

 210 Int. J. Business Intelligence and Data Mining, Vol. 1, No. 2, 2005

 Copyright © 2005 Inderscience Enterprises Ltd.

Evaluation of similarity searching methods for music
data in P2P networks

Ioannis Karydis, Alexandros Nanopoulos,
Apostolos N. Papadopoulos and
Yannis Manolopoulos*
Data Engineering Lab., Department of Informatics,
Aristotle University,
54124 Thessaloniki, Greece
E-mail: karydis@delab.csd.auth.gr E-mail: alex@delab.csd.auth.gr
E-mail: apostol@delab.csd.auth.gr
E-mail: manolopo@delab.csd.auth.gr
*Corresponding author

Abstract: In this paper, we focus on similarity searching for similar acoustic
data over unstructured decentralised P2P networks. Similarity is measured in
terms of time warping, which can cope with distortion that is naturally present
when ‘query by content’ is performed. We propose a novel framework, which
takes advantage of the absence of overhead in unstructured P2P networks and
minimises the required traffic for all operations with the use of an intelligent
sampling scheme. Within the proposed framework we adapt several existing
algorithms for searching in P2P networks. Detailed experimental results show
the efficiency of the proposed framework and the comparison between
similarity searching algorithms.

Keywords: music data; similarity searching; peer to peer networks; multimedia
databases.

Reference to this paper should be made as follows: Karydis, I.,
Nanopoulos, A., Papadopoulos, A.N. and Manolopoulos, Y. (2005) ‘Evaluation
of similarity searching methods for music data in P2P networks’,
Int. J. Business Intelligence and Data Mining, Vol. 1, No. 2, pp.210–228.

Biographical notes: Ioannis Karydis was born in Athens, Greece in 1979.
He received his BE in Engineering Science & Technology from Brunel
University, UK in 2000 and an MSc in Advanced Methods in Computer
Science from Queen Mary University, UK in 2001. Currently he is researching
for a PhD in Music Databases. His research interests include music databases,
music information retrieval (indexing & searching) and music object
representation.

Alexandros Nanopoulos was born in Craiova, Romania, in 1974. He graduated
from the Department of Informatics, Aristotle University of Thessaloniki,
Greece on November 1996 and obtained a PhD from the same institute, on
February 2003. The subject of his dissertation was “Techniques for Non
Relational Data Mining”. He is co-author of more than 30 papers in
international journals and conferences, also co-author of the monographs
Advanced Signature Techniques for Multimedia and Web Applications and
R-trees: Theory and Applications. His research interests include spatial and
web mining, integration of data mining with DBMSs and spatial database
indexing.

 Evaluation of similarity searching methods for music data 211

Apostolos N. Papadopoulos was born in Eleftheroupolis, Greece in 1971.
He received a 5-year Diploma Degree in Computer Engineering and
Informatics from the University of Patras and a PhD Degree from Aristotle
University of Thessaloniki in 1994 and 2000 respectively. From March 1998 to
August 1998 he was a Visitor Researcher at INRIA research center in Paris,
performing research in benchmarking issues for spatial databases. Currently, he
is Lecturer in the Department of Informatics of Aristotle University of
Thessaloniki. His research interests include spatiotemporal and multimedia
databases, data streams, parallel and distributed databases, information
retrieval, and data mining.

Yannis Manolopoulos received his BE in Electrical Engineering in 1981 and
his PhD in Computer Engineering from the Aristotle University of Thessaloniki
in 1986. He is Professor at the Department of Informatics of the latter
university. He has been with the University of Toronto, the University of
Maryland at College Park and the University of Cyprus. He has co-authored
over 160 refereed publications and 4 monographs published by Kluwer and
Springer. Currently, he serves as General Chair of the 10th ADBIS Conference
and the 8th ICEIS Conference in 2006. His research interests include
Databases, Data Mining, Web and Geographical Information Systems.

1 Introduction

The World Wide Web (WWW) is being used for commercial, entertainment or
educational purposes, and has become the primary means for information dissemination.
One popular type of data that is being disseminated over WWW is digitised music.
Recently, the new opportunities that emerge from this activity have been recognised and
have led to the development of systems like iTune (www.apple.com/itunes), iMusic
(www.imusic.com), and Napster (www.napster.com). Although abundantly used,
traditional metadata (title, composer, performer, genre, date, etc.) of a music object give
rather minimal information about the actual content of the music object itself. On the
other hand, research efforts in the field of Music Information Retrieval (MIR) have
developed efficient methods for searching music data collections by content.
For instance, queries based on humming (using a microphone) or on a small piece of
musical file, are a more natural approach to MIR. This type of query lies within the
Content Based MIR (CBMIR). In CBMIR, an actual music piece is required in order to
compare its content with the content of the music pieces already available in the database.

As with regards to the infrastructure for exchanging music data, peer to peer (P2P)
networks over the WWW have gained significant popularity during the previous years.
Within the advantageous qualities of the P2P networks lies the increased size of the
overall database offered by a P2P network, its fault tolerance support to peer failure by
other peers and the workload distribution over a network of available CPUs, since
CBMIR is computationally highly intensive. Nonetheless, the very advantages of the P2P
network are the same parameters that make P2P information retrieval much more
complex than the traditional search methods. That is, the lack of a central repository for
the documents to be retrieved, the large number of documents available and the dynamic
character of the network, introduce an increased degree of difficulty in the retrieval
process.

 212 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

P2P networks can be classified based on the control over data location and network
topology in unstructured, loosely structured and highly structured (Li and Wu, 2004).
The absence of structure allows for resilience in dynamic environments (peer join/leave)
while no guarantees can be given on the retrieval of existing documents. Moving towards
increased structure, both the probability of retrieving existing documents and the
overhead of handling peer join-leave augment. Additionally, P2P networks can also be
classified according to the number of central directories of document locations in
centralised, hybrid and decentralised. Centralised P2P networks are subject to the same
drawbacks for which the traditional server-client model was originally abandoned
(network failures due to central peer failure, impaired scalability, joining/leaving of
peers not easily handled and possible undesirable dominion of controllers). For these
reasons, we focus on decentralised unstructured P2P networks, which overcome the
aforementioned drawbacks. The absence of structure was selected for the looseness of
control over the data location; that is each peer can share its own documents without
hosting any documents of other peers due to locality restraints.1

Searching for music data by content requires the development of effective and
efficient similarity searching methods for this kind of data, which will find music files
that are similar to a query music datum. Moreover, the particularities of decentralised
unstructured P2P networks have to be taken into account in order to lead to feasible
solutions. For instance, the traffic that similarity queries pose over the network is crucial.
Additionally, the amount of processing required in each peer is an important factor.
For these reasons, what is needed is

• a model that will effectively capture the similarity between music data and will be
also fast to compute

• efficient similarity searching algorithms, which will minimise the traffic.

In this paper, as measure of similarity between two musical pieces, we utilise the
Dynamic Time Warping (DTW). The main flexibility of DTW is its capability to
withstand distortion of the comparing series in the time axis, a property that is suitable for
effective searching for similar acoustic data (e.g., wav, mp3), which can be represented as
time series (that record signal amplitude over time). Since different performances of the
same musical piece may include locally differentiated tempo, DTW seems a natural
choice for this problem (Large and Palmer, 2002). For this reason, it has been recently
proposed for the sake of MIR in centralised environments (Zhu and Shasha, 2003;
Mazzoni and Danneberg, 2001; Jang et al., 2001; Adams et al., 2004). Moreover, for the
fast computation of the DTW measure, we consider lower bounding techniques that have
been proposed in the research field of time series databases. Based on DTW, we
develop a framework for developing similarity searching algorithms, which is based on
appropriate sampling and representation methods for music data, and takes into
account the requirements of P2P networks. In this framework we examine some recently
proposed algorithms for searching similar text documents in P2P networks.
The considered algorithms are adapted in order to fit the requirements of the examined
paradigm.

 Evaluation of similarity searching methods for music data 213

The technical contributions of this paper are summarised as follows:

• The development of a novel framework for efficient retrieval of audio data similar
to an audio query in a decentralised, unstructured P2P network. The proposed
framework significantly reduces the required traffic for all operations with the use of
an intelligent sampling scheme on the lower and upper bounds used. The proposed
algorithm has such a design that no false negative results occur.

• The examination of algorithms that use selective criteria in order to efficiently search
over the P2P network.

• The detailed experimental results which show the efficiency of the proposed
framework and the comparative performance of the different searching algorithms.

The rest of the paper is organised as follows. Section 2 describes related work.
In Section 3, we describe the similarity model that is based on DTW. Section 4
provides a complete account of the framework proposed in this paper, whereas Section 5
presents the similarity searching algorithms that are used in this framework.
Subsequently, Section 6 presents and discusses the experimentation and results obtained.
Finally, the paper is concluded in Section 7.

2 Related work

2.1 Summary of existing P2P systems

P2P networks can be classified based on the control over data location and network
topology as unstructured, loosely structured and highly structured (Li and Wu, 2004).
Unstructured P2P networks follow no rule in where data is stored while the network
topology is arbitrary (e.g., Gnutella). Loosely structured P2P networks have both data
location and network architecture, nonprecisely determined (e.g., Freenet). Finally, in
highly structured networks, data storage and network topology are explicitly defined
(e.g., Chord). What is more, P2P networks can also be classified according to the
number of central directories of document locations in centralised, hybrid and
decentralised. Thus, centralised networks maintain a central directory in a single location
(e.g., Napster), hybrid networks maintain more than one directories in superpeers
(e.g., Kazaa) while for the decentralised (e.g., Chord) no central directory is kept. P2P
networks can also be classified into hierarchical and nonhierarchical, based on whether
their overlay structure is a hierarchy or not. It is common for decentralised systems to
have no hierarchy, while hybrid and most centralised systems ordinarily incorporate some
degree of hierarchy. Hierarchical systems provide increased scalability, ease in exploiting
peer heterogeneity and high routing efficiency. On the other hand, systems with no
hierarchy offer loadbalance and increased resilience.

In this work we define our network to be a decentralised, unstructured,
nonhierarchical network. Additionally, we assume that the system consists of N peers,
each peer having approximately log N neighbouring peers. The diameter of the system is
the maximum number of peers required as intermediate steps in order to reach a peer Pi
from a peer Pj. We define MaxHop to be the number of peers a query should be
forwarded to. The MaxHop of a query is initially set to a value and each time the query is
forwarded to a peer, MaxHop is decremented until reaching zero, from which point on

 214 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

the query is not propagated further. The MaxHop parameter is equivalently called Time
To Leave (TTL).

2.2 Searching methods in unstructured P2P networks

In this section, we summarise a number of different searching methods for decentralised
unstructured P2P networks. Initially, we examine the Breadth First Search (BFS)
algorithm. In the BFS, a query peer Q propagates the query q to all its neighbour peers.
Each peer P receiving the q initially searches its local repository for any documents
matching q and then passes on q to all its neighbours. In case a P has a match in its local
repository then a QueryMatch message is created, which contains information about the
match. The QueryMatch messages are then transmitted back, using reversely the path q
travelled, to Q. Finally, since more than one QueryMatch message has been received by
Q, it can select the peer with best connectivity attributes for direct downloading of the
match. It is obvious that the BFS sacrifices performance and network traffic for
simplicity and high hit rates. In order to reduce network traffic, the TTL parameter is
used (see Section 2). In a modified version of this algorithm, the Random BFS (RBFS)
(Kalogeraki et al., 2002), the query peer Q propagates the query q not to all, but a fraction
of its neighbour peers.

In an attempt to rectify the inability of the RBFS to select a path of the network
leading to large network segments, the >RES algorithm was developed (Yang and
Garcial-Molina, 2002). In this approach, the query peer Q propagates the query q to a
subset of its neighbour peers based on an aggregated statistic. That is, Q propagates the q
to k neighbouring peers, all of which returned the highest number of results during the
last m queries, with k and m being configurable parameters. >RESS is a significant
amelioration in comparison to the RBFS algorithm, however its attitude is rather
quantitative than qualitative, since it does not select the neighbours to propagate the
query q based on the similarity of the content of q with the previous queries.

To overcome this quantitative behaviour of >RESS approach, ISM has been proposed
(Kalogeraki et al., 2002). In ISMS, for each query, a peer propagates the query q to the
peers that are more likely to reply to the query, based on the following two parameters;
a profile mechanism and a relevance rank. The profile is built and maintained by each
peer for each of its neighbouring peers. The information included in this profile consists
of the t most recent queries with matches, and their matches as well as the number of
matches reported by the neighbouring peer. The relevance rank (RR) function is
computed by comparison of the query q to all the queries for which there is a match in
each profile. Thus for a querying peer PQ , the RR function is calculated by the following
formula:

(,) Qsim(,) (,)Q j i jRR Pi q q q S P qα= ×

where Qsim is the similarity function used between queries and S(Pi,qj) is the number of
the results returned by Pi for query qj. The ISMS allows for higher ranking of the
neighbouring peers that return more results by adjustment of the α parameter. Obviously,
the strong point of the ISMS approach is in environments that show increased degree of
document locality.

 Evaluation of similarity searching methods for music data 215

2.3 MIR in P2P networks

The field of combined CBMIR and P2P networks is definitely very young as the
inaugural research paper dates back in Wang et al. (2002). Despite this, the limited
number of works that exist are presented thereinafter.

In this first attempt, the authors of Wang et al. (2002) present four P2P models for
CBMIR. The four models include all centralised, decentralised and hybrid categories.
Accordingly, the authors of Wang et al. (2002) propose a retrieval acceleration algorithm
based on difference in pitch between two tones of music and a resulting filtering method
relying on replication removal techniques. Additionally, the authors propose the
architecture of a CBMIR P2P system that falls within the hybrid category of P2P
systems.

Another research based on a hybrid configuration is presented in Tzanetakis
et al. (2004). Therein the authors propose a system that utilises both manually specified
attributes (artist, album, title, etc.) and extracted features in order to describe the musical
content of a piece. The underlying P2P network is a DHT based system. In such systems
each node is assigned with a region in a virtual address space, while each shared
document is associated with a value of this address space. Thus, locating a document
requires only a key lookup of the node responsible for the key.

The author in Yang (2003) proposed the utilisation of the feature selection and
extraction process that is described in Yang (2002) for CBMIR in a decentralised
unstructured P2P system. The research considers both a replicated database and a general
P2P scenario, while special attention is given to the control of the workload produced at
queried peers during query time. Each query is divided into two phases, the first of which
includes only a subpart of the actual query vectors, in order to distinguish high
probability response peers. Accordingly, a peer ranking occurs and the full query vectors
are sent to all peers. Given that a peer has free CPU resources, it decides whether to
process a query or not, based on the ranking that the specific query received. It is obvious
that this approach produces large network traffic, since the full query vectors are sent to
all peers, instead of the most promising.

Finally, although oriented towards a differentiated discipline, the work of Shrestha
and Kalker (2004) refers to audio retrieval in P2P networks. The principal target of this
research is combating of unauthorised music file sharing in P2P networks. To achieve
this, peers are divided into hierarchical groups according to their resources, while each
task is assigned to several peers to overcome the dynamic peer join-leave.

3 Similarity model based on DTW

The efficient processing of similarity queries requires addressing of the following
important issues:
• the definition of a meaningful distance measure D(S,C) in order to express the

similarity between two time series objects S and C,

• the efficient representation of time series data

• the application of an appropriate indexing scheme in order to quickly discard
database objects that can not contribute to the final answer.

 216 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

One of the most fundamental research issues in time series is the definition of meaningful
measures towards time series similarity expression. Given two time series S and C, the
problem is to define a distance measure D(S,C) which expresses the degree of similarity
between S and C. One of the most widely used distance measures for time series is the
Euclidean distance (L2 norm), which has the restriction that both series must be of the
same length. Given two time series S and C of length N, the Euclidean distance is defined
as follows:

2
euclidean

1
()

N

i i
i

D S C
=

= −∑ (1)

where Si, Ci are the value of S and C for the ith time instance. The Euclidean distance has
been widely used as a similarity measure in time series literature (Agrawal et al., 1993;
Faloutsos et al., 1994; Chan and Fu, 1999; Kontaki and Papadopoulos, 2004), due to its
simplicity.

Several alternative distance functions have been proposed in order to allow
translation, rotation and scaling invariance (Agrawal et al., 1995; Yi et al., 1998;
Chan and Fu, 1999; Yi and Faloutsos, 2000). Consider for example, the time series
depicted in Figure 1. Note that although all time series have the same shape, they will be
considered nonsimilar if the Euclidean distance is used to express similarity.

Figure 1 Time series alignment with Euclidean and DTW distances

Taking into consideration the fact that the Euclidean distance does not always meet the
application’s requirements, Dynamic Time Warping (DTW) has been proposed as a more
robust similarity measure. DTW can express similarity between two time series even if
they are out of phase in the time axis, or they do not have the same length. The DTW
distance DDTW(S, C) between time series S and C is essentially a way to map S to C and
viceversa. This process is also known as alignment of time series. If S is of length N and
C is of length M, then the distance DDTW can be evaluated by using the following method:

• an N × M matrix is constructed, where the cell in the ith row and the jth column
contains the distance d(Si, Cj) = (Si – Cj)2

• a warping path is defined which is a contiguous set of matrix cells that defines a
mapping between elements of S and elements of C.

 Evaluation of similarity searching methods for music data 217

Although there are many warping paths that map S to C, what is required is to determine
the most promising one, by trying to optimise the cumulative distance γ(i, j) in each cell
of the warping path. Therefore, the following recurrence is defined:

(,) (,) min{ (1, 1), (1,), (, 1)}.i ji j d S C i j i j i jγ γ γ γ= + − − − − (2)

Figure 1 illustrates an example of two time series aligned by means of the Euclidean
distance (Figure 1(a)) and by DTW distance (Figure 1(b)). It is evident that the two time
series are similar but their phases are different. However, their similarity cannot be
captured by the Euclidean distance.

The most important disadvantage of the DTW method is that it does not satisfy the
triangular inequality, which is a desirable property for constructing efficient indexing
schemes and pruning the search space. Moreover, the calculation of DDTW(S,C) is
significantly more CPU intensive than the calculation of DEuclidean(S,C). Therefore, an
interesting direction for performance improvement is the definition of a lower bound, in
order to take advantage of indexing schemes and avoid the computation of DTW when
there is a guarantee that the two time series are not similar. In this work we utilise the
lower bound proposed in Keogh and Ratanamahatana (2005) which is termed LB_Keogh.
For a sequence S, LB_Keogh is based on the envelope of S, which consists of the upper,
U, and lower, L, sequences. Given a parameter r (which is denoted as reach and confines
the search space of DTW – see Keogh and Ratanamahatana (2004) for more details), the
ith elements of U and L are defined as follows:

max (:)
min (:).

i i r i r

i i r i r

U S S
L S S

− +

− +

=
=

Essentially, for each i, the upper bound guarantees that Ui ≥ Si and the lower bound
guarantees that Li ≤ Si. A schematic illustration of U and L is given in Figure 2.

Figure 2 Illustration of U and L sequences

Given U and L for a sequence S, the value of LB_Keogh between S and a sequence C is
defined as follows:

2

2

1

() , if

_ (,) () , if .
0, otherwise

i i i iN

i i i i
i

C U C U

LB Keogh S C C L C L
=

 − >

= − <

∑ (3)

 218 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

Clearly, the computation of LB_Keogh is linear to the size of the sequences and is much
faster than computing the actual DDWT. In Keogh and Ratanamahatana (2004), it is proven
that LB_Keogh(S, C) ≤ DDTW(S, C); thus LB_Keogh(S, C) can be used for pruning without
producing false negatives. The effectiveness of the bound depends on how close its value
is to the actual DTW distance. An example of computation for LB_Keogh between a
sequence S (represented by its U and L sequences) and a sequence C is illustrated in
Figure 3. The parts of C that actually contribute to LB_Keogh are those that are either
above U or below L, and are depicted in grey. Evidently, the larger the number of these
parts is, the more effective is the pruning attained by LB_Keogh.

Figure 3 Example of LB_Keogh computation

4 Proposed framework

4.1 Overview

As already mentioned, P2P searching algorithms are based on the following scheme: the
node that poses the query examines its contents and finds documents that satisfy the
query. Then, it selects a subset of its peers and propagates the query to them. Each peer in
its turn examines its contents to find qualifying documents, and then propagates the query
to a subset of its peers. To avoid the involvement of a prohibitively large number of
nodes, the propagation of queries is restrained by a MaxHop parameter, which determines
the number of peers which a query should be forwarded to.

Due to the selected similarity model, the information that is propagated between
nodes comprises the U and L sequences of the query sequence (i.e., the envelope of the
query). A node that receives these sequences computes the LB value between its
documents and the envelope. When a LB value is smaller than the user specified
similarity threshold, then the actual query sequence is propagated to this node2 and the
actual DTW distance is computed between the query and the corresponding document.

The queries we consider, constitute music phrases, that is, excerpts of the music
documents that are a type of unit of music information.3 This holds especially in the
context of query by humming, where users tend to hum a piece that is

 Evaluation of similarity searching methods for music data 219

• relatively short

• well identified

• separated within a song.

The identification of phrases can be done following the methodology presented in
Zhu and Shasha (2003). In particular, a transcription algorithm (Klapuri, 2004) can
produce the pitch information of the acoustic sequence. Time intervals, corresponding to
phrases in the pitch information, are detected in between the time instances that silence
exists (the same time intervals produce the phrases in the corresponding acoustic
sequence). In summary, we are interested in finding music documents that contain
phrases similar to the query sequence. Similarity through DTW is suitable in this context,
since the properties of DTW help in alleviating errors that humming produces.

An important observation is that acoustic data tend to be very large. Although queries
are music phrases (i.e., parts of the music sequences), the number of elements in a phrase
of even a few seconds can be several hundred thousands. The length of the U and L
sequences is equal to the length of the query sequence. This means that a straightforward
approach, which directly propagates U and L sequences between nodes, will result in an
extremely large traffic over the P2P network. Moreover, when the length of the
envelope’s sequences is large, the computation of LB in each node can become rather
costly. This violates the need of a P2P network to burden the participating nodes as little
as possible. Notice that the aforementioned requirements are not present in other
contexts, like the searching of similar text documents over a P2P network, where queries
consist of up to some tenths of terms.

We propose a two fold scheme which significantly reduces the traffic over the P2P
network when querying music documents by content. The scheme works as follows:

• It reduces the length of the envelope’s sequences by sampling them. However, plain
sampling can be ineffective, since it leads to underestimation of LB. For this reason,
we describe a novel sampling method to reduce the length of the sequences without
significantly affecting the computation of LB. Additionally we are interested in not
introducing false negatives due to the use of sampling.

• It uses (whenever possible) a compact representation of the sampled sequences of
the envelope. The representation comprises a kind of compression for the sequences,
but it does not burden the nodes of the P2P network with the cost of decompression.
If the latter is not undesirable, further compression can be achieved through the use
of existing methods. We do not explore this direction, since it does not affect the
relative performance of the proposed scheme against the plain one that directly
propagates the envelope (i.e., the performance of both methods will be equally
improved).

In the following, we describe the aforementioned issues in more detail.

4.2 Sampling and representation methods

Let the considered phrase length be equal to N. The length of each query Q, and therefore
of its upper (U) and lower (L) sequences, will also be equal to N. We would like to
sample U and L, so as to obtain two sequences U′ and L′, each of length M « N. Initially,

 220 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

we assume that uniform sampling is performed. In this case, we simply select each time,
the (i × N/M)-th element of U and L, where 1 ≤ i ≤ M. When we compute the LB_Keogh
between the query sequence Q and a data sequence, we consider each phrase C of length
N in Q. Each phrase has to be sampled in the same way as U and L. This leads to a
sampled phrase C. Therefore, we get a lower bound measure LB', given as:

2

2

1

() , if

() , if .
0, otherwise

i i i iM

i i i i
i

C U C U

LB C L C L
=

 ′ ′ ′ ′− >

′ ′ ′ ′ ′= − <

∑

In the aforementioned equation, the third case (i.e., when i i iL C U′ ′≤ ≤) does not
contribute in the computation of LB'. The problem of uniform sampling is that, as it
selects elements without following any particular criterion, it tends to select many
elements from U and L that result in this third case. Therefore, LB' may become a
significantly bad underestimation of LB that would have been computed if sampling was
not used. The underestimation of the lower bound value will result in an increase in false
alarms, which will incur high traffic.

To overcome this problem, we propose an alternative sampling method. We sample U
and L separately. Initially, we store the elements of U in ascending order. In U′ we select
the first M elements of this ordering. Respectively, we sort L in descending order and we
select the first M elements in L′. The intuition is that the selection of the smallest M
values of U, helps in increasing the number of occurrences of the first case (i.e., when

i iC U′ ′>); since the smaller the value of U′i is, the more expected it is to have a C′i larger
than it. Putting it less formally, we want to focus the sampling towards the ‘grey’ areas
(see Figure 3 in Section 3). An analogous reasoning holds for the sampling of L′. It is
easy to see the following:

Lemma 1: The sampling of U and L does not produce any false negatives.

Proof: While computing LB′, due to sampling, the first and second cases of equation (4)
occur fewer times than while computing LB (i.e., without sampling). Therefore, LB′ ≤ LB.
Since LB ≤ D (where D is the actual distance, computed with DTW), we have that
LB′ ≤ D. Thus, no false negatives are produced.

The separate sampling of U and L presents the requirement of having to store the
positions from which elements are being selected in U′ and L′. If the positions are stored
explicitly, then this doubles the amount of information kept (2 M numbers for storing
U′ and L′ and additional 2 M numbers for storing the positions of selected elements).
Since this information is propagated during querying, traffic is increased. For this reason
we propose an alternative representation. To represent U′, we use a bitmap of length N
(the phrase length). Each bit corresponds to an element in U. If an element is selected in
the sample U′, then its bit is set to 1, otherwise it is set to 0. Therefore, the combination
of the bitmap and the M values that are selected in U′ are used to represent U′. The same
is applied for V. This representation is efficient: the space required for U′ is M + N/8
bytes.4 The plain representation requires 5 M bytes (since it requires only one integer,
i.e., 4 bytes, to store the position of each selected element). Thus, the proposed method is
advantageous when N < 32 M, i.e., for samples larger than about 3% (our experiments
show that samples with size 10% are the best choice).

 Evaluation of similarity searching methods for music data 221

5 Similarity searching algorithms

In this section we present how existing algorithms for searching in P2P networks can be
used within the proposed framework. The existing algorithms have been mainly used for
searching text documents that are similar to a query text. Therefore, their straightforward
implementation for searching similar music data does consider the significantly larger
length of such data, and thus they are bound to incur excessive traffic. For this reason, we
examine their incorporation in the proposed framework. More specifically, we focus on
BFSS, >RESS, and ISMS.

5.1 The BFSS algorithm

As previously explained, the simplest similarity searching algorithm is on the basis
of breadth first search over the nodes of the P2P network. The adapted algorithm,
which uses the proposed sampling and representation methods, is denoted as BFSS
(Breadth-First-Search with sampling). The pseudocode for BFSS is given in Figure 4.
Each time, the current node n is considered. A TTL value denotes how many valid hops
are remaining for n, whereas Ts is the user defined similarity threshold. It is assumed that
sequences U′ and L′ carry also the associated bitmaps.

Figure 4 The BFSS algorithm

Evidently, the movement of the actual query sequence, from the node that commenced
the query to the currently visited node, increases the traffic (not being sampled, the query
sequence has a rather large length). For this reason, it is important not to have a large
number of false alarms.

The algorithm that does not use sampling (denoted as BFS) may produce less false
alarms. However, between each pair of peers it has to propagate U and L sequences, with
length equal to the one of the query sequence. Therefore, it is clear that there is a tradeoff
between the number of additional false alarms produced due to sampling and the gains in
traffic from propagating sampled (i.e., smaller) envelopes. This tradeoff is examined
through the experimental results in the following section.

 222 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

5.2 The >RESS algorithm

The >RES algorithm tries to reduce the number of paths that are pursued during
searching. Instead of selecting, at random, a subset of the peers of the currently visited
node, it maintains a profile for each such peer and bases its decision on this profile.
In particular, each node maintains for each of its peers, the number of positive answers
that it has replied. Then, it selects the k peers that provided the most answers during the
previous m queries. Both k and m are user specified.

It is clear that >RESS algorithm can be easily adapted in the proposed framework.
The query sequence will be sampled and represented according to the proposed method.
This does not affect the profile that is maintained by >RESS. The resulting method is
denoted as >RESS (>RESS with sampling). The pseudocode for >RESS is given in
Figure 5.

Figure 5 The >RESS algorithm

Since only a subset of peers is actually visited, >RESS tries to reduce traffic without
missing a large number of answers. However, compared to BFSS, >RESS is expected to
produce fewer answers. This tradeoff is examined in the next section, which contains the
experimental results.

5.3 The ISMS algorithm

The ISMS algorithm shares the same objective with >RESS, i.e., it tries to reduce the
number of examined paths. However, the profile maintained for each peer is different.
ISMS does not base its decision only on the number of answers to previous queries, but it
also examines the similarity between the previously answered queries and the current
one. Therefore, for each peer, a node maintains the t most recent queries that were
answered by the peer. When a new query q arrives in the node, then it computes the
similarity Qsim between q and all queries that are maintained in the profile of each node.
A relative ranking measure is given to each peer Pi, using the following formula:

 Evaluation of similarity searching methods for music data 223

(,) Qsim(,) (,)Q i j i jRR P q q q S P qα= ×

where S(Pi,qj) is the number of the results returned by Pi for query qj. Thus, ISMS
ranks higher the neighbouring peers that return more results by adjustment of the α
parameter. To make the comparison more clear, we set α = 1, therefore we focused only
on the criterion of similarity. We also have to notice that ISMS may become biased
towards the nodes that have answered somewhat similar queries in the past and may not
give the chance to new nodes to be explored. For this reason, the following heuristic is
used in Kalogeraki et al. (2002): besides the peers selected with the aforementioned
criterion, ISMS also selects, at random, an additional very small subset of peers (e.g., one
node). In total, k peers are selected, where k is user defined. The length of each profile
(the number of queries stored in it) is also user defined.

In order to adapt ISMS to the proposed framework, we have to consider how to
maintain the previously answered queries. In the proposed framework, query sequences
are represented by their samples. Therefore, we measure the similarity between the
current query’s sample and the samples of previously answered queries. For this reason
we maintain the samples of the answered queries in the profiles of the peers. To save
time during the computation of the ranking, instead of measuring the actual similarity
(through the DTW measure), we compute the LB_Keogh value. The resulting algorithm is
denoted as ISMS (ISMS with sampling). The pseudocode for ISMS is given in Figure 6.

Figure 6 The ISMS algorithm

ISMS is expected to have slightly larger traffic than >RESS, since it propagates the
sample of an answered query to all nodes involved in the search (in order to update their
profiles). However, by testing the content of the queries, it tries to reduce the number of
missed answers.

 224 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

6 Experimental results

The performance of the considered similarity searching algorithms was compared
through simulation. The P2P network had 100 nodes and the average number of
neighbours for each node was a random variable with average value equal to 7 (this kind
of topology is called logarithmic). We used 500 real acoustic sequences, which
correspond to various pop songs. Each song was sampled at 11 KHz and the average
duration was about 4 minutes. To represent the fact that music songs (especially popular
ones) are shared among several nodes, we replicated each sequence. The number of
replications for each sequence was randomly variable with average value equal to ten.

The experimental comparison has two objectives:
1 To determine the efficiency of the proposed framework. For this reason, we compare

the proposed sampling and representation methods against the approach that does not
use sampling and against a simplistic approach that uses uniform sampling. For
clarity of comparison, we use the basic similarity searching method, i.e., BFSS.

2 To compare the examined similarity searching algorithms (BFSS, >RESS, ISMS)
within the proposed framework. The evaluation metric in all cases is the average
traffic (measured in MB) that each query incurs. The parameters we examine are: the
sample size, query size (length of query sequence), query range (the user-defined
threshold for similarity), and TTL value (max allowed number of hops). For the
comparison of the examined algorithms within the proposed framework, we
additionally examine the number of found matches (denoted as relative recall).

We start by focusing on objective 1 and compare BFSS against uniform sampling
(this method is denoted as BFSS-UNI). The results are depicted in Figure 7. Figure 7(a)
illustrates the relative traffic between BFSS and BFSS-UNI (i.e., the traffic of the latter is
normalised w.r.t. the traffic of the former) against the query range. As shown, BFSS-UNI
incurs about twice the traffic that BFSS does. As already explained, this is due to the fact
that uniform sampling produces a bad underestimation of the lower bound value. This can
be further understood when examining the discrepancy, denoted as error, between the
bounds produced by BFSS and BFSS-UNI, and the actual bound produced by LB_Keogh.
The relative error between BFSS and BFSS-UNI (i.e., the latter is normalised w.r.t. the
former) is given in Figure 7(b), against the query size. The error of BFSS-UNI ranges
between 1.3 times the error of BFSS (for smaller queries) and 2.8 times (for medium
sized queries). Therefore, the sampling method that is used in the proposed framework,
performs better than uniform sampling.

LB_Keigh value

We now move on to compare BFSS with BFS (i.e., the method that does not use any
sampling at all). For BFSS we examined several sample sizes. The results are depicted in
Figure 8, whereas BFS has a constant value, as it does not use sampling. In Figure 8(a),
TTL was set to 4, query size was 1,00,000, and the query range was set to 0 (i.e., exact
match). As shown, for very small samples (with 1,000 elements), BFS performs better.
This is expected, since the use of a very small sample affects BFSS by resulting in a large
number of false alarms (due to bad underestimation of lower bound values), which
increases traffic. However, by increasing the sample size, BFSS becomes better and
clearly outperforms BFS. It is interesting to notice that the best performance is for sample
size equal to 10,000 (i.e., 10% of the original query size).

 Evaluation of similarity searching methods for music data 225

Figure 7 BFSS vs. BFSS-UNI (a) relative traffic and (b) relative error w.r.t. actual

Figure 8 BFSS vs. BFS (a) traffic (in MB) when TTL = 4 and (b) traffic (in MB) when TTL = 5

Finally, for large sample sizes, both methods converge to the same traffic. Analogous
results are obtained for the case where TTL is set to 5. It also worth noticing that the
traffic of BFSS is significantly more increased than the traffic of BFS, when compared in
the case when TTL was 4. Therefore, the sampling that is used in the proposed
framework helps in significantly reducing the traffic over the P2P network.

Next, we compared BFSS against BFS for varying query size and query range, in
order to test the sensitivity of the proposed framework. Figure 9(a) illustrates the
results for the former case. The size of sample for BFSS was set each time to 10% of
query size, TTL was set to 4 and query range was set to 0. As shown, BFSS clearly
outperforms BFS in all cases, except for rather small queries. Again, for very very small
queries, the resulting sample is very small and many false alarms are produced.
Moreover, Figure 9(b) depicts the results for the latter case (varying query range).
Query size was set to 1,00,000, sample size was 25%, and TTL was set to 5. BFSS
clearly compares favourably with BFS.

 226 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

Figure 9 BFSS vs. BFS w.r.t. (a) query size and (b) query range

Finally, we examined objective 2, i.e., the comparison of similarity searching algorithms
within the proposed framework.. We measured both the traffic and the recall achieved by
BFSS, >RESS, and ISMS with respect to query size. TTL was set to 4 and query range
was set to zero. The results on relative traffic (normalised by the traffic of BFSS) are
presented in Figure 10(a).

Figure 10 Comparison between similarity searching algorithms w.r.t. query size (a) relative traffic
and (b) relative call

As shown, both >RESS and ISMS require less traffic than BFSS. This is as expected,
since they propagate queries only to a selected subset of peers. ISMS presents a little
smaller traffic than >RESS, because it attains smaller recall (since Figure 10(b)).
The results on relative recall (normalised by the recall of BFSS) are presented in
Figure 10(b). As expected, BFSS has the highest recall among all algorithms, since it
visits all the peers of each node. >RESS comes second best, whereas ISMS has slightly
worse recall. This is because we set the same maximum number of visited peers for
>RESS and ISMS. By increasing this number for ISMS, the recall of both algorithms will
be about the same, but the traffic of ISMS will also be increased in this case. We have to
notice, however, that the recall of all algorithms is significantly high, since it is higher
than 90%, which suffices for the application of retrieving similar music pieces.

 Evaluation of similarity searching methods for music data 227

7 Conclusions

We have presented a novel framework for efficient retrieval of similar audio data.
The proposed framework takes advantage of the absence of overheads in unstructured
P2P networks and minimises the required traffic for all operations with the use of an
intelligent sampling scheme. Additionally, the framework has such a design that no false
negative results occur.

Within the proposed framework we have adapted existing similarity searching
algorithms, which have been previously proposed for finding similar text objects in P2P
networks. Since their straightforward implementation is bound to result to significant
traffic, their adaptation to the proposed framework is necessary. For this reason, we
showed how to modify them accordingly.

Detailed comparative evaluation illustrated the performance gains due to the proposed
framework. We also analysed the relative performance of the various similarity searching
algorithms in the framework.

Future work includes the examination of other types of P2P networks
(e.g., structured) and of additional similarity metrics.

References
Adams, N.H., Bartsch, M.A., Shifrin, J.B. and Wakefield, G.H. (2004) ‘Time series alignment

for music information retrieval’, Proceedings of the 5th Annual International Symposium on
Music Information Retrieval, pp.303–311.

Agrawal, R., Faloutsos, C. and Swami, A. (1993) ‘Efficient similarity search in sequence
databases’, Proceedings of FODO, Evanston, Illinois, USA, pp.69–84.

Agrawal, R., Lin, K.I., Sawhney, H.S. and Swim, K. (1995) ‘Fast similarity search in the presence
of noise, scaling, and translation in time-series databases’, Proceedings of VLDB, Zurich,
Switzerland.

Chan, K. and Fu, A.W. (1999) ‘Efficient time series matching by wavelets’, Proceedings of IEEE
International Conference on Data Engineering (ICDE), pp.126–133.

Faloutsos, C., Ranganathan, M. and Manolopoulos, Y. (1994) ‘Fast subsequence matching in
time-series databases’, Proceedings of ACM SIGMOD, Minneapolis, Minnesota, USA,
pp.419–429.

Jang, J-S.R., Lee, H-R. and Chen, J-C. (2001) ‘Super MBox: an efficient/effective content-based
music retrieval system’, Proceedings of the Ninth ACM International Conference on
Multimedia, pp.636, 637.

Kalogeraki, V., Gunopulos, D. and Zeinalipour-Yazti, D. (2002) ‘A local search mechanism for
peer-to-peer networks’, Proceedings of CIKM, pp.300–307.

Keogh, E. (2002) ‘Exact indexing of dynamic time warping’, Proceedings of VLDB, pp.406–417.
Keogh, E. and Ratanamahatana, A.N. (2005) ‘Exact indexing of dynamic time warping’,

Knowledge and Information Systems, Vol. 7, No. 3, pp.358–386.
Klapuri, A. (2004) ‘Automatic music transcription as we know it today’, Journal of New Music

Research, Vol.33, No. 3, pp.269–282.
Kontaki, M. and Papadopoulos, A.N. (2004) ‘Similarity search in streaming time sequences’,

Proceedings of SSDBM, Santorini, Greece.
Large, E.W. and Palmer, C. (2002) ‘Perceiving temporal regularity in music’, Cognitive Science,

Vol. 26, No. 1, pp.1–37.

 228 I. Karydis, A. Nanopoulos, A.N. Papadopoulos and Y. Manolopoulos

Li, X. and Wu, J. (2004) ‘Searching techniques in peer-to-peer networks’, accepted to appear in
Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-Peer
Networks, CRC Press, Boca Raton, USA.

Mazzoni, D. and Danneberg, R.B. (2001) ‘Melody matching directly from audio’, Proceedings of
the Second Annual International Symposium on Music Information Retrieval, pp.17, 18.

Shrestha, P. and Kalker, T. (2004) ‘Audio fingerprinting in peer-to-peer networks’, To appear in
Proceedings of the 5th International Symposium on Music Information Retrieval, pp.341–344.

Tzanetakis, G., Gao, J. and Steenkiste, P. (2004) ‘A scalable peer-to-peer system for music
information retrieval’, Computer Music Journal, Vol. 28, No. 2, pp.24–33.

Wang, C., Li, J. and Shi, S. (2002) ‘A kind of content-based music information retrieval method in
a peer-to-peer environment’, Proceedings of the International Symposium on Music
Information Retrieval, pp.178–186.

Won, J-Y., Lee, J-H., Ku, K., Park, J. and Kim, Y-S. (2004) ‘A content-based music retrieval
system using representative melody index from music databases’, Computer Music Modelling
and Retrieval, pp.280–294.

Yang, B. and Garcial-Molina, H. (2002) ‘Improving search in peer-to-peer networks’, Proceedings
22nd International Conference of Distributed Computer Systems, pp.5–15.

Yang, C. (2002) ‘Efficient acoustic index for music retrieval with various degrees of similarity’,
ACM Multimedia, pp.584–591.

Yang, C. (2003) ‘Peer-to-peer architecture for content-based music retrieval on acoustic data’,
Proceedings of the 12th International Conference on World Wide Web, pp.376–383.

Yi, B-K. and Faloutsos, C. (2000) ‘Fast time sequence indexing for arbitrary Lp norms’,
Proceedings of VLDB, Cairo, Egypt, pp.385–394.

Yi, B-K., Jagadish, H.V. and Faloutsos, C. (1998) ‘Efficient retrieval of similar time sequences
under time wraping’, Proceedings of IEEE International Conference on Data Engineering
(ICDE), Orlando, Florida, pp.201–208.

Zhu, Y. and Shasha, D. (2003) ‘Warping indexes with envelope transforms for query by humming’,
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data,
pp.181–192.

Notes
1We must notice that, with the examined framework, we refer to applications that support content
sharing for legal subscribers (e.g., iTunes, iMusic). Moreover, it is interesting to notice that the
proposed approach can be adopted as a means of identification of illegal sharing, by finding sites
that share unregistered content.

2The query can be directly propagated from the node that initially posed the query, since the
currently visited node always knows the address of this initial node.

3A minimum length portion of the musical piece that is meaningfully independent and complete
within a piece of music.

4Each element in an acoustic sequence is in the range 0–255, thus it requires one byte.

