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Abstract: In this paper, we focus on similarity searching for similar acoustic 
data over unstructured decentralised P2P networks. Similarity is measured in 
terms of time warping, which can cope with distortion that is naturally present 
when ‘query by content’ is performed. We propose a novel framework, which 
takes advantage of the absence of overhead in unstructured P2P networks and 
minimises the required traffic for all operations with the use of an intelligent 
sampling scheme. Within the proposed framework we adapt several existing 
algorithms for searching in P2P networks. Detailed experimental results show 
the efficiency of the proposed framework and the comparison between 
similarity searching algorithms. 
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1 Introduction 

The World Wide Web (WWW) is being used for commercial, entertainment or 
educational purposes, and has become the primary means for information dissemination. 
One popular type of data that is being disseminated over WWW is digitised music. 
Recently, the new opportunities that emerge from this activity have been recognised and 
have led to the development of systems like iTune (www.apple.com/itunes), iMusic 
(www.imusic.com), and Napster (www.napster.com). Although abundantly used, 
traditional metadata (title, composer, performer, genre, date, etc.) of a music object give 
rather minimal information about the actual content of the music object itself. On the 
other hand, research efforts in the field of Music Information Retrieval (MIR) have 
developed efficient methods for searching music data collections by content.  
For instance, queries based on humming (using a microphone) or on a small piece of 
musical file, are a more natural approach to MIR. This type of query lies within the 
Content Based MIR (CBMIR). In CBMIR, an actual music piece is required in order to 
compare its content with the content of the music pieces already available in the database. 

As with regards to the infrastructure for exchanging music data, peer to peer (P2P) 
networks over the WWW have gained significant popularity during the previous years. 
Within the advantageous qualities of the P2P networks lies the increased size of the 
overall database offered by a P2P network, its fault tolerance support to peer failure by 
other peers and the workload distribution over a network of available CPUs, since 
CBMIR is computationally highly intensive. Nonetheless, the very advantages of the P2P 
network are the same parameters that make P2P information retrieval much more 
complex than the traditional search methods. That is, the lack of a central repository for 
the documents to be retrieved, the large number of documents available and the dynamic 
character of the network, introduce an increased degree of difficulty in the retrieval 
process. 
 



   

 

   

   
 

   

   

 

   

   212 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos    
 

    
 
 

   

   
 

   

   

 

   

       
 

P2P networks can be classified based on the control over data location and network 
topology in unstructured, loosely structured and highly structured (Li and Wu, 2004). 
The absence of structure allows for resilience in dynamic environments (peer join/leave) 
while no guarantees can be given on the retrieval of existing documents. Moving towards 
increased structure, both the probability of retrieving existing documents and the 
overhead of handling peer join-leave augment. Additionally, P2P networks can also be 
classified according to the number of central directories of document locations in 
centralised, hybrid and decentralised. Centralised P2P networks are subject to the same 
drawbacks for which the traditional server-client model was originally abandoned 
(network failures due to central peer failure, impaired scalability, joining/leaving of  
peers not easily handled and possible undesirable dominion of controllers). For these 
reasons, we focus on decentralised unstructured P2P networks, which overcome the 
aforementioned drawbacks. The absence of structure was selected for the looseness of 
control over the data location; that is each peer can share its own documents without 
hosting any documents of other peers due to locality restraints.1 

Searching for music data by content requires the development of effective and 
efficient similarity searching methods for this kind of data, which will find music files 
that are similar to a query music datum. Moreover, the particularities of decentralised 
unstructured P2P networks have to be taken into account in order to lead to feasible 
solutions. For instance, the traffic that similarity queries pose over the network is crucial. 
Additionally, the amount of processing required in each peer is an important factor.  
For these reasons, what is needed is 

• a model that will effectively capture the similarity between music data and will be 
also fast to compute 

• efficient similarity searching algorithms, which will minimise the traffic. 

In this paper, as measure of similarity between two musical pieces, we utilise the 
Dynamic Time Warping (DTW). The main flexibility of DTW is its capability to 
withstand distortion of the comparing series in the time axis, a property that is suitable for 
effective searching for similar acoustic data (e.g., wav, mp3), which can be represented as 
time series (that record signal amplitude over time). Since different performances of the 
same musical piece may include locally differentiated tempo, DTW seems a natural 
choice for this problem (Large and Palmer, 2002). For this reason, it has been recently 
proposed for the sake of MIR in centralised environments (Zhu and Shasha, 2003; 
Mazzoni and Danneberg, 2001; Jang et al., 2001; Adams et al., 2004). Moreover, for the 
fast computation of the DTW measure, we consider lower bounding techniques that have 
been proposed in the research field of time series databases. Based on DTW, we  
develop a framework for developing similarity searching algorithms, which is based on 
appropriate sampling and representation methods for music data, and takes into  
account the requirements of P2P networks. In this framework we examine some recently 
proposed algorithms for searching similar text documents in P2P networks.  
The considered algorithms are adapted in order to fit the requirements of the examined 
paradigm. 
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The technical contributions of this paper are summarised as follows: 

• The development of a novel framework for efficient retrieval of audio data similar  
to an audio query in a decentralised, unstructured P2P network. The proposed 
framework significantly reduces the required traffic for all operations with the use of 
an intelligent sampling scheme on the lower and upper bounds used. The proposed 
algorithm has such a design that no false negative results occur. 

• The examination of algorithms that use selective criteria in order to efficiently search 
over the P2P network. 

• The detailed experimental results which show the efficiency of the proposed 
framework and the comparative performance of the different searching algorithms. 

The rest of the paper is organised as follows. Section 2 describes related work.  
In Section 3, we describe the similarity model that is based on DTW. Section 4  
provides a complete account of the framework proposed in this paper, whereas Section 5 
presents the similarity searching algorithms that are used in this framework. 
Subsequently, Section 6 presents and discusses the experimentation and results obtained. 
Finally, the paper is concluded in Section 7. 

2 Related work 

2.1 Summary of existing P2P systems 

P2P networks can be classified based on the control over data location and network 
topology as unstructured, loosely structured and highly structured (Li and Wu, 2004). 
Unstructured P2P networks follow no rule in where data is stored while the network 
topology is arbitrary (e.g., Gnutella). Loosely structured P2P networks have both data 
location and network architecture, nonprecisely determined (e.g., Freenet). Finally, in 
highly structured networks, data storage and network topology are explicitly defined 
(e.g., Chord). What is more, P2P networks can also be classified according to the  
number of central directories of document locations in centralised, hybrid and 
decentralised. Thus, centralised networks maintain a central directory in a single location 
(e.g., Napster), hybrid networks maintain more than one directories in superpeers  
(e.g., Kazaa) while for the decentralised (e.g., Chord) no central directory is kept. P2P 
networks can also be classified into hierarchical and nonhierarchical, based on whether 
their overlay structure is a hierarchy or not. It is common for decentralised systems to 
have no hierarchy, while hybrid and most centralised systems ordinarily incorporate some 
degree of hierarchy. Hierarchical systems provide increased scalability, ease in exploiting 
peer heterogeneity and high routing efficiency. On the other hand, systems with no 
hierarchy offer loadbalance and increased resilience. 

In this work we define our network to be a decentralised, unstructured, 
nonhierarchical network. Additionally, we assume that the system consists of N peers, 
each peer having approximately log N neighbouring peers. The diameter of the system is 
the maximum number of peers required as intermediate steps in order to reach a peer Pi 
from a peer Pj. We define MaxHop to be the number of peers a query should be 
forwarded to. The MaxHop of a query is initially set to a value and each time the query is 
forwarded to a peer, MaxHop is decremented until reaching zero, from which point on 
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the query is not propagated further. The MaxHop parameter is equivalently called Time 
To Leave (TTL). 

2.2 Searching methods in unstructured P2P networks 

In this section, we summarise a number of different searching methods for decentralised 
unstructured P2P networks. Initially, we examine the Breadth First Search (BFS) 
algorithm. In the BFS, a query peer Q propagates the query q to all its neighbour peers. 
Each peer P receiving the q initially searches its local repository for any documents 
matching q and then passes on q to all its neighbours. In case a P has a match in its local 
repository then a QueryMatch message is created, which contains information about the 
match. The QueryMatch messages are then transmitted back, using reversely the path q 
travelled, to Q. Finally, since more than one QueryMatch message has been received by 
Q, it can select the peer with best connectivity attributes for direct downloading of the 
match. It is obvious that the BFS sacrifices performance and network traffic for 
simplicity and high hit rates. In order to reduce network traffic, the TTL parameter is 
used (see Section 2). In a modified version of this algorithm, the Random BFS (RBFS) 
(Kalogeraki et al., 2002), the query peer Q propagates the query q not to all, but a fraction 
of its neighbour peers. 

In an attempt to rectify the inability of the RBFS to select a path of the network 
leading to large network segments, the >RES algorithm was developed (Yang and 
Garcial-Molina, 2002). In this approach, the query peer Q propagates the query q to a 
subset of its neighbour peers based on an aggregated statistic. That is, Q propagates the q 
to k neighbouring peers, all of which returned the highest number of results during the 
last m queries, with k and m being configurable parameters. >RESS is a significant 
amelioration in comparison to the RBFS algorithm, however its attitude is rather 
quantitative than qualitative, since it does not select the neighbours to propagate the 
query q based on the similarity of the content of q with the previous queries. 

To overcome this quantitative behaviour of >RESS approach, ISM has been proposed 
(Kalogeraki et al., 2002). In ISMS, for each query, a peer propagates the query q to the 
peers that are more likely to reply to the query, based on the following two parameters;  
a profile mechanism and a relevance rank. The profile is built and maintained by each 
peer for each of its neighbouring peers. The information included in this profile consists 
of the t most recent queries with matches, and their matches as well as the number of 
matches reported by the neighbouring peer. The relevance rank (RR) function is 
computed by comparison of the query q to all the queries for which there is a match in 
each profile. Thus for a querying peer PQ , the RR function is calculated by the following 
formula: 

( , ) Qsim( , ) ( , )Q j i jRR Pi q q q S P qα= ×  

where Qsim is the similarity function used between queries and S(Pi,qj) is the number of 
the results returned by Pi for query qj. The ISMS allows for higher ranking of the 
neighbouring peers that return more results by adjustment of the α parameter. Obviously, 
the strong point of the ISMS approach is in environments that show increased degree of 
document locality. 
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2.3 MIR in P2P networks 

The field of combined CBMIR and P2P networks is definitely very young as the 
inaugural research paper dates back in Wang et al. (2002). Despite this, the limited 
number of works that exist are presented thereinafter. 

In this first attempt, the authors of Wang et al. (2002) present four P2P models for 
CBMIR. The four models include all centralised, decentralised and hybrid categories. 
Accordingly, the authors of Wang et al. (2002) propose a retrieval acceleration algorithm 
based on difference in pitch between two tones of music and a resulting filtering method 
relying on replication removal techniques. Additionally, the authors propose the 
architecture of a CBMIR P2P system that falls within the hybrid category of P2P 
systems. 

Another research based on a hybrid configuration is presented in Tzanetakis  
et al. (2004). Therein the authors propose a system that utilises both manually specified 
attributes (artist, album, title, etc.) and extracted features in order to describe the musical 
content of a piece. The underlying P2P network is a DHT based system. In such systems 
each node is assigned with a region in a virtual address space, while each shared 
document is associated with a value of this address space. Thus, locating a document 
requires only a key lookup of the node responsible for the key. 

The author in Yang (2003) proposed the utilisation of the feature selection and 
extraction process that is described in Yang (2002) for CBMIR in a decentralised 
unstructured P2P system. The research considers both a replicated database and a general 
P2P scenario, while special attention is given to the control of the workload produced at 
queried peers during query time. Each query is divided into two phases, the first of which 
includes only a subpart of the actual query vectors, in order to distinguish high 
probability response peers. Accordingly, a peer ranking occurs and the full query vectors 
are sent to all peers. Given that a peer has free CPU resources, it decides whether to 
process a query or not, based on the ranking that the specific query received. It is obvious 
that this approach produces large network traffic, since the full query vectors are sent to 
all peers, instead of the most promising. 

Finally, although oriented towards a differentiated discipline, the work of Shrestha 
and Kalker (2004) refers to audio retrieval in P2P networks. The principal target of this 
research is combating of unauthorised music file sharing in P2P networks. To achieve 
this, peers are divided into hierarchical groups according to their resources, while each 
task is assigned to several peers to overcome the dynamic peer join-leave. 

3 Similarity model based on DTW 

The efficient processing of similarity queries requires addressing of the following 
important issues: 
• the definition of a meaningful distance measure D(S,C) in order to express the 

similarity between two time series objects S and C, 

• the efficient representation of time series data 

• the application of an appropriate indexing scheme in order to quickly discard 
database objects that can not contribute to the final answer. 
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One of the most fundamental research issues in time series is the definition of meaningful 
measures towards time series similarity expression. Given two time series S and C, the 
problem is to define a distance measure D(S,C) which expresses the degree of similarity 
between S and C. One of the most widely used distance measures for time series is the 
Euclidean distance (L2 norm), which has the restriction that both series must be of the 
same length. Given two time series S and C of length N, the Euclidean distance is defined 
as follows: 

2
euclidean

1
( )

N

i i
i

D S C
=

= −∑  (1) 

where Si, Ci are the value of S and C for the ith time instance. The Euclidean distance has 
been widely used as a similarity measure in time series literature (Agrawal et al., 1993; 
Faloutsos et al., 1994; Chan and Fu, 1999; Kontaki and Papadopoulos, 2004), due to its 
simplicity. 

Several alternative distance functions have been proposed in order to allow 
translation, rotation and scaling invariance (Agrawal et al., 1995; Yi et al., 1998;  
Chan and Fu, 1999; Yi and Faloutsos, 2000). Consider for example, the time series 
depicted in Figure 1. Note that although all time series have the same shape, they will be 
considered nonsimilar if the Euclidean distance is used to express similarity. 

Figure 1 Time series alignment with Euclidean and DTW distances 

 

Taking into consideration the fact that the Euclidean distance does not always meet the 
application’s requirements, Dynamic Time Warping (DTW) has been proposed as a more 
robust similarity measure. DTW can express similarity between two time series even if 
they are out of phase in the time axis, or they do not have the same length. The DTW 
distance DDTW(S, C) between time series S and C is essentially a way to map S to C and 
viceversa. This process is also known as alignment of time series. If S is of length N and 
C is of length M, then the distance DDTW can be evaluated by using the following method: 

• an N × M matrix is constructed, where the cell in the ith row and the jth column 
contains the distance d(Si, Cj) = (Si – Cj)2 

• a warping path is defined which is a contiguous set of matrix cells that defines a 
mapping between elements of S and elements of C. 
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Although there are many warping paths that map S to C, what is required is to determine 
the most promising one, by trying to optimise the cumulative distance γ(i, j) in each cell 
of the warping path. Therefore, the following recurrence is defined: 

( , ) ( , ) min{ ( 1, 1), ( 1, ), ( , 1)}.i ji j d S C i j i j i jγ γ γ γ= + − − − −  (2) 

Figure 1 illustrates an example of two time series aligned by means of the Euclidean 
distance (Figure 1(a)) and by DTW distance (Figure 1(b)). It is evident that the two time 
series are similar but their phases are different. However, their similarity cannot be 
captured by the Euclidean distance. 

The most important disadvantage of the DTW method is that it does not satisfy the 
triangular inequality, which is a desirable property for constructing efficient indexing 
schemes and pruning the search space. Moreover, the calculation of DDTW(S,C) is 
significantly more CPU intensive than the calculation of DEuclidean(S,C). Therefore, an 
interesting direction for performance improvement is the definition of a lower bound, in 
order to take advantage of indexing schemes and avoid the computation of DTW when 
there is a guarantee that the two time series are not similar. In this work we utilise the 
lower bound proposed in Keogh and Ratanamahatana (2005) which is termed LB_Keogh. 
For a sequence S, LB_Keogh is based on the envelope of S, which consists of the upper, 
U, and lower, L, sequences. Given a parameter r (which is denoted as reach and confines 
the search space of DTW – see Keogh and Ratanamahatana (2004) for more details), the 
ith elements of U and L are defined as follows: 

max ( : )
min ( : ).

i i r i r

i i r i r

U S S
L S S

− +

− +

=
=

 

Essentially, for each i, the upper bound guarantees that Ui ≥ Si and the lower bound 
guarantees that Li ≤ Si. A schematic illustration of U and L is given in Figure 2. 

Figure 2 Illustration of U and L sequences 

 

Given U and L for a sequence S, the value of LB_Keogh between S and a sequence C is 
defined as follows: 

2

2

1

( ) , if 

_ ( , ) ( ) , if .
0, otherwise

i i i iN

i i i i
i

C U C U

LB Keogh S C C L C L
=

 − >


= − <



∑  (3) 
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Clearly, the computation of LB_Keogh is linear to the size of the sequences and is much 
faster than computing the actual DDWT. In Keogh and Ratanamahatana (2004), it is proven 
that LB_Keogh(S, C) ≤ DDTW(S, C); thus LB_Keogh(S, C) can be used for pruning without 
producing false negatives. The effectiveness of the bound depends on how close its value 
is to the actual DTW distance. An example of computation for LB_Keogh between a 
sequence S (represented by its U and L sequences) and a sequence C is illustrated in 
Figure 3. The parts of C that actually contribute to LB_Keogh are those that are either 
above U or below L, and are depicted in grey. Evidently, the larger the number of these 
parts is, the more effective is the pruning attained by LB_Keogh. 

Figure 3 Example of LB_Keogh computation 

 

4 Proposed framework 

4.1 Overview 

As already mentioned, P2P searching algorithms are based on the following scheme: the 
node that poses the query examines its contents and finds documents that satisfy the 
query. Then, it selects a subset of its peers and propagates the query to them. Each peer in 
its turn examines its contents to find qualifying documents, and then propagates the query 
to a subset of its peers. To avoid the involvement of a prohibitively large number of 
nodes, the propagation of queries is restrained by a MaxHop parameter, which determines 
the number of peers which a query should be forwarded to. 

Due to the selected similarity model, the information that is propagated between 
nodes comprises the U and L sequences of the query sequence (i.e., the envelope of the 
query). A node that receives these sequences computes the LB value between its 
documents and the envelope. When a LB value is smaller than the user specified 
similarity threshold, then the actual query sequence is propagated to this node2 and the 
actual DTW distance is computed between the query and the corresponding document. 

The queries we consider, constitute music phrases, that is, excerpts of the music 
documents that are a type of unit of music information.3 This holds especially in the 
context of query by humming, where users tend to hum a piece that is 
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• relatively short 

• well identified 

• separated within a song. 

The identification of phrases can be done following the methodology presented in  
Zhu and Shasha (2003). In particular, a transcription algorithm (Klapuri, 2004) can 
produce the pitch information of the acoustic sequence. Time intervals, corresponding to 
phrases in the pitch information, are detected in between the time instances that silence 
exists (the same time intervals produce the phrases in the corresponding acoustic 
sequence). In summary, we are interested in finding music documents that contain 
phrases similar to the query sequence. Similarity through DTW is suitable in this context, 
since the properties of DTW help in alleviating errors that humming produces. 

An important observation is that acoustic data tend to be very large. Although queries 
are music phrases (i.e., parts of the music sequences), the number of elements in a phrase 
of even a few seconds can be several hundred thousands. The length of the U and L 
sequences is equal to the length of the query sequence. This means that a straightforward 
approach, which directly propagates U and L sequences between nodes, will result in an 
extremely large traffic over the P2P network. Moreover, when the length of the 
envelope’s sequences is large, the computation of LB in each node can become rather 
costly. This violates the need of a P2P network to burden the participating nodes as little 
as possible. Notice that the aforementioned requirements are not present in other 
contexts, like the searching of similar text documents over a P2P network, where queries 
consist of up to some tenths of terms. 

We propose a two fold scheme which significantly reduces the traffic over the P2P 
network when querying music documents by content. The scheme works as follows: 

• It reduces the length of the envelope’s sequences by sampling them. However, plain 
sampling can be ineffective, since it leads to underestimation of LB. For this reason, 
we describe a novel sampling method to reduce the length of the sequences without 
significantly affecting the computation of LB. Additionally we are interested in not 
introducing false negatives due to the use of sampling. 

• It uses (whenever possible) a compact representation of the sampled sequences of  
the envelope. The representation comprises a kind of compression for the sequences, 
but it does not burden the nodes of the P2P network with the cost of decompression. 
If the latter is not undesirable, further compression can be achieved through the use 
of existing methods. We do not explore this direction, since it does not affect the 
relative performance of the proposed scheme against the plain one that directly 
propagates the envelope (i.e., the performance of both methods will be equally 
improved). 

In the following, we describe the aforementioned issues in more detail. 

4.2 Sampling and representation methods 

Let the considered phrase length be equal to N. The length of each query Q, and therefore 
of its upper (U) and lower (L) sequences, will also be equal to N. We would like to 
sample U and L, so as to obtain two sequences U′ and L′, each of length M « N. Initially, 
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we assume that uniform sampling is performed. In this case, we simply select each time, 
the (i × N/M)-th element of U and L, where 1 ≤ i ≤ M. When we compute the LB_Keogh 
between the query sequence Q and a data sequence, we consider each phrase C of length 
N in Q. Each phrase has to be sampled in the same way as U and L. This leads to a 
sampled phrase C. Therefore, we get a lower bound measure LB', given as: 

2

2

1

( ) , if 

( ) , if .
0, otherwise

i i i iM

i i i i
i

C U C U

LB C L C L
=

 ′ ′ ′ ′− >


′ ′ ′ ′ ′= − <



∑  

In the aforementioned equation, the third case (i.e., when i i iL C U′ ′≤ ≤ ) does not 
contribute in the computation of LB'. The problem of uniform sampling is that, as it 
selects elements without following any particular criterion, it tends to select many 
elements from U and L that result in this third case. Therefore, LB' may become a 
significantly bad underestimation of LB that would have been computed if sampling was 
not used. The underestimation of the lower bound value will result in an increase in false 
alarms, which will incur high traffic. 

To overcome this problem, we propose an alternative sampling method. We sample U 
and L separately. Initially, we store the elements of U in ascending order. In U′ we select 
the first M elements of this ordering. Respectively, we sort L in descending order and we 
select the first M elements in L′. The intuition is that the selection of the smallest M 
values of U, helps in increasing the number of occurrences of the first case (i.e., when 

i iC U′ ′> ); since the smaller the value of U′i is, the more expected it is to have a C′i larger 
than it. Putting it less formally, we want to focus the sampling towards the ‘grey’ areas 
(see Figure 3 in Section 3). An analogous reasoning holds for the sampling of L′. It is 
easy to see the following: 

Lemma 1: The sampling of U and L does not produce any false negatives. 

Proof: While computing LB′, due to sampling, the first and second cases of equation (4) 
occur fewer times than while computing LB (i.e., without sampling). Therefore, LB′ ≤ LB. 
Since LB ≤ D (where D is the actual distance, computed with DTW), we have that 
LB′ ≤ D. Thus, no false negatives are produced.  

The separate sampling of U and L presents the requirement of having to store the 
positions from which elements are being selected in U′ and L′. If the positions are stored 
explicitly, then this doubles the amount of information kept (2 M numbers for storing 
U′ and L′ and additional 2 M numbers for storing the positions of selected elements). 
Since this information is propagated during querying, traffic is increased. For this reason 
we propose an alternative representation. To represent U′, we use a bitmap of length N 
(the phrase length). Each bit corresponds to an element in U. If an element is selected in 
the sample U′, then its bit is set to 1, otherwise it is set to 0. Therefore, the combination 
of the bitmap and the M values that are selected in U′ are used to represent U′. The same 
is applied for V. This representation is efficient: the space required for U′ is M + N/8 
bytes.4 The plain representation requires 5 M bytes (since it requires only one integer, 
i.e., 4 bytes, to store the position of each selected element). Thus, the proposed method is 
advantageous when N < 32 M, i.e., for samples larger than about 3% (our experiments 
show that samples with size 10% are the best choice). 
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5 Similarity searching algorithms 

In this section we present how existing algorithms for searching in P2P networks can be 
used within the proposed framework. The existing algorithms have been mainly used for 
searching text documents that are similar to a query text. Therefore, their straightforward 
implementation for searching similar music data does consider the significantly larger 
length of such data, and thus they are bound to incur excessive traffic. For this reason, we 
examine their incorporation in the proposed framework. More specifically, we focus on 
BFSS, >RESS, and ISMS. 

5.1 The BFSS algorithm 

As previously explained, the simplest similarity searching algorithm is on the basis  
of breadth first search over the nodes of the P2P network. The adapted algorithm,  
which uses the proposed sampling and representation methods, is denoted as BFSS 
(Breadth-First-Search with sampling). The pseudocode for BFSS is given in Figure 4. 
Each time, the current node n is considered. A TTL value denotes how many valid hops 
are remaining for n, whereas Ts is the user defined similarity threshold. It is assumed that 
sequences U′ and L′ carry also the associated bitmaps. 

Figure 4 The BFSS algorithm 

 

Evidently, the movement of the actual query sequence, from the node that commenced 
the query to the currently visited node, increases the traffic (not being sampled, the query 
sequence has a rather large length). For this reason, it is important not to have a large 
number of false alarms. 

The algorithm that does not use sampling (denoted as BFS) may produce less false 
alarms. However, between each pair of peers it has to propagate U and L sequences, with 
length equal to the one of the query sequence. Therefore, it is clear that there is a tradeoff 
between the number of additional false alarms produced due to sampling and the gains in 
traffic from propagating sampled (i.e., smaller) envelopes. This tradeoff is examined 
through the experimental results in the following section. 
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5.2 The >RESS algorithm 

The >RES algorithm tries to reduce the number of paths that are pursued during 
searching. Instead of selecting, at random, a subset of the peers of the currently visited 
node, it maintains a profile for each such peer and bases its decision on this profile.  
In particular, each node maintains for each of its peers, the number of positive answers 
that it has replied. Then, it selects the k peers that provided the most answers during the 
previous m queries. Both k and m are user specified. 

It is clear that >RESS algorithm can be easily adapted in the proposed framework. 
The query sequence will be sampled and represented according to the proposed method. 
This does not affect the profile that is maintained by >RESS. The resulting method is 
denoted as >RESS (>RESS with sampling). The pseudocode for >RESS is given in 
Figure 5. 

Figure 5 The >RESS algorithm 

 

Since only a subset of peers is actually visited, >RESS tries to reduce traffic without 
missing a large number of answers. However, compared to BFSS, >RESS is expected to 
produce fewer answers. This tradeoff is examined in the next section, which contains the 
experimental results. 

5.3 The ISMS algorithm 

The ISMS algorithm shares the same objective with >RESS, i.e., it tries to reduce the 
number of examined paths. However, the profile maintained for each peer is different. 
ISMS does not base its decision only on the number of answers to previous queries, but it 
also examines the similarity between the previously answered queries and the current 
one. Therefore, for each peer, a node maintains the t most recent queries that were 
answered by the peer. When a new query q arrives in the node, then it computes the 
similarity Qsim between q and all queries that are maintained in the profile of each node. 
A relative ranking measure is given to each peer Pi, using the following formula: 
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( , ) Qsim( , ) ( , )Q i j i jRR P q q q S P qα= ×  

where S(Pi,qj) is the number of the results returned by Pi for query qj. Thus, ISMS  
ranks higher the neighbouring peers that return more results by adjustment of the α 
parameter. To make the comparison more clear, we set α = 1, therefore we focused only 
on the criterion of similarity. We also have to notice that ISMS may become biased 
towards the nodes that have answered somewhat similar queries in the past and may not 
give the chance to new nodes to be explored. For this reason, the following heuristic is 
used in Kalogeraki et al. (2002): besides the peers selected with the aforementioned 
criterion, ISMS also selects, at random, an additional very small subset of peers (e.g., one 
node). In total, k peers are selected, where k is user defined. The length of each profile 
(the number of queries stored in it) is also user defined. 

In order to adapt ISMS to the proposed framework, we have to consider how to 
maintain the previously answered queries. In the proposed framework, query sequences 
are represented by their samples. Therefore, we measure the similarity between the 
current query’s sample and the samples of previously answered queries. For this reason 
we maintain the samples of the answered queries in the profiles of the peers. To save  
time during the computation of the ranking, instead of measuring the actual similarity 
(through the DTW measure), we compute the LB_Keogh value. The resulting algorithm is 
denoted as ISMS (ISMS with sampling). The pseudocode for ISMS is given in Figure 6. 

Figure 6 The ISMS algorithm 

 

ISMS is expected to have slightly larger traffic than >RESS, since it propagates the 
sample of an answered query to all nodes involved in the search (in order to update their 
profiles). However, by testing the content of the queries, it tries to reduce the number of 
missed answers. 
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6 Experimental results 

The performance of the considered similarity searching algorithms was compared 
through simulation. The P2P network had 100 nodes and the average number of 
neighbours for each node was a random variable with average value equal to 7 (this kind 
of topology is called logarithmic). We used 500 real acoustic sequences, which 
correspond to various pop songs. Each song was sampled at 11 KHz and the average 
duration was about 4 minutes. To represent the fact that music songs (especially popular 
ones) are shared among several nodes, we replicated each sequence. The number of 
replications for each sequence was randomly variable with average value equal to ten. 

The experimental comparison has two objectives:  
1 To determine the efficiency of the proposed framework. For this reason, we compare 

the proposed sampling and representation methods against the approach that does not 
use sampling and against a simplistic approach that uses uniform sampling. For 
clarity of comparison, we use the basic similarity searching method, i.e., BFSS. 

2 To compare the examined similarity searching algorithms (BFSS, >RESS, ISMS) 
within the proposed framework. The evaluation metric in all cases is the average 
traffic (measured in MB) that each query incurs. The parameters we examine are: the 
sample size, query size (length of query sequence), query range (the user-defined 
threshold for similarity), and TTL value (max allowed number of hops). For the 
comparison of the examined algorithms within the proposed framework, we 
additionally examine the number of found matches (denoted as relative recall). 

We start by focusing on objective 1 and compare BFSS against uniform sampling  
(this method is denoted as BFSS-UNI). The results are depicted in Figure 7. Figure 7(a) 
illustrates the relative traffic between BFSS and BFSS-UNI (i.e., the traffic of the latter is 
normalised w.r.t. the traffic of the former) against the query range. As shown, BFSS-UNI 
incurs about twice the traffic that BFSS does. As already explained, this is due to the fact 
that uniform sampling produces a bad underestimation of the lower bound value. This can 
be further understood when examining the discrepancy, denoted as error, between the 
bounds produced by BFSS and BFSS-UNI, and the actual bound produced by LB_Keogh. 
The relative error between BFSS and BFSS-UNI (i.e., the latter is normalised w.r.t. the 
former) is given in Figure 7(b), against the query size. The error of BFSS-UNI ranges 
between 1.3 times the error of BFSS (for smaller queries) and 2.8 times (for medium 
sized queries). Therefore, the sampling method that is used in the proposed framework, 
performs better than uniform sampling. 

LB_Keigh value 

We now move on to compare BFSS with BFS (i.e., the method that does not use any 
sampling at all). For BFSS we examined several sample sizes. The results are depicted in 
Figure 8, whereas BFS has a constant value, as it does not use sampling. In Figure 8(a), 
TTL was set to 4, query size was 1,00,000, and the query range was set to 0 (i.e., exact 
match). As shown, for very small samples (with 1,000 elements), BFS performs better. 
This is expected, since the use of a very small sample affects BFSS by resulting in a large 
number of false alarms (due to bad underestimation of lower bound values), which 
increases traffic. However, by increasing the sample size, BFSS becomes better and 
clearly outperforms BFS. It is interesting to notice that the best performance is for sample 
size equal to 10,000 (i.e., 10% of the original query size). 
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Figure 7 BFSS vs. BFSS-UNI (a) relative traffic and (b) relative error w.r.t. actual  

 

Figure 8  BFSS vs. BFS (a) traffic (in MB) when TTL = 4 and (b) traffic (in MB) when TTL = 5 

 

Finally, for large sample sizes, both methods converge to the same traffic. Analogous 
results are obtained for the case where TTL is set to 5. It also worth noticing that the 
traffic of BFSS is significantly more increased than the traffic of BFS, when compared in 
the case when TTL was 4. Therefore, the sampling that is used in the proposed 
framework helps in significantly reducing the traffic over the P2P network. 

Next, we compared BFSS against BFS for varying query size and query range, in 
order to test the sensitivity of the proposed framework. Figure 9(a) illustrates the  
results for the former case. The size of sample for BFSS was set each time to 10% of 
query size, TTL was set to 4 and query range was set to 0. As shown, BFSS clearly 
outperforms BFS in all cases, except for rather small queries. Again, for very very small 
queries, the resulting sample is very small and many false alarms are produced. 
Moreover, Figure 9(b) depicts the results for the latter case (varying query range).  
Query size was set to 1,00,000, sample size was 25%, and TTL was set to 5. BFSS 
clearly compares favourably with BFS. 
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Figure 9 BFSS vs. BFS w.r.t. (a) query size and (b) query range 

 

Finally, we examined objective 2, i.e., the comparison of similarity searching algorithms 
within the proposed framework.. We measured both the traffic and the recall achieved by 
BFSS, >RESS, and ISMS with respect to query size. TTL was set to 4 and query range 
was set to zero. The results on relative traffic (normalised by the traffic of BFSS) are 
presented in Figure 10(a). 

Figure 10 Comparison between similarity searching algorithms w.r.t. query size (a) relative traffic 
and (b) relative call 

 

As shown, both >RESS and ISMS require less traffic than BFSS. This is as expected, 
since they propagate queries only to a selected subset of peers. ISMS presents a little 
smaller traffic than >RESS, because it attains smaller recall (since Figure 10(b)).  
The results on relative recall (normalised by the recall of BFSS) are presented in  
Figure 10(b). As expected, BFSS has the highest recall among all algorithms, since it 
visits all the peers of each node. >RESS comes second best, whereas ISMS has slightly 
worse recall. This is because we set the same maximum number of visited peers for 
>RESS and ISMS. By increasing this number for ISMS, the recall of both algorithms will 
be about the same, but the traffic of ISMS will also be increased in this case. We have to 
notice, however, that the recall of all algorithms is significantly high, since it is higher 
than 90%, which suffices for the application of retrieving similar music pieces. 
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7 Conclusions 

We have presented a novel framework for efficient retrieval of similar audio data.  
The proposed framework takes advantage of the absence of overheads in unstructured 
P2P networks and minimises the required traffic for all operations with the use of an 
intelligent sampling scheme. Additionally, the framework has such a design that no false 
negative results occur. 

Within the proposed framework we have adapted existing similarity searching 
algorithms, which have been previously proposed for finding similar text objects in P2P 
networks. Since their straightforward implementation is bound to result to significant 
traffic, their adaptation to the proposed framework is necessary. For this reason, we 
showed how to modify them accordingly. 

Detailed comparative evaluation illustrated the performance gains due to the proposed 
framework. We also analysed the relative performance of the various similarity searching 
algorithms in the framework. 

Future work includes the examination of other types of P2P networks  
(e.g., structured) and of additional similarity metrics. 
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Notes 
1We must notice that, with the examined framework, we refer to applications that support content 
sharing for legal subscribers (e.g., iTunes, iMusic). Moreover, it is interesting to notice that the 
proposed approach can be adopted as a means of identification of illegal sharing, by finding sites 
that share unregistered content. 

2The query can be directly propagated from the node that initially posed the query, since the 
currently visited node always knows the address of this initial node. 

3A minimum length portion of the musical piece that is meaningfully independent and complete 
within a piece of music. 

4Each element in an acoustic sequence is in the range 0–255, thus it requires one byte. 




