than 1. &
and €' are given by the following equations:

2)
R [Haw)]TwWS, ZC
i [ ,
' []11 0., |1, WS, =ws, |
)
WS & C in both cases.

The algorithm proceeds in two phases,
namely the expansion and the pruning one.
During expansion, new WSs are appended to
a partial plan C, while during the latter phase
WSs are pruned from C with a view to explor-
ing additional orderings. If, for a partial plan
C, the condition e<e' is met, this means that
the bottleneck cost of the plan beginning with
C depends on the ordering of the services not
yet included; so a new WS is appended to C.
On the other hand, if condition € > ¢' is met,
then the order in which the rest WSs may be
appended to C does not affect its bottleneck
cost g, since the maximum possible cost ' that
may be incurred cannot be higher than ¢. In that
case, the linear plan C is essentially a solution
and the pruning step is triggered. Partial plans

are also pruned when they cannot form a prefix
of an optimal solution. Let C= WS, WSy -
ws, ., where 0 <n < N and WSW be the
bottleneck WS of C, where 0 < ¢ < n .Then C

is pruned as follows:

%]
WS, WS, .- WS

k(i—1

)Z:

C )
)70<z§n

“)

To further improve the efficiency of the
algorithm, the prefixes up to the bottleneck
service WS, " (denoted as C°) of the plans for
which the expansion phase has been completed
are stored in a list V. To avoid investigating the
same solutions multiple times, the function
m(X) is employed, where X is a (potentially
partial) plan. This function returns #rue if no
WS plan stored in V' is prefix of X. As will be
discussed later, the plans considered must
satisfy the () function thus yielding better
running times without compromising the opti-
mality of the algorithm.

Detailed Algorithm Description

The complete algorithm is shown in Figure 2,
where S denotes the best linear plan found so far
and p its bottleneck cost. In every iteration of
the algorithm, the cost measures ¢ and €' are
evaluated. F(C) is the set of all WSs for which
all the prerequisite WSs have already been
added to C. More formally F(C) is given by:

F(C)={ws, |WS ¢ CAM CC}
®)

and M., is the set of all WSs that must appear
before IS, i.e., M, ={WS |WS <WS}.
Obviously, for unconstrained services,
M, =a.

There are three cases depending on the
values of €, ¢” and p in a partial plan C:

e < e',e < p(lines 12-24): if C is empty,
e.g., it is the initial iteration, the algorithm
searches for the most promising WS pair that
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Figure 2. The proposed algorithm

Inputs

N: Number of input WSs

T: An N x N matrix, where Tj; = ¢; + 1;; 0,
Outputs

S: optimal linear ordering

S <« @ {S is the current best linear plan}
P <0 {p is the bottleneck cost of S}
V « @ {Vis alist of partial linear plans}
C«O;
F(C)«{WS,|M, =} ;
while true do
Estimate £ using Eq.(2);
Estimate £'using Eq.(3);
if £2 pthen
. V.push(C");
. Trim C following Eq.(4);
.elseif £ <&'Ag < pthen
. if C=C then
. Find the services WS,and WS, using Eq.(6);
.C= WS, WS,;
. else if C# @ then
. Find a WS, using Eq.(7);
. If no such WS can be found then
. Trim C using Eq.(4), where the bottleneck WS is set to WSy,
. V.push(C");
. else
. Append the W5, to C;
.end if
.end if
.elseif £'<&<pthen
. V.push(C'");
.S«C;
. Trim C following Eq.(4);
£ «— :
. end if
. Update F(C) using Eq. (5);
. If Termination Condition is true then
.return S;
.end if
. end while
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has not been considered yet. Such a WS pair
must satisfy the following equation

T =

, 6

Lr i,j|M, =AM C{WS, }Arr(WS/WS/):tme{ U} ( )
Ifthe partial plan is not empty, the algorithm

searches for a new WS WS, such that:

T = min (..} 7
K)o ws er(e)an(ews,)=true U k(1) ™

These sub-cases comprise the expansion
case. In case where no WS can be found, the
last WS of C is pruned (lines 18-20) to support
casesinwhichnoservice canbe appended, e.g.,
all plans with prefix C have been examined.
Note that the condition ¢ < pis considered
alongwith € < €', because itis worth perform-
ing the expansion phase only for plans with
e<p.

«  ¢'<e < p(lines 25-30): the current best
linear plan S is set to C and its bottleneck
cost p is updated. Condition € > ¢'en-
sures that the bottleneck cost of C, which
is lower than the current lowest cost, will
not increase if new WSs are appended.
After that, C is pruned following the Eq.
(4) and the algorithm continues. The intu-
ition behind Eq. (4) is as follows. WS, )

in Eq. (4) satisfies either Eq. (6), or (7),

1.e., it is the WS such that WSk(i} has the

minimum cost 7 .., . Thus, the cost that

may be incurred by any other WS appended
to WS, . will be higher than the current
bottleneck cost, i.e., it is worthless to in-

vestigate plans with prefix WS, ... WS, .

* ¢ > p(lines 9-11): C cannot yield an op-
timal solution, since its bottleneck cost is
higher than the bottleneck cost of S. Thus,

C is pruned following Eq. (4).

The algorithm can safely terminate when
the less expensive pair of WSs satisfying the
7 function cannot improve the current bottle-
neck cost, which means that the best possible

linear plan not yet visited has at least as high
bottleneck cost € as p.

Termination Condition: Let p be the minimum
bottleneck cost found so far. The algorithm
terminates, when there are two services WS,
and WS such that:

T, >pM,=@AM, C

Lr

{WS,} An(WS WS ) = true ®)

Thus far, we have discussed the case when
service selectivities are not higher than 1. If

there existo, > 1, then the same algorithm is
still valid; the only change is in the way ¢'is
computed in Eq. (3). More specifically, ¢' in
Eq. (3)ismultiplied by the productofall o > 1

suchthat WS, ¢ C'. The proofofthe algorithm’s
correctness is in a subsequent section.

An Example of the Algorithm

We continue with Example 1. Table 1 shows the
per tuple processing costs and the selectivity
values of'the services introduced in Example 1,
while Table 2 shows the inter-service communi-
cation costs. Note that ,=1.5 and ¢,=2.5 mean
that every customer has, on average, 1.5 credit
cards and 2.5 email addresses, respectively. In
this example, it is assumed that the cost spent
to transfer input data to a service is negligible.
However, if this hypothesis does not hold, we
can realize the different data communication
costs by using a source service WS, with zero
processing cost and ¢,=1. That service is con-
sidered to be the source of input data. In Figure
3, the partial plans at the end of every of the
iterations are shown. Before presenting the
steps of the algorithm, recall that WS, cannot
called prior to WS,

Initially,e =0 <e'=0,T, =875,
e<p(p=o0)andC = @. The algorithm
starts by identifying the WS pair, which incurs
the minimum cost; see lines 13-15 of Figure 2.
The corresponding WSs are WS, and WS,

After that, C=WS WS,. In the second iteration,
sincee =3.6<e'=0 xT,,6 =54,
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Table 1. Processing cost and selectivities of the services presented in example 1

ws, 1 2 3 4
Cost of WS, (c,) 2 5 3 4
Select. of S, (0) 0.1 15 0.3 2.5

Table 2. Communication cost values of the services presented in example 1

WS\ WS, 1 2 3 4
1 - 20 18 16
2 20 - 9 15
3 18 9 20
4 16 15 20 -

e<p=o0 andC = @, a new WS is ap-
pended to C, which must satisfy the Eq. (7);
that service is WS, In the third iteration, since

4.625,

e<p=o0 andC = &, the service WS, is
appended to C forming the partial plan C=WS,
WS, WS, WS, Now,since ¢ = 4.625 > ¢' =0
ande < p = 00 ,asolutionis found. According
to steps in lines 25-30 of Figure 2, S is set to
C, p =4.625and C is pruned following the
Eq. (4). After the pruning, C = WS WS, since
the bottleneck WS is WS,. The termination
condition is not triggered given that there exists
atwo service prefix that satisfies 7 and its cost
is lower thanp: T, = 4.

In the fifth iteration, since
e=36<e'=54 , e=3.6<p=4.625
andC' = @, a new WS needs to be appended
to C. However, since such a service cannot be
found (WS, cannot be appended to C prior to
WS, C is pruned after setting the bottleneck
service to WS,; see lines 18-20 of Figure 2.
Afterthe pruning, C=WS,. Inthe sixth iteration,
sincee =0<e'=8.1, e=0<p=4.625
andC = @, WS, is appended to C. In the sev-
enth iteration, a new service is also appended
to C forming the partial plan C=WS WS WS..
In the eight iteration, a new solution is found
since e =4 > ¢'=135ande < p = 4.625.

J— | — —
e=4.15<¢ —al><a4><TZ’3 =

Thus, S =WS, WS, WS, p = 4 and Cis pruned
according to Eq. (4). Now, the termination
condition is triggered, since the cost of the less
expensive WS pair satisfying 7, which is IS,
WS, (the services’ pair WS, and WS, cannot be
placed at the beginning of'a plan, since WS has
WS, as a prerequisite service), is now higher
than p: 7, ,=18.5> p =4.

Proof of Correctness

Lemma 1. If € is the bottleneck cost of C, any
plan with prefix C cannot have a lower
bottleneck cost.

This non-decreasing property of ¢ with regards
to the size of the partial plan derives directly
from Eq. (1). Also, as explained in the previous
subsections, the following lemma holds:

Lemma 2. If for a partial plan C, e > ¢, then,
any plan with prefix C has cost €.

This derives from Eq. (2) and (3) and the
fact that selectivities are not greater than 1.

Lemma 3. No plan C with prefix any of the plans
stored in V can have bottleneck cost
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Figure 3. An example of the proposed algorithm using the services presented in example 1

1* iteration (at the beginning = = 0,2

2

2" jteration (at the beginning =

§
§
0

'

87.5,p =00 )

36,6 =54, p=00)
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§
§
§

@D

4'" jteration (at the beginning & = 4625, = 0,p = oo )

5th jteration (at the beginning £

g

6" iteration (at the beginning £ = 0,2

2

7t jteration (at the beginning & — 4,2

0
§
0

th

[v ]

g

€ < p,where pisthe minimum bottle-
neck cost found so far.

The plans in V fall into two categories.
Firstly, V includes prefixes of partial plans up
to and including their bottleneck service; the
cost of at least one of such bottleneck services
is p while the costs of other bottlenecks are
higher. However, for any plan used to construct
V, the service appended to the plan just after
the bottleneck service during the expansion
phase must have satisfied either Eq. (6), or (7),
resulting in bottleneck coste > p . Because of
Eq. (6) and (7), any plan C produced by ap-
pending a service to / has coste > p , too. So,
with the help of the first lemma, this lemma
holdsas well. Secondly, Vincludes partial plans
for which no new services can be appended,
due to either precedence constraints or the fact
thatall combinations have been already explored
(line 20 of Figure 2). The former subcase can-
not lead to any solutions, whereas the latter is
similar to the first case. This completes the
proof of the lemma, and also shows the cor-
rectness of using the 7() function, whichbuilds
upon this lemma.

iteration (at the beginning

36,6 = 5.4, p = 4.625)

]

8.1,p = 4.625 )

v

8.1,p = 4.625)

e=4d,6 = 1.35,p=4.625)

Theorem 1. The algorithm finds the optimal
solution.

A sketch of the proofis as follows. In order
to prove the correctness of the algorithm, we
mustprove thatall possible orderings have been
checked, either directly or indirectly, and the
termination condition is correct and the output
is a valid solution. The algorithm, with the help
of the 7() function does not explore plans the
prefix of which is stored V. We have proven
that this does not compromise its optimality.
The algorithm exits when any WS pair that is
a valid beginning of a plan does not have a cost
lower than the currently lowest bottleneck cost.
In general, there are n! orderings, where n is
the number of services; of course this can be
reduced due to precedence constraints. How-
ever, there are at most n(n-1) prefixes of size
two. If all these prefixes satisfy the termination
condition, with the help of the first lemma we
can show that all n/ orderings cannot have a
bottleneck cost that is lower than p . Finally, S
in Figure 2 is a partial plan, but, as the second
lemma shows, any plan with prefix S can form
a complete optimal ordering.
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Note that the termination condition can be
reduced to simpler statements in some specific
cases. For example, when there are precedence
constraints such that only a single WS can be
at position 0, e.g., it is the service responsible
for source data generation, then the termination
condition can be reduced to the statement that
the algorithm can exit if the bottleneck position
reaches the first position WS, . The proof of
correctness is similar to the case when WSs
are selective.

Implementation Issues

In the current subsection, we will discuss some
implementations issues. We have employed
some simple data structures in order to speed
up the execution of expensive operations,
namely the identification of the next WS to be
appended to a partial plan (Eq. (7)), the evalu-
ation of ¢' and the check of the termination
condition. Note that the computation of the
bottleneck cost ¢ of C and the detection of the
bottleneck service require linear time; also ()
can be efficiently implemented with the help
of a prefix tree.

To speed up the identification of the next
WS, a preprocessing step takes place before
the algorithm execution. According to this step,
for each service WS, a doubly-linked list L. of
all services IS, in increasing order of the cor-
responding aggregate cost 7, is constructed
Thus, the next WS to be added after WS, 1
found using the following simple search ap-
proach: we start from the head of list L, o If
the current WS is not included in C and all its
prerequisites services are included in C, then
the desirable WS is found, otherwise the search
continues. The computation of €' is performed
using an analogous approach. For every WS,
that it is either the last WS of C or does not
belong to C, the search starts from the end of
L, since the maximum possible process/trans-
fer cost must be found. The search in every L,
stops when the first WS not currently included
in C'is found and the maximum aggregate cost
among those found in every L is returned.

Finally, the check of the termination con-
dition can be efficiently done with the help of
a min heap. The contents of this heap vary
depending on whether the WSs are constrained
ornot. In the former case, the min heap contains
all WS couples (WS, WSj), while in the latter
case; it contains only the couples that can con-
stitute a valid prefix of a plan. The values of
the heap are the costs 7. ¥ of the corresponding
couples. Every time we check whether the
termination condition is met, the root of the
min heap is accessed and the plan X=WS, ws.
is formed from the WS couple (WS, WSj) stored
in the root of the min heap. If the partial plan
X satisfies the 7(X), then the corresponding
cost is kept. Otherwise the root of the min heap
is deleted and the next new root element is ac-
cessed. From the above, it follows that the
complexity of this operation is O(log k), where
k < N?, while the complexity of naive ap-
proach is O(N°).

EVALUATION

In order to study the performance and the ef-
ficiency of the proposed algorithm, we have
conducted several experiments using simula-
tions of wide-area environments. The perfor-
mance of the algorithm was evaluated through
the comparison of the response times of WS
plans built by the proposed algorithm and the
Greedy algorithm in (Srivastava et al., 2006),
while the efficiency was measured in terms of
the absolute time needed to construct the plans.
Intuitively, the performance and the efficiency of
the proposed algorithm are affected by various
parameters. However, we concentrate on three
of them, namely the number of input services,
the ratio between processing and transferring
costs of tuples and the network heterogeneity.

In order to compare the performance of
the proposed algorithm and the Greedy one
when the number of input services varies, we
produce a set A of twenty-five simulations
instances, A ={a | N €{ 10, 20, ..., 250 }},
where each simulation instance a consists of
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Nservices. The services’ processing costs follow
a Gaussian distribution with mean value 10 and
standard deviation 2. The communication costs
L between the services follow a Gaussian dis-
tribution, too, with mean value 25 and standard
deviation 2.5. That means that, on average, the
cost needed to transfer a tuple will be 2.5 times
higher than the cost spent to process it. Finally,
the selectivity of the services is uniformly dis-
tributed between 0 and 1. The proposed algorithm
and the Greedy one are executed on each simu-

lation instance. Let p and p'  be the cor-
N N

responding response times of the plans built by
the aforementioned algorithms for a simulation
instance a . Figure 4 (left bars) shows the ratio

p'. /p, forN € {10,20,...,250}. We ob-

serve that the proposed algorithm can yield
significant performance improvements of sev-
eral factors (up to four). Secondly, as the number
of input services increases, the performance of
the proposed algorithm increases and the re-
sponse time deviations between the Greedy plans
and the optimal ones (built by the proposed al-
gorithm) increase. For example, the plan built
by Greedy for the a,  setting has 4 times higher
response time than the plan built by the proposed
algorithm. This value decreases to 1.25 for the
a,, simulation instance.

Now, we turn our attention to two other
parameters, namely the ratio between the pro-
cessing and the transferring cost of tuples and
the network heterogeneity. To this end, we
produce two new sets of twenty-five simulation
instances B and C following a procedure
similar to the one described above. We vary
only the mean transferring cost per tuple and
the network heterogeneity. The network het-
erogeneity is controlled through the standard
deviation of the communication cost values
distribution; as the standard deviation increas-
es, the network heterogeneity becomes higher.
In the simulation instances’ set B, the com-
munication cost values follow a Gaussian
distribution with mean value 200 and standard
deviation 40, while in the third set of simulation
instances, the mean transferring cost per tuple
is 200 and the standard deviation is 80. The

above imply that each b (or ¢) simulation
instance has, on average, eight times higher
transferring cost per tuple thanana simulation
instance, while the network heterogeneity of
the ¢ simulation instances is higher than the
network heterogeneity of bs. The response
time ratio values p 'bN / Py, and p "‘n / p,, are
also shown in Figure 4 (middle and right bars,
respectively). From the above, we can see that
as the transferring cost of tuples increases (rela-
tively to their processing cost), the performance
of our algorithm is much higher, rendering it
more appropriate in environments, where the
communication cost dominates. Furthermore,
ouralgorithmis robust to network heterogeneity.
For example, the maximum response time de-
viation is up to 26 times (i.e., the plan produced
by Greedy has 26 times higher response time
than the optimal one) for the ¢ simulation in-
stances (right bars in Figure 4), while the maxi-
mum deviation is 11 times for the b, simulation
instances (middle bars Figure 4).

Regarding the efficiency of the proposed
algorithm, the mean running time of the
optimizer per simulation instance was only
0.3 sec, even for simulation instances of 250
services®. This means that our proposal is non
computational demanding and can easily run
on ordinary machines. More detailed experi-
ments can be found at Tsamoura, Gounaris, &
Manolopoulos (2010).

RELATED WORK

Our work relates to the broader areas of
distributed query optimization and pipelined
operator ordering. Distributed query optimi-
zation algorithms differ from their centralized
counterparts in that communication cost must
be considered and there is a trade-off between
total work optimization and the harder problem
ofresponse time optimization (Ganguly, Hasan,
& Krishnamurthy, 1992). Proposals for the latter
case either employ more sophisticated dynamic
programming techniques (Kossmann & Stocker,
2000) or resort to heuristics. Response time
optimization is largely affected by the types
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Figure 4. Response time ratio values between the plans built by the proposed algorithm and the
Greedy one presented in (Srivastava, Munagala, Widom, & Motwani, 2006)
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of parallelism in the query plan; nevertheless,
typically only independent parallelismis inves-
tigated in wide area settings (Kossmann, 2000;
Deshpande & Hellerstein, 2002), whereas our
focus is on pipelined parallelism. There is a
lot of work for different settings than the one
assumed in this work referencing P2P networks
(Huebschetal.,2005; Ngetal.,2003); however
such proposals do not share the same goals and
cannot be applied to our problem.

Pipelined operator ordering has been
examined for both centralized and distributed
environments. In a centralized single-node
environment, the problem of minimizing the
response time can be optimally solved in
polynomial time only if the selectivities are
independent (Hellerstein & Stonebraker, 1993;
Krishnamurthy et al., 1986); note that if the
independence assumption does not hold the
problem becomes intractable. In a wide-area
environment, the response time optimization
problem is transformed to bottleneck cost
minimization. In this setting, Srivastava et al.
(2006) proposed an algorithm for optimizing
select-project-join queries over WSs. However,

they assume that the query execution process
is simplified through a WSMS which orches-
trates data exchange among the services, so that
joins can be computed and the heterogeneity
of communication costs does not impact on the
bottleneck cost metric. As such, our algorithm
canbe deemed as anextension to Srivastavaetal.
(2006) for the case when decentralized sequen-
tial plans are examined; note that Srivastava et
al. (2006) support parallel plans as well, which
outperform sequential ones when service selec-
tivities are higherthan 1. Bragaetal. (2008) deal
with aslightly different problem, where IR-style
tasks are combined with accurate search tasks
in the same query; the goal is to produce a WS
invocation plan (either sequential or parallel) in
order to obtain the best k answers of a query in
the presence of access limitations but the algo-
rithm they employ involves exhaustive search
of the candidate plans. Deshpande et al. (2005)
consider correlated selective attributes but they
aim at minimizing the total cost for acquiring
the values of the attributes, since they assume
that each attribute is assigned an acquisition
cost. The plan constructed is a conditional one
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in the form of a binary decision tree. All these
proposals are static. In Babu et al. (2004), the
goal is to develop solutions for the ordering of
selective operators that are tailored to online,
dynamic scenarios. However, the approximate
algorithm applies only to the problem of mini-
mizing the total work and assumes selectivities
nothigherthan 1. Complementarily to the above,
the algorithm in Sabesan and Risch (2009)
tackles the problem of allocating services on
host machines with respect to a fixed plan. The
algorithm can determine the number of hosts
that may execute a WS with a view to minimiz-
ing the response time of the submitted query.
None of these works consider the communi-
cation costs. Existing solutions for multi-query
optimization neglect the communication costs,
as well. Liu, Parthasarathy, Ranganathan, and
Yang, (2008) and Munagala, Srivastava, and
Widom (2007) assume a single-node execution
environment, where all operators are selective,
potentially correlated and unconstrained. The
optimization metric is the minimization of the
sum of the operator costs, as in a distributed
version of the same problem discussed in Liu,
Parthasarathy, Ranganathan, and Yang (2008).
A common characteristic of the proposals
mentioned so far is that they build a single plan.
For completeness, we mention techniques that
define a set of interleaving plans in order to
maximize the data flow, which is equivalent
to minimizing the bottleneck cost. In Condon
et al. (2009), such a tuple routing algorithm is
proposed in order to maximize the flow of tuples
processed by the filters of the input query. The
filters are all selective and unconstrained. The
outputis a set of serial plans. Each serial plan is
assigned a probability weight and when a new
tuple enters the system, it is assigned to one of
these serial plans with a probability depending
onits weight. [tmustbe noted that the flow maxi-
mization algorithm considers only the process
rates of the filters (i.e., the number of tuples per
unit of time) and the potentially heterogeneous
communication costs are disregarded. This
work is extended in Despande and Hellerstein
(2008) to also support proliferative operators
and precedence constraints. However, Despande

and Hellerstein (2008) is characterized by the
limitation of not considering communication
costs, too. Note that interleaving plans are not
the same as eddies (Avnur & Hellerstein, 2000;
Tian & DeWitt, 2003). The former deal with
multiple static plans, whereas the latter refer
to a single plan that is continuously adapted to
changes in the environment.

Finally, a recent work that takes data
transmission into account has appeared in Li,
Deshpande, and Khuller (2009), which deals
with processing of multiple, overlapping, non-
parallel queries. The input data is in sources
stored on different host machines, while the
cost to transfer data between any two hosts
varies, as in our problem. Nevertheless, the
optimization goal is different; the algorithm
in Li et al. (2009) aims to minimize the total
cost to transfer data across overlapping queries,
whereas we focus on minimizing the response
time of a pipelined parallel query.

CONCLUSIONS AND
DIRECTIONS FOR
FUTURE WORK

In this work, we deal with the optimization of
decentralized queries over Web Services. More
specifically, we present an algorithm for finding
the optimal ordering of pipelined services when
the services communicate directly with each
other and the communication costs vary. The
goal isto minimize query response time, which,
due to parallelism, depends on the bottleneck
service in the plan. Our algorithm operates
regardless of any precedence constraints and
selectivity values can be higher than 1. To the
best of our knowledge, it is the first attempt to
solve this intractable problem. Our algorithm
is provably optimal, i.e., always finds the op-
timal plan, and particularly efficient in terms
of running time, as the results of the evaluation
reveal. It follows the branch and bound opti-
mization approach and adopts a novel pruning
technique in order to reduce the search space.
It can yield performance improvements of an
order of magnitude in realistic scenarios.
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Our work has been motivated by emerg-
ing paradigms of distributed data management
and can be extended towards several directions
in order to fully fulfill modern needs. In the
future, we plan to investigate solutions that
support more generic plans rather than more
simple sequential orderings of operators. In
such plans, each service can have multiple
inputs and disseminate its results to multiple
services simultaneously. The investigation of
correlated selectivities and the development
of adaptive flavors of the algorithm are also
left for future work. Finally, we believe that,
in distributed settings, operator ordering solu-
tions must be coupled with resource allocation
and scheduling algorithms in order to produce
a complete solution. We plan to work to this
end in the future, too.
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ENDNOTES

! In practice, tuples are transmitted in blocks

(Gounaris, Yfoulis, Sakellariou, & Dikaiakos;
Srivastava et al., 2006); 1 is the cost to trans-
mit a block divided by the number of tuples
it contains.
2 ty, 18 always set to 0.
For the experiments we have used a machine
with a dual core processor, where the CPU
clock of each core is at 2.00 GHz and the total
memory 2GB.
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