
Robust Classification based on Correlations between Attributes∗

Alexandros Nanopoulos1† Apostolos N. Papadopoulos1

Tatjana Welzer-Druzovec2 Yannis Manolopoulos1

1 Aristotle University of Thessaloniki, Greece

2 University of Maribor, Slovenia

Abstract

The existence of noise in the data significantly impacts the accuracy of classification. In this

paper, we are concerned with the development of novel classification algorithms that can

efficiently handle noise. To attain this, we recognize an analogy between k nearest neighbors

(kNN) classification and user-based collaborative filtering algorithms, as they both find a

neighborhood of similar past data and process its contents to make a prediction about new

data. The recent development of item-based collaborative filtering algorithms, which are

based on similarities between items instead of transactions, addresses the sensitivity of user-

based methods against noise in recommender systems. For this reason we focus on the

item-based paradigm to provide improved robustness, compared to kNN algorithms, against

noise for the problem of classification. We propose two new item-based algorithms, which

are experimentally evaluated with kNN. Our results show that, in terms of precision, the

proposed methods outperform kNN classification by up to 15%, whereas compared to other

methods like the C4.5 system, improvement exceeds 30%.

∗Work supported by a bilateral Greek-Slovenian project.
†A. Nanopoulos is supported by IKY Post-doctoral scholarship.

1

INTRODUCTION

Classification involves the construction of a model, denoted as classifier, for the mapping of data

to a set of predefined and non-overlapping classes. The accuracy of a classifier is negatively

affected by the existence of noisy data, that is, data records with incorrect attribute values.

The reason is that noise confuses the learning process and causes the constructed classifier to

overfit the data (Han & Kamber, 2000). In this paper we are interested in developing novel

classification algorithms that are robust and construct classifiers with significantly improved

accuracy in the presence of noise.

The development of classification algorithms that handle noise is a worthwhile problem, due

to the direct impact that noise has on the reliability of data analysis’ results and, thus, on deci-

sion making. Controllable data-acquisition procedures can limit the amount of noise, rendering

it easily resolvable with preprocessing techniques (Pyle, 1999). In other situations, however, the

intrusion of noise cannot be restrained; for instance, data that are collected online in e-commerce

sites (e.g., surveys, questionnaires, purchases, etc.). It has been reported (O’Mahony, Hurley,

Kushmerick, & Silvestre, 2004) that to a large degree the visitors of e-commerce sites tend to

deliberately provide false values, for reasons varying from privacy concerns to “shilling” at-

tacks (O’Mahony et al., 2004). In such cases preprocessing techniques are not effective. What

is needed is classification algorithms that can tackle noise.1

Existing classifiers can be divided into two categories (James, 1985), eager and lazy. In

contrast to an eager classifier (e.g., decision tree), a lazy classifier (Aha, 1997) builds no general

model until a new sample arrives. A k-nearest neighbor (kNN) classifier (Dasarathy, 1991)

is a typical example of the latter category. It works by searching the training set for the
1A racy account of the people’s intention to provide false data when being asked, is described by Witten et

al. (Witten, Moffat, & Bell, 1999): when the authors ask their students to give their birthdate after they have

explained to them that they want to demonstrate the “birthday paradox”, it takes 366 tries to find two students

with the same birthdate!

2

k nearest neighbors of the new sample and assigns to it the most common class among its

k nearest neighbors. In general, a kNN classifier has satisfactory noise-rejection properties.

Other advantages of a kNN classifier are that it (a) is analytically tractable, (b) for k = 1 and

unlimited samples the error rate is never worse than twice the Bayes’ rate, and (c) it is simple

to implement.

Due to the aforementioned characteristics, kNN classifiers are very popular and find many

applications. Nevertheless, although they present adequate efficiency for low amount of noise,

our results (Section) indicate that their performance degrades for medium and high noise.

Interestingly enough, an analogous conclusion has been reported (Sarwar, Karypis, Konstan, &

Riedl, 2001) for the seemingly different problem of user-based (UB) collaborative-filtering (CF).2

Albeit the different objectives between a kNN classifier and a UB CF algorithm, they both have

a common way of working: given a new datum (record and user-transactions, respectively),

they first find a neighborhood of similar past data and, then, they process its contents to make

predictions about the new datum. The bottleneck in this procedure is the search for neighbors

among a large population of potential neighbors (Herlocker, Konstan, Borchers, & Riedl, 1999).

Motivation

The inefficiency of UB algorithms for significant amounts of noise has recently lead to the

development of novel item-based (IB) CF (Sarwar et al., 2001) algorithms which, in contrast

to UB ones, base their prediction on similarities between items instead of transactions. UB

algorithms are outperformed by IB ones, because the latter can better isolated noise, as in each

user-transaction only the items with strong similarities are considered. Therefore, based on

the previously described analogy between classification and CF algorithms, the question that

motivates our research is: can we involve the paradigm of IB algorithms to build lazy classifiers

that are more robust against noise than kNN classifiers?
2Note that recommender systems and CF algorithms, in particular, find many and significant applica-

tions (Resnick & Varian, 1997).

3

Contribution

Our contributions are summarized as follows.

• First, we demonstrate that the IB paradigm can be involved to develop robust classifiers.

• We expound that the straightforward adoption of IB methods leads to less accurate clas-

sification. Therefore, we develop a novel algorithm, which addresses the deficiencies of

straightforward adoption.

• We recognize a trade-off between the robustness of the new IB algorithm against noise

and the high precision of kNN classification in the absence of noise.

• We develop a hybrid algorithm that combines the advantages of both approaches. Our

experimental results illustrate that: (i) in the presence of noise the proposed IB algorithm

improves the precision of kNN classification up to 15%; (ii) the hybrid algorithm is a

good amalgamation, because it attains precision analogous to a kNN classifier, when no

or low amount of noise is added, and analogous to an IB algorithm, when medium or high

amount of noise is added.

The rest of this paper is organized as follows. Section describes related work. In Section

we develop the proposed method, whereas in Section we present the experimental results. We

conclude this paper in Section .

RELATED WORK

Due to its simplicity and good performance, kNN classification has been studied thoroughly (Dasarathy,

1991). Several variations were developed (Atkeson, Moore, & Schaal, 1997), like the distance-

weighted kNN, which puts emphasis on nearer neighbors, and the locally-weighted averaging,

which uses kernel width to controls the size of neighborhood that has large effect. Also, kNN

classification has been combined with other methods and, instead of predicting a class with

4

simple voting, prediction is done by another machine learner (e.g., neural-network) (Atkeson

& Schaal, 1995). In our research we are interested in examining the essential characteristics

of kNN and item-based classification, that is, to compare classification based on similarities

between samples (kNN) in contrast to similarities between attribute values (item-based). For

this reason, to make comparison clearer, we did not examine techniques like the aforementioned

ones. Moreover, such techniques (e.g., combination with other machine learners) can be applied

for both types of classifiers.

Another category of research that is related to ours is the integration of association-rules

mining with classification (Liu, Hsu, & Ma, 1998). Integration is done by focusing on mining

class association rules (CARs), i.e., association rules between items and classes. CARs are used

to build an eager classifier, which was experimentally shown to achieve better precision compared

to the C4.5 classification system. Basically, CARs correspond to multi-order dependencies

between items and class labels. Since the number of CARs may increase rapidly and impact

the accuracy of classification, their number is controlled with parameters for minimum support

and confidence, and with heuristics for grouping rules. In contrast, we focus on up to second-

order dependencies to develop item-based classifiers. Second-order dependencies are effective

in capturing correlations between attributes and classes. Additionally, they make our approach

much more simple, because it does not need the tuning of parameters like minimum support

and confidence, which, in general, is a difficult task (Han & Kamber, 2000). The performance

of CARs has not been examined with respect to noise. It is interesting to examine, in our

future work, if multi-order dependencies help in the presence of noise. Other uses of association

rules include the mining of partial classifications (Ali, Manganaris, & Srikant, 1997). Partial

classification does not cover all classes and all examples of any given class, and is used when

complete classification is infeasible or undesirable.

In the recent years the field of CF has found many important applications in real-world

cases (Resnick & Varian, 1997). Although UB CF algorithms are simple and quite effective,

5

IB methods (Sarwar et al., 2001) have been proposed to address their limitations, for instance,

sensitivity to noise. Nevertheless, to our knowledge, no work has studied the involvement of the

IB paradigm to the problem of classification.

DEVELOPING ITEM-BASED CLASSIFIERS

We first summarize the IB paradigm and describe a simple classifier that is based on its direct

implementation. Next, we elaborate further and propose extensions for more effective classifi-

cation.

Direct implementation of the IB paradigm

Let I be a domain of items, D the collection of past transactions, and T = {i1, . . . , im} the

transaction of the target user. An IB collaborative-filtering algorithm finds for each item ij ∈ T

(1 ≤ j ≤ m) the set N(ij) of k items with which ij is most correlated within transactions

of D. The items which belong to
⋃m

j=1 N(ij) − T (i.e., excluding those contained in T) are

recommended to the user. Correlation between two items i1 and i2 can be measured in several

ways (Han & Kamber, 2000): (a) for items with numerical values the adjusted cosine similarity

measure has been proposed, (b) for nominal items a commonly used measure is confidence.

The confidence is an estimator for the probability P (i2|i1) and is computed as: conf(i1, i2) =

supp(i1,i2)
supp(i1) , where supp(i1, i2) and supp(i1) denote the support of itemsets {i1, i2} and {i1},

respectively.

A classifier that directly follows the IB paradigm has to take into account the correlations

between attribute values in the training samples. Each such sample S = {v1, . . . , vm, c}, where

vi is the value of i-th attribute and c is the class label, can be considered as a multidimensional

transaction. For simplicity we henceforth assume that the attributes are either nominal or have

been discretized.3 Using the confidence measure, we find, for each attribute value vi, the set
3Extension to continuous attributes is possible with works (Srikant & Agrawal, 1996) that find correlations

6

N(vi) of the k attribute values that are most correlated with vi in the training samples (we allow

the inclusion of vi itself in N(vi)). This way, for a new sample X = {v1, . . . , vm}, we form the

set U(X) =
⋃

vi∈X N(vi). To predict the class of X, we also have to find for each vj ∈ U(X) the

set N ′(vj) of the k′ class labels that are most correlated with vj . (In our implementation we set

k′ = 1.) Correlation in this case reflects P (c|vj) and is measured as: conf(vj , c) = supp(vj ,c)
supp(vj)

. For

each class label c, we compute sum the
∑

vj∈U(X) conf(vj , c). Finally, we select for prediction

the class with the greatest sum.

The direct algorithm is denoted as Item-based classifier (IBC). To understand the intuition

behind IBC we consider that: even when several attributes values in the training set have noise,

IBC focuses only on the attributes values that (a) are correlated with those in the new sample,

and (b) can confidently indicate a class. Thus, IBC more effectively avoids noisy attributes

values, because they tend to form weaker correlations and are less frequently included in the

U(X) set. In contrast, when kNN algorithm finds the nearest neighbors, it takes into account

the noise in the attribute values while computing the similarities. Nevertheless, IBC has two

problems:

1. It is based on first-order correlations between attribute values and class labels. This is

restrictive, since higher-order dependencies may improve the accuracy of classification.

2. U(X) has the propensity of getting large. This may be desirable for IB CF algorithms (for

higher recall). However, it can hinder the accuracy of IBC, especially when combined with

the 1st problem, because the more focused U(X) is, the better the prediction becomes.

In the following of this section we develop solutions to the aforementioned problems. Regard-

ing the execution time, IBC needs to maintain the support values that are required to compute

the confidence values when a new sample arrives. This can be done easily with two-dimensional

arrays or with trie structures (Han & Kamber, 2000), which can be easily updated with in-

sertions/deletions of samples. Therefore, IBC classifies a new sample in lazy manner and the

between quantitative items.

7

pre-computed support values play a role analogous to that of an index structure that speeds-up

the finding of nearest neighbors (Papadopoulos & Manolopoulos, 2005) in kNN classifiers.

Pairwise-based classifier

Initially we consider the first problem of IBC. As described, CAR classifiers (Liu et al., 1998)

detect dependencies of various orders between the attribute values and the classes labels, but

require careful tuning of several parameters. As a conciliation between first-order dependencies

in IBC and multi-order dependencies in CAR-like methods, we choose to consider up to second-

order dependencies, which: (a) can effectively capture many associations between attribute

variables and class labels; (b) are simple and do not require parameter tuning; and (c) do not

present significant storage overhead, in contrast to storing much more many support values that

would be required to calculate multi-order dependencies. Because we want to estimate proba-

bilities of the form P (c|{vi, vj}) ({vi, vj} corresponds to a 2-itemset) through conf({vi, vj}, c)

values, we find and store supports of the form supp({vi, vj , c}) from the training samples.

With respect to the second problem of IBC, given a new sample X = {v1, . . . , vm}, we

propose the following method for the formation of U(X). For each vi ∈ X, we include in U(X)

only those vj ∈ N(vi) for which it also holds that vj ∈ X, that is, we concentrate on pairs from

the new sample X. The latter condition restricts the size of U(X) compared to the case of IBC.

Differently from IBC, we keep for each vj ∈ U(X) the associated vi. This way, U(X) contains

pairs of the form (vi, vj), that are tested against each class label c by computing conf({vi, vj}, c)

as described previously.4 The confidence measures for each class are summed and the class with

the greatest sum is selected for prediction. The resulting algorithm is denoted as Pairwise-based

classifier (PBC).

The incentive to the design of the PBC algorithm is described as follows. We want to

base our prediction on second-order dependencies between attribute values and class labels.
4Similarly to IBC, we allow vi to be included in N(vi) as (vi, vi). When it is tested against a class c, we

compute conf(vi, c), which corresponds to first-order dependency.

8

Therefore, within a record we have to consider the confidence measure between each pair of

attribute values and all class labels. To avoid the impact of noise, we take into account only

the pairs of attribute values for which there is a strong correlation between them. To achieve

this, for each attribute value in a record, we select between the remaining ones only those that

belong to its neighborhood. This way, as described, we manage to both consider second-order

dependencies and to restrain the length of U(X), by considering pairs with strongly correlated

items.

An example of PBC is depicted in Figure 1. The data table contains five training samples

over three attributes (A, B, C) and one class label. The new sample is X = {a1, b2, c2}, depicted

in the last row. Assuming that k = 2, the neighborhood sets for each attribute values of X

are depicted in the upper-right part of the figure. For instance, N(a1) = {a1, b1}, because

conf(a1, a1) = 1 and conf(a1, b1) = 3/4 are the highest two for a1. The resulting U(X) set is

depicted bellow. For instance, associated with a1 in U(X) is only a1 itself (forming the pair

(a1, a1)). Although b1 ∈ N(a1), it does not belong in X and is excluded from U(X). The same

applies for c1 with respect to N(b2), whereas both c2 and a1, which belong in N(c2), are included

in U(X) associated with c2. For each member of U(X), PBC examines the confidence values

against the two class labels l1 and l2. For instance, for (a1, a1) we compute a conf(a1, l1) =

supp({a1,l1})
supp(a1) = 3/4, which checks a first-order dependency between a1 and l1. In contrast, for pair

(c2, a1) we check a second-order dependency by computing conf({c2, a1}, l1) = supp({{a1,c2,l1})
supp({a1,c2}) =

2/2 = 1. Taking the sum of confidence values for each class, we get Sum(l1) = 2.75 and

Sum(l2) = 1.25, thus we assign the new sample to class l1.

Extensions of the pairwise-based classifier

The assigning of class labels based on the greatest sum value, a method that is denoted as

majority voting, can impact the accuracy of PBC in the presence of noise, when some classes

have much more samples in the training set than the others (skewed class distribution). Since

9

?c
2

b
2

a
1

l
2

c
1

b
2

a
2

l
2

c
1

b
2

a
1

l
1

c
2

b
1

a
1

l
1

c
1

b
1

a
1

l
1

c
2

b
1

a
1

Class

label

CBA

conf(a
1
, l
1
) = 3/4 conf(a

1
, l
2
) =1/4

conf(b
2
, l
1
) = 0 conf(b

2
, l
2
) = 1

conf(c
2
, l
1
) = 1 conf(c

2
, l
2
) = 0

conf({c
2
, a

1
}, l

1
) = 1 conf({c

2
, a

1
}, l

2
) = 0

N(a
1
) = {a

1
, b

1
}, N(b

2
) = {b

2
, c

1
}, N(c

2
) = {c

2
, a

1
}

Sum(l
1
) = 2.75 Sum(l

2
) = 1.25

train

samples

new sample

U(X) = {(a
1
, a

1
), (b

2
, b

2
), (c

2
, c

2
), (c

2
, a

1
)}

Figure 1: Example of PBC.

larger classes get a larger sum value more easily, PBC tends to bias its prediction towards

them, thus the accuracy for smaller classes reduces. To overcome this problem we use a simple

variation of the majority voting: Instead of selecting the class with the greater sum of confidence

values, we select the one with the largest deviation from the expected value of this sum. In

particular, for each class c, we take into account two sums, S1(c) and S2(c). S1(c) is computed

as described previously. For S2(c), each time a confidence for class c is computed, we add to

S2(c) the value 1
supp(c) . In the example of Figure 1, when we compute conf(a1, l1), we add to

S1 the value 3/4, and to S2 the value 1/supp(l1) = 1/3. In the end, we select the class with

the largest difference S1(c) − αS2(c). The α parameter helps to to control the bias: e.g., with

α = 0 (or even α < 0) the larger classes are favored, whereas with α > 0 the smaller classes are

favored. Its tuning will be explained in Section .

The characteristics of PBC make it more robust against noise, compared to IBC and kNN

classifiers. Nevertheless, by careful experimentation we have recognized a tradeoff between the

good performance of kNN classifiers when no additional noise is added and the robustness of

PBC when the amount of noise is significant. For this reason we propose a hybrid approach.

When a new sample X arrives, we first apply kNN classification. If all k nearest neighbors

belong to the same class, then we assign X to this class. Otherwise, at the moment that a

neighbor with different class has been found, we stop the kNN classifier and apply PBC. The

resulting algorithm is denoted as Hybrid-based classifier (HBC). The intuition behind HBC is

that when kNN reaches a unanimous decision, then low or no noise exists (noise tends to limit

10

such unanimous decisions). For this reason, the prediction of kNN classifier is preferred in these

cases. Otherwise, PBC is preferred, because it offers better robustness against noise. This way,

HBC combines the advantage of both approaches.

PERFORMANCE RESULTS

We examined experimentally the performance of the described classifiers: kNN, IBC, RBC, and

HBC, which we implemented in C++. For comparison purposes, we also examined classification

with C4.5 decision-tree, which is denoted as DT. We selected the precision of prediction as our

performance measure. For kNN classification we used the Jaccard similarity measure (nominal

attributes). To tune α for RBC and HBC, we set it with values between −1 and 0 for low

noise values (less than 20%; see below). For higher noise values, we set it to 1 to reduce bias

against smaller classes, as described in Section . We tested several values for the k parameter

(for all methods besides DT). When noise is added, in some cases precision increases with larger

k values, whereas in some others it decreases. For this reason in each measurement we selected

the best results for k between 3 and 10 (larger values leaded to non stable precision).

We used the following real data sets from the UCI Machine Learning Repository5: Con-

gressional Voting Records Database (denoted as Voting), Mushrooms Database (denoted as

Mushrooms), Nursery Database (denoted as Nursery), and Pittsburgh Bridges Database (de-

noted as Bridges). All the data sets contain nominal attributes. The smallest, in number

of rows, set (Bridges) contains 108 samples, whereas the the largest (Nursery) 12,960. The

distribution of classes was more skewed in the Bridges data set than in the others.

Noise is added in two ways: (1) We modify each attribute value (not the class labels) with

probability denoted as noise, which is a parameter. We focused on random noise and when a

value is replaced, we select one of the remaining ones with uniform probability. (2) We modify

the class labels (not the attribute values) with probability equal to noise. Again, when we
5http://www.ics.uci.edu/∼mlearn/MLRepository.html

11

replace a class label, we select one of the others with uniform probability. The two types of

noise, which are denoted as attribute noise and class noise, respectively, are different and we

want to examine both of them.

First, we tested the Voting data set against attribute noise. We measured precision with

10-cross validation. The results with respect to the noise parameter are given in Figure 2a.

IBC, due to the two problems that are described in Section , has the lower precision. As

expected, DT performs well when noise= 0. However, its precision is reduced significantly

as noise increases. The comparison between kNN and PBC illustrates the tradeoff that we

described in the previous section: for low noise values kNN performs better. But as noise

increases, RBC due to its robustness becomes better; their difference in precision reaches 9%

for large noise values. HBC tracks each time the best of the latter two algorithms. When noise

is low, the precision of HBC is analogous to that of kNN. As noise increases, HBC behaves

similarly to RBC. This explains the motivation for the development of the hybrid approach.

For larger values of noise, the precision of all methods besides kNN converges to the same point,

whereas kNN presents the worst precision for large noise values.

Next, we examined the Mushrooms data set, which contains classes that are, in general,

easily detectable. We added attribute noise. To make the comparison more challenging, we

selected as evaluation set a 10% of samples whose majority belongs to the less frequent between

the two classes (non-edible) and we used the other 90% for training. The results are depicted in

Figure 2b. For clarity, we omit the results for DT and IBC, because they consistently present

the worst performance, compared to the other methods, when noise is added. Similarly to the

previous experiment, the same tradeoff is observed. For lower noise values kNN outperforms

RBC, whereas the latter becomes better when noise increases. HBC again tracks the best of the

two algorithms. For low noise it outperforms RBC by 5.5% and for larger noise its difference

from kNN reaches 12% (in the same case, the difference between RBC and UB is more than

14%).

12

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

noise (%)

kNN
DT

IBC
PBC
HBC

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

noise (%)

kNN
PBC
HBC

(b)

Figure 2: Precision w.r.t. noise for: (a) Voting, (b) Mushrooms data set.

13

Also, we examined the Nursery data set for class noise. The results (using 10-cross valida-

tion) are illustrated in Figure 3a, which are similar to the previous ones in terms of relative

performance.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

noise (%)

kNN
PBC
HBC

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

c1 c2 c3 c4 c5 c7 c1 c2 c3 c4 c5 c7 c1 c2 c3 c4 c5 c7

0 0.5 1

P
re
c
is
io
n

kNN PBC HBC

(b)

Figure 3: (a) Precision w.r.t. noise for Nursery data set. (b) Precision for each class in the

Bridges data set w.r.t α.

Finally, we tested the impact of α for skewed class distribution. As mentioned, when α = 0,

prediction is biased towards the largest classes. As α increases, the bias against less frequent

classes reduces. The Bridges data set contains 7 class labels, but we omit the sixth label (it

was ‘NIL’ and was contained by only one sample). Compared to the number of samples of the

smallest class (c7), the largest class (c3) contains 5 times more samples. The second largest

14

(c1) contains twice more samples. We added no noise in order not to change the existing skew

in class distribution. The precision with respect to α is depicted, separately for each class, in

Figure 3b. When α = 0, the largest classes (c1 and c3) are predicted with much larger precision

than the others. The kNN classifier achieves a small, but larger non-negligible precision for two

of the smaller classes (c2 and c7). For the remaining classes (c4 and c5), all methods result to

zero precision. As α increases, PBC and HBC are not less biased towards the large classes.

For α = 1, the precision of PBC and HBC for c2 is analogous to that of kNN, whereas they

outperform kNN for the smallest class c7. Moreover, PBC and HBC have a small, but non-

negligible precision for classes c4 and c5, for which kNN presents zero precision. On the other

hand, the precision of PBC and HBC for the largest class c3 reduces when α = 1. Thus, the

reduction of bias results to a trade-off between the precision for smaller and larger classes.

CONCLUSIONS

We propose new algorithms for lazy classification, which follow the item-based paradigm. In

contrast to kNN classification that predicts according to similarities between samples in the

training set, item-based classification predicts according to similarities between attribute values.

This characteristic makes item-based classification more robust against noise.

Our first algorithm, PBC, resolves the problems of the straightforward adoption of the IB

paradigm. Our second algorithm, HBC, is a hybrid approach that combines the advantages of

kNN and PBC algorithms. Our experimental results show that, in the presence of attribute or

class noise, the proposed algorithms outperform kNN classification in terms of precision by up

to 15%. The improvement against the C4.5 classification system is more than 30%.

In our future work we will extend item-based classification algorithms to consider distance

weighting (between attribute values), we will examine mixtures of nominal and continuous

attributes, and complex voting methods (e.g., integration with neural networks).

15

References

Aha, D. W. (1997). Editorial. Artificial Intelligence Review (Special Issue on Lazy Learning),

11 (1-5), 1-6.

Ali, K., Manganaris, S., & Srikant, R. (1997). Partial classification using association rules. In

Proc. knowledge discovery and data mining conf. (p. 115-118).

Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence

Review, 11 (1-5), 11-73.

Atkeson, C., & Schaal, S. (1995). Memory-based neural networks for robot learning. Neuro-

computing, 9, 243-269.

Dasarathy, B. (1991). Nearest neighbor norms: Nn pattern classification techniques. IEEE

Computer Society Press.

Han, J., & Kamber, M. (2000). Data mining: Concepts and techniques. Morgan Kaufmann.

Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (1999). An algorithmic framework for

performing collaborative filtering. In Proc. acm conf. on research and development in

information retrieval (sigir) (p. 230-237).

James, M. (1985). Classification algorithms. John Wiley & Sons.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In

Proc. knowledge discovery and data mining conf. (p. 80-86).

O’Mahony, M., Hurley, N., Kushmerick, N., & Silvestre, G. (2004). Collaborative recommen-

dation: A robustness analysis. ACM Transactions on Internet Technology, 4 (4), 334-377.

Papadopoulos, A., & Manolopoulos, Y. (2005). Nearest neighbor search: A database perspective.

Springer (Series in Computer Science).

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.

Resnick, P., & Varian, H. R. (1997). Recommender systems (special issue). Communications

of the ACM, 40 (3).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering

16

recommendation algorithms. In Proc. world wide web conf. (p. 285-295).

Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational

tables. In Proc. acm conf. on management of data (p. 1-12).

Witten, I., Moffat, A., & Bell, T. (1999). Managing gigabytes: Compressing and indexing

documents and images (2nd edition). Morgan Kaufmann.

17

