
April 2, 2015 15:56 IJAIT S0218213015400096 page 1

2nd Reading

International Journal on Artificial Intelligence Tools

Vol. 24, No. 2 (2015) 1540009 (31 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213015400096

Learning Relational User Profiles and Recommending Items

as Their Preferences Change

Zaigham Faraz Siddiqui∗

Eleftherios Tiakas† and Panagiotis Symeonidis‡,§

Aristotle University of Thessaloniki, Thessaloniki, Greece
†tiakas@csd.auth.gr
‡symeon@csd.auth.gr

Myra Spiliopoulou§

University of Magdeburg, Magdeburg, Germany

myra@iti.cs.uni-magdeburg.de

Yannis Manolopoulos

Aristotle University of Thessaloniki, Thessaloniki, Greece

manolopo@csd.auth.gr

Received 29 September 2014
Accepted 25 November 2014

Published 13 April 2015

Over the last decade a vast number of businesses have developed online e-shops in the
web. These online stores are supported by sophisticated systems that manage the prod-

ucts and record the activity of customers. There exist many research works that strive
to answer the question “what items are the customers going to like” given their histori-

cal profiles. However, most of these works do not take into account the time dimension

and cannot respond efficiently when data are huge. In this paper, we study the problem
of recommendations in the context of multi-relational stream mining. Our algorithm
“xStreams” first separates customers based on their historical data into clusters. It then

employs collaborative filtering (CF) to recommend new items to the customers based
on their group similarity. To evaluate the working of xStreams, we use a multi-relational

data generator for streams. We evaluate xStreams on real and synthetic datasets.

Keywords: Stream recommenders; evolving user preferences; stream mining.

∗Work done while with the University of Magdeburg, Magdeburg, Germany.
§Corresponding authors

1540009-1

http://dx.doi.org/10.1142/S0218213015400096

March 27, 2015 17:37 IJAIT S0218213015400096 page 2

2nd Reading

Z. F. Siddiqui et al.

1. Introduction

Data mining for recommendation engines is a mature domain, and the underpin-

nings of the core procedure nowadays constitute public knowledge. In the simplest

scenario, the recommender matches the preferences of a peer user to the prefer-

ences of users similar to her, and then recommends items that these similar users

have liked. In the most cases the user preferences are retrieved through the web,

recorded in historical databases and used by the recommendation engines, which

are included in internet applications, e-business systems, e-shops etc. Data mining

and Web mining are responsible for learning a model on user similarity; the sim-

plest case involves offline clustering users on similarity of preference. However, this

traditional view of a recommendation engine oversees the fact that user preferences

change over time: the preferences of a 22-year old girl are not the same she had

when she was a teenager. In this study, we propose a method xStreams that couples

data stream mining with a recommendation engine to learn and exploit the evolu-

tion of user preferences. xStreams is evaluated on a real and a synthetic dataset.

To generate the synthetic data, we also propose a time-evolving multi-relational

data generator MultiGen, which creates evolutionary user profiles to simulate the

behaviour of the real users.

The awareness on the importance of time for a recommendation engine gained

momentum during the Netflix competition, which was a million-dollar competi-

tion for making a recommender that outperforms the existing Netflix system. The

competition’s winner, Yehuda Koren, has demonstrated how the incorporation of

time into an ensemble of learners boosts predictive performance.10 Remarkably, the

approach of Koren cannot adapt to the evolving preferences of people: it rather cap-

tures the preferences of the people during the time period of observation and learns

a static model on them. This is not appropriate for the dynamic environment of a

recommendation engine: the model learned by the miner on the basis of observed

transactions must be adapted as new transactions arrive, because new transactions

reflect the evolution of people’s preferences.

To deal with this issue, we observe the activities of the users as a stream, and

perform stream clustering upon similar entities. At each timepoint, the recommen-

dation engine uses the clusters to identify users similar to the peer user and deliver

suggestions to her. However, the task of clustering similar users on their evolving

preferences does not agree with the conventional stream mining paradigm either!

To juxtapose the task of learning the preferences of evolving users to a conventional

stream mining task, consider following example of a traditional stream.

Assume an e-shop that records customer purchases. The purchases constitute

a stream, an instance of which contains the identifiers of the customer and of the

purchased product, the timepoint of the purchase, and further information such as

the product’s price, payment option, shipment option, delivery address etc. The

shop is interested in detecting fraudulent purchases. To this purpose, transactions

are clustered on similarity and outliers are inspected. As new purchases arrive, the

1540009-2

March 27, 2015 17:37 IJAIT S0218213015400096 page 3

2nd Reading

Learning Relational User Profiles

clusters evolve, some transactions turn to be similar to earlier outliers and are thus

suspect, while new outliers show up and must be inspected, too. In other words,

the stream clustering algorithm adapts the clusters to arriving data and allows for

the detection of new kinds of fraudulent transactions.

The above example describes unsupervised model learning on a stream of in-

stances — the purchases. The recommendation scenario is a bit different though.

Assume again the e-shop that records customer purchases as a stream. The

shop is interested to recommend to each customer X a product that she will like,

knowing that her attitude to some products may have changed. To this purpose,

the list of products preferred by X must be extended whenever she buys a new

product, but the timepoint of the purchase must also be recorded. The miner must

now cluster together users who are similar to each other because they (a) now like

the same products and (b) have liked the same products in the past.

The two examples differ, because the first one involves clustering the instances

on similarity, while the second one requires clustering the users on similarity of the

sets of instances associated to them at different moments. This task requires multi-

relational stream clustering. We build upon our earlier method22 for clustering a

stream of complex objects, and extend it to deliver insights on user similarity on

the basis of their past transactions.

This article presents an approach for recommending items to the users as they

evolve over time. The main contributions of the papers are: (1) we propose a incre-

mental multi-relational method for recommending items to the users, (2) the pro-

posed method is hybrid and combines similarity computation from content-based

and collaborative filtering, and (3) we present a framework for evaluating recom-

menders over streams. The rest of the paper is organized as follows. In Section 2 we

discuss related work on recommendations over dynamic data and on multi-relational

stream learning. In Section 3 we present our approach for the formulation of rec-

ommendations towards users with evolving preferences. In Section 4 we summarize

the multi-relational generator25 we use for synthetic set generation. In Section 5 we

discuss issues and challenges that are encountered during the evaluation of stream-

ing recommenders. In Section 6 we report on our experiments with historical data

for the MovieLens and a synthetic data set. The last section concludes our work.

2. Related Work

In this Section, we will present the main work in collaborative filtering, content-

based filtering and hybrid recommender systems. Moreover, we will discuss the

latest progress on time-aware recommender systems, which is a rather new research

area. Notice that related work comes from two different direction: the domain of

(i) temporal mining, and (ii) stream mining. The difference between these research

directions is that the former considers time as an additional dimension and learns

model on the complete data, while for the latter data elements are discarded or

archived based on age and the model is learned only over most recent data. These

models are adaptable and get updated when concept drift occurs.

1540009-3

March 27, 2015 17:37 IJAIT S0218213015400096 page 4

2nd Reading

Z. F. Siddiqui et al.

2.1. Content-based, collaborative filtering and hybrid

recommenders

In the context of recommender systems, there exist three parallel approaches: col-

laborative filtering (CF), content-based filtering (CB) and hybrid methods.

Collaborative filtering algorithms recommend those items to the target user, that

have been rated highly by other users with similar preferences and tastes.19,21,7,12

In most CF approaches, only the item and users’ identifiers are accessible and no

additional information over items or users is provided. Websites that provide rec-

ommendations in the form, “Customers who bought item i also bought item y”,

typically fall under collaborative filtering approaches. Grouplens research group19

introduced a collaborative filtering algorithm, known as user-based CF, because it

employs users’ similarities for the formation of the neighbourhood of nearest users.

Another CF algorithm proposed by Sarwar et al.,21 is known as item-based CF

algorithm, because it employs items’ similarities for the formation of the neigh-

bourhood of nearest users. A pitfall of CF is the cold start problem: new items

have received only few ratings, so they cannot be recommended; new users have

performed only few transactions, so there are hardly other users similar to them.

Herlocker et al.7 proposed a variation of the previous algorithms, denoted as

Weighted Similarity (WS). It weights similarities by the number of common rat-

ings between users/items. In particular, if sim is a similarity measure, e.g. Pearson

or cosine, then WS is equal to max(c,γ)
γ · sim, where c is the number of co-rated

items. User-based CF takes into account only the set of items, that are co-rated by

both users. This, however, ignores the items rated by only one of the two users. The

number of the latter items denotes how much their preferences differ. Especially

for the case of sparse data, by ignoring these items we discard significant infor-

mation. Deshpande and Karypis2 apply item-based CF algorithm combined with

conditional-based probability similarity and Cosine Similarity. Xue et al.28 suggest

a hybrid integration of aforementioned memory-based algorithms with model-based

algorithms.

Content-based filtering assumes that each user operates independently. It ex-

ploits information derived only from documents or item features, e.g. terms or

attributes.18,17,13 In particular, it exploits a set of attributes which describes the

items and recommend other items similar to those that exist in the user’s profile. In

this way, the cold start problems for new items and new users are alleviated, pro-

vided that users prefer items that are similar in content to those they have already

chosen. However, the pitfall of CB is that there is no diversity in the recommenda-

tions. That is, the user gets recommendations that are very familiar to her, since

these recommended items are similar to those in her item profile.

There have been several hybrid attempts to combine CB with CF. The Fab

System,1 combines CB and CF in its recommendations, by measuring similarity

between users after first computing a profile for each user. Fab initially categorizes

documents by a CB filter and then recommends them to the user based on her

1540009-4

March 27, 2015 17:37 IJAIT S0218213015400096 page 5

2nd Reading

Learning Relational User Profiles

relevance feedback. In contrast, the CinemaScreen System20 runs CB on the results

of CF. In particular, CinemaScreen system computes predicted rating values for

movies based on CF and then applies CB to generate the recommendation list. Our

approach can be categorized as a hybrid method, since it combines both content-

based characteristics and collaborative filtering. In contrast to the aforementioned

hybrid methods, we also incorporate in our model the time dimension.

Finally, apart from blending the content with rating data, Social web has al-

lowed the emergence of new data combinations that can provide even more robust

recommendations.16 For instance, social networks such as Facebook, LinkedIn, etc.,

include information about the connections between humans. There are two main

types of recommendations in social networks. The first one is related to the link

prediction task, whereas the second one refers to the rating prediction and item

recommendation task.

2.2. Time-aware recommender systems

In the last years, there are scholars who proposed methods that attempt to capture

the temporal aspects of user behaviour, while others investigated the updating of

recommenders to change in the user behaviour. Remarkably, these two categories

of methods are distinct, in the sense that studies capturing temporal aspects pro-

duce static models, while studies capturing change produce dynamic models. Our

approach belongs to the second category. In this Section, we will briefly discuss the

approaches of Ding and Li,5 Yuan et al.,29 Xiang et al.,27 and Yehuda Koren,9,10

which belong to the first category.

Ding and Li5 proposed a method that assigns time weights for purchases of

items by decreasing the weight to old purchasing data. They have shown that the

users’ purchase habits vary and even the same user has quite different preferences

towards the same items over time.

Xiang et al.27 proposed a framework that models users’ long-term and short-

term product preferences of a user over time. Their model is built on a Session-based

Temporal Graph (STG), which incorporates user, products and session information.

Based on the aforementioned STG graph, the user-product bipartite graph denotes

the long term preferences of a user, whereas the product-session bipartite graph de-

notes the short term preferences of a user. Moreover, Xiang et al.27 proposed also

a novel recommendation algorithm named Injected Preference Fusion (IPF) and

extended the personalized Random Walk for temporal-based product recommenda-

tion. IPF starts from the user node and propagates to products rated or bought by

the user at a previous session, and then tends to propagate to unknown products

similar to user’s long-term preferences; while preferences injected into the session

nodes will propagate to products visited by the user at a past session, and then

tend to propagate to unknown products similar to user’s short-term preferences.

Yehuda Koren9,10 considered the scenario of item rating by capturing the in-

fluence of time and has identified the following aspects: (i) user-bias changes over

1540009-5

March 27, 2015 17:37 IJAIT S0218213015400096 page 6

2nd Reading

Z. F. Siddiqui et al.

time, i.e. the user’s rating assigned to an item may vary over time and may exhibit

periodicity, (ii) the item-bias changes over time, and (iii) the ratings submitted by

a given user may vary depending on time of day, day of week or period in the year.

Based on the aforementioned aspects a baseline predictor (which assigns to each

item an average rating µ) can be extended as shown in Eq. (1):9,10

r̂ui = µ+ bu(tui) + bi(tui) , (1)

where r̂ui is the predicted rating of a user u for an item i, µ is the overall average

rating, bu and bi are the user and item bias over µ respectively, and tui denotes

the rating of user u on item i at day t. The above baseline predictor can be easily

integrated into a factor model.9,10 Koren and Bell11 proposed timeSVD++, a set of

predictors that learn latent factors thereby exploiting implicit information on user

preferences, i.e. which items users rate, regardless of their rating, and the impact

of time, including day effects on a user’s rating attitude. timeSVD++ was shown to

offer accuracy superior to SVD++.11

Yuan et al.29 exploited temporal characteristics of users’ check-in information to

provide location recommendations. In particular, they split time in multiple slots.

Then, they fill these slots with check-in values that users made at each specific

hour of the day. Moreover, they use a User-Time-Location (UTL) cube to present

check-in records. An element Cu,t,l of UTL cube, denotes a user u, who visited a

location l at time slot t. They incorporate temporal dimension in their model, by

predicting the probability that a user u will check-in a location l at a specific time t,

as shown by Eq. (2):

Ĉ
(t)
u,t,l =

∑
v
w

(t)
v,t ∗ Cv,t,l∑
v
w

(t)
v,t

(2)

where, w
(t)
v,t is the temporal behavior similarity between users u and v.29

All the above approaches are temporal and of evolutionary nature, and they are

not appropriate for stream mining, because stream mining requires that a model is

adapted to new data as they arrive, while the aforementioned methods learn a model

that explains all data seen thus far. An excellent elaboration on this issue has been

written down by Koren and Bell themselves,11 subsection 5.3.4.1 “Predicting future

days” (page 160), stating among others that “. . . for those future (untrained) dates,

the day-specific parameters should take their default value.” Although they refer

explicitly to day-specific parameters, we must keep in mind that all parameters of

the timeSVD++ have been specified with cross validation upon the whole dataset.11

Once new untrained data arrive, cross validation must be rerun, because, as Koren

and Bell state on the same page 160 “. . . our temporal modelling makes no attempt

to capture future changes. All it is trying to do is to capture transient temporal

effects, which had a significant influence on past user feedback”, whereby we would

like to stress the word “past”. Another way of formulating the statements of Koren

and Bell is that timeSVD++ learns a static model over a finite dataset, and can

1540009-6

March 27, 2015 17:37 IJAIT S0218213015400096 page 7

2nd Reading

Learning Relational User Profiles

be applied on future stream data if and only if all thinkable concept drift can be

captured by modelling this finite dataset, i.e. if and only if future data follow exactly

the same distribution as past data. Stream mining research encompasses methods

for the analysis of data for which this assumption does not hold.

2.3. Stream mining for recommender systems

The importance of model updating in a recommender has been demonstrated by

Dias et al.3 they have experimentally shown that updating the checkout recom-

mender model files consistently resulted in an increase in the number of new

shoppers using the recommender system.

A truly adaptive recommendation engine for streams has been proposed by

Nasraoui et al.15 for the prediction of the next inspected page in user sessions.

The stream under inspection is the clickstream, in which sub-sessions are observed,

matched to already seen complete sessions, from which the top-N recommenda-

tions are derived. The recommendations are formulated and evaluated immediately

by reading in the users’ responses, essentially, the next page click per session and

incorporating them into the model learned thus far. For model learning and up-

dating, Nasraoui et al. consider kNN, which finds the k most similar sessions to

an input sub-session, and their stream clustering algorithm TECNO-STREAMS,14

which learns and adapts profiles (as abstractions of sessions) and returns for each

input sub-session the profile most similar to it.15

Nasraoui et al.15 have tested their adaptive recommender on two Web click-

streams, thereby simulating two evolution scenarios. In the “induced drastic

sequential user profile evolution” (scenario D), the sessions of the data set are

clustered into profiles, and the sessions of each profile are delivered to the recom-

mender one profile at a time. Hence, once the session of a given profile are read

through, there come sessions that do not fit to the model learned by the recom-

mender at all — this corresponds to a shift. In the “natural or mild chronological

order” (scenario M), the sessions arrive in chronological order, hence the profiles

are mixed. The evaluation on moving average of the F-measure shows that kNN is

of slight advantage over TECNO-STREAMS in the scenario D, because the former

relies more on model learning, while the two algorithms behave similarly under

Scenario M.

Our approach follows the same philosophy as the recommender of Nasraoui

et al.15: we anticipate that the recommender should forget old instances and learn

from newly arriving instances immediately; the recommender uses profiles instead of

matching individuals; the profiles are adapted over time to respond to evolving user

preferences. Our evaluation is also dictated by the idea that the recommender must

deal with both sudden shift (as in scenario D) and with arbitrary drift (scenario M).a

In short, we share the core ideas of proper stream learning under drift.

aWe use more elaborate scenarios for concept drift, because assuming only one profile at a time
and abrupt change, as in scenario D15 is a bit simplistic.

1540009-7

March 27, 2015 17:37 IJAIT S0218213015400096 page 8

2nd Reading

Z. F. Siddiqui et al.

Yet, the objective of Nasraoui et al.15 makes their algorithm not comparable

to ours. In particular, their recommender predicts the next page of a user session,

and adapts as more and more of the session is observed. Although it is possible

to express the sequence of items ever observed by a user as a session, this is not

desirable: a user session is a matter of moments or hours, while the interaction of a

user with an e-shop may extend arbitrarily across time; forgetting the beginning of

a session as the session progresses is unintuitive, while forgetting very old purchases

of a user is a reasonable option; a user revisits pages s/he has studied before, thus

allowing for forms of sub-session matching that make no sense when comparing

the preferences of users. Most importantly, a session in clickstream mining is a

sequence of page identifiers, whereby we incorporate into user similarity and model

learning also the properties of the products observed at each moment, allowing the

impact of old products to fade out. A comparison of clustering algorithms might

have been possible, but the experiments of Ref. 15 have shown that kNN is mostly

superior and never truly inferior to TECNO-STREAMS. Hence, we compare our

approach to an adaptive collaborative filtering stream recommender that essentially

uses kNN.

Recently, Diaz-Aviles et al. have proposed Stream Ranking Matrix Factorization

(RMFX),4 an algorithm that is intended to perform matrix factorization and item

ranking on a stream. The focus of the algorithm is on maintaining an up-to-date

model on the basis of possibly small, intelligently devised samples. Accordingly, the

experimentation was done on two time slots only, where one slot used for learning,

the other for testing. It delivered insights on the efficiency of the algorithm but

not on its adaptivity. Beyond this, RMFX must know the sets of users and of

items in advance similarly to timeSVD++; then, it can fill it gradually. This makes

the algorithm inappropriate for our scenario: in a realistic long-term setting, new

customers show up and new items may be put to sale at any time, hence the

matrix dimensions cannot be known in advance. Note that the previously mentioned

algorithm of Nasraoui et al.15 has neither caveat: it has been designed to be adaptive

and it does not need to know all users nor all pages that a user may choose to access.

Hence, in our evaluation we use as baseline an algorithm that satisfies the same core

properties as the one of Ref. 15.

3. The xStreams Method

Our stream recommender xStreams consists of two modules. (i) The back end

is an incremental, adaptive learner that processes the streams of activities and

associates it with earlier obtained and updated information on the entities in-

volved — users/customers and items/products. (ii) The front end builds on top

of the incremental learner to deliver the top-N items as recommenders to each

user. We first describe the process of reading instances from the stream of postings

and combining them with earlier recorded information on the referenced entities

(users, items). This process is called “incremental propositionalisation” and comes

1540009-8

March 27, 2015 17:37 IJAIT S0218213015400096 page 9

2nd Reading

Learning Relational User Profiles

(a) Original Schema

MovieID UserID Actor Class Rating Time UserID Name Age Gender MovieID Title Genre Director
1 1 A 10 7/6/2012 1 David 50 M 1 John Carter of Mars Science-Fiction Andrew Stanton
2 1 B 6 15/6/2012 2 Tom 24 F 2 Friends with Kids Comedy Jennifer Westfeldt
3 2 C 5 18/6/2012 3 Hunger Games Drama Gary Ross
4 2 C 10 24/6/2012 4 Lucky One Drama Scott Hicks
1 1 B 8 17/7/2012
2 1 C 4 20/7/2012
3 2 C 3 22/7/2012
4 2 B 7 25/7/2012

(b) Natural Join
MovieID Title Genre Director UserID Name Age Gender Actor Class Rating Time

1 John Carter of Mars Science-Fiction Andrew Stanton 1 David 50 M A 10 7/6/2012
2 Friends with Kids Comedy Jennifer Westfeldt 1 David 50 M B 6 15/6/2012
3 Hunger Games Drama Gary Ross 2 Tom 24 F C 5 18/6/2012
4 Lucky One Drama Scott Hicks 2 Tom 24 F C 10 24/6/2012
1 John Carter of Mars Science-Fiction Andrew Stanton 1 David 50 M B 8 17/7/2012

User MovieRating Stream

2 Friends with Kids Comedy Jennifer Westfeldt 1 David 50 M C 4 20/7/2012
3 Hunger Games Drama Gary Ross 2 Tom 24 F C 3 22/7/2012
4 Lucky One Drama Scott Hicks 2 Tom 24 F B 7 25/7/2012

(c) Propositionalised Table

UserID Name Birth Date Gender A B C Min Max Avg Count Time Period
1 David 12/1/1957 M 1 1 0 6 10 8 2 June 2012
2 Tom 14/7/1965 F 0 0 2 5 10 7.5 4 June 2012
1 David 13/8/1974 M 0 1 1 4 8 6 2 July 2012
2 Tom 22/8/1981 F 0 1 1 3 7 5 2 July 2012

Actor Class Ratings

Fig. 1. User and Movie entities linked to rating entities: (a) the original schema consists of three
tables, all of which are actually streams; (b) the natural join over them results in one entry/vector

per rating, while (c) the propositionalisation operation produces one vector per user. We perform

incremental propositionalisation to learn over the User entities, as they grow with information on
ratings and movies.

from our earlier work.22 We use the results of this process to compute the similarity

of a given user to other users, as described next in subsection 3.2. The back end

and the front end algorithms are presented as pseudo-code in subsection 3.3, where

we also discuss their complexity. As running example we use the multi-table stream

of ratings, users and items in Figure 1.

3.1. Incrementally combining information on users, items and

ratings

The core source of information for the recommendation engines is the stream of

activities performed by the users. In the classical stream mining scenario, stream

instances are observed, processed and forgotten. In the context of learning, a stream

record is used to adapt the model and is then forgotten. However, for the recom-

mendation scenario we study, we want to learn and adapt a model of the users,

so that the recommender can respond to changes in a user’s ratings towards

items.

3.1.1. Learning task on multiple streams

In Figure 1(a), we depict users and their ratings for movies by means of three tables.

Model learning and updating by the recommender’s back end will be performed on

the table User, which is linked to the table Rating, which is in turn linked to the

table Movie. The stationary information on users, such as name and gender, is stored

in the table User, but learning must also exploit each user’s ratings for movies, as

1540009-9

March 27, 2015 17:37 IJAIT S0218213015400096 page 10

2nd Reading

Z. F. Siddiqui et al.

well as the properties of the movies themselves, e.g. genre. Since ratings arrive at any

time, Rating is a stream, the records of which are seen and forgotten. In contrast,

users and movies are perennial entities: perennial entities cannot be forgotten as

they may reappear again. They are stored in the database when inactive and get

retrieved from it when new ratings arrive for them. Nonetheless, new users and

new movies may also arrive at any time, hence User and Movie are also streams —

streams of perennial entities.24 For perennial entities, we use the terms “table” and

“stream” interchangeably hereafter, while for a ephemeral records like the ratings

we use solely the term “stream”.

The back-end of our method, xStreams BackEnd, is an adaptive stream mining

algorithm that learns a model over the table User — as it is extended with infor-

mation from the streams Rating and Movie. However, the natural join of entities

of these entity types is not appropriate for learning: as can be seen in Figure 1(b),

this join result contains as many user entities as ratings — user David appears as

four independent entities. For model learning, we rather need an expansion of table

User with the data from the other tables. To this purpose, we use the incremental

propositionalisation algorithm proposed in Ref. 22: it expands the so-called “target

stream” (here: User) with information from the other streams, and produces one

entry per entity of the target, as can be seen in the first two rows of the proposi-

tionalised table in Figure 1(c). When new stream records arrive, the vectors of the

entities are updated; in Figure 1(c), we see the entries/vectors of David and Tom

for June 2012 and then for July 2012.b

3.1.2. Incremental propositionalisation for learning

More formally, let T the target stream, i.e. the stream, on which we want to perform

the learning: in our recommendation scenario, T is the stream of users (cf. User

in Figure 1). It is a stream, because new users arrive at any time. It is the target

stream, because we want to learn the user profiles and exploit them to compute

user similarity. For this learning task, we combine T with information from further

streams T1, . . . , TJ referencing itc; in our recommendation scenario, these further

streams are the stream of ratings and the items (also a stream) — cf. Rating, Movie

in Figure 1. We slide a window of length W timepoints over the streams, so that

the data observed at timepoint t are the entities from all streams observed in the

interval (t−W, t]. Entities outside this interval are forgotten.

Let schema(X) be the schema of any of these streams X ∈ A := {T , T1, . . . , TJ}.
At each timepoint t, our incremental propositionalisation method22 expands each

bIn Figure 1(b), we show each user twice to demonstrate the differences in the aggregated ratings
between June and July. The learner will see only one entry/vector per user: in June 2012 it uses
the June vector, in the next month this old vector is replaced by the July vector.
cAny of Tx may be a static table, but we consider the general case where all of them are streams.

For example, if movie genre were not an attribute but rather an entity type Genre, then we could

assume that all possible genres are known in advance, hence Genre would be a table rather than
a stream.

1540009-10

March 27, 2015 17:37 IJAIT S0218213015400096 page 11

2nd Reading

Learning Relational User Profiles

entity u ∈ T with the contents of the entities that reference u — they constitute the

set matches(u), the elements of which belong to different streams from A. For this

expansion operation, our method extends schema(T) by turning the values of the

elements in matches(u) into new columns/features for eu. The set of features thus

generated can change at each timepoint, we therefore denote it as Features(t). In

particular, at timepoint 0:

• For each numerical attribute A in ∪X∈Aschema(X) that appears in the schema

of some element y ∈ matches(u), we add to Features(0) four features: the min,

max, average and count for A, and we store in them the corresponding values

seen in y. In our running example, we have calculated the min, max, average and

count of ratings for each user id per month — see Figure 1(c).

• For each nominal attribute A in ∪X∈Aschema(X), we create rA features, one per

distinct value of A observed at timepoint 0 for all entities in the target stream. For

an entity x, each of those features takes the value 1(one) if the original attribute

value was in an entity in matches(x) and 0(zero) otherwise.

At a later timepoint t, we update the numerical features by adding values for

the arriving entities in matches(x) and by subtracting values for the entities that

exit the sliding window, i.e. have been seen earlier than t −W . For the nominal

attributes, we can extend Features(t) as new, previously unseen, nominal values

arrive. However, it is not feasible to expand Features(t) to unlimited values. Rather,

we set an upper threshold size τ to the number of generated features per attribute

and encode the values observed thus far for this attribute into τ derived features.

This encoding is based on grouping values that appear in otherwise similar entities

together into τ clusters. Details on this encoding are provided in Ref. 22.

As can be seen in the two entries per user of Figure 1(c), the propositionalisation

algorithm delivers at each timepoint the vector of each active user, i.e. for each user

who has performed some rating inside the sliding window. The user’s vector contains

the information obtained on this user from the data in the window; these data are

summarized, while data that have slide outside the window are forgotten. Details

on window sliding and memory management can be found in Ref. 23.

3.2. Computing the similarity of evolving users

The vectors of the active users form the basis for computing user-user similar-

ity. We consider two aspects of similarity between users: similarity on the basis

of summarized past preferences and similarity on the basis of current ratings. We

describe these two types of similarity below, and then explain how we combine

them into a single similarity function. It must be stressed that the similarity val-

ues change as new ratings arrive, hence we need to update the similarity matrix

in an incremental way or replace it with some surrogate that can be computed

efficiently.

1540009-11

March 27, 2015 17:37 IJAIT S0218213015400096 page 12

2nd Reading

Z. F. Siddiqui et al.

3.2.1. Similarity on the basis of past preferences

Let u, v be two users that are active at timepoint t, i.e. have performed ratings

in the interval (t − W, t], where W is the window size. Let etu, respectively etv
be the updated vectors of these two users after propositionalisation on all in-

formation within the interval. We define the similarity between these users with

the function:

simCB(t, u, v) =
etu · vtv
|etu| · |etv|

. (3)

The postfix CB in the name of simCB() stands for “Content-Based” and reflects the

fact that attributes of the users are also taken into consideration by the similarity

measure.

For the efficient computation of similarity on the basis of past preferences, we

couple incremental propositionalisation with stream clustering of the users’ entries.

In particular, at each timepoint t, we retrieve from secondary storage all users who

performed ratings within the interval (t−W, t], i.e. all active users. We expand the

entries of these users with incremental propositionalisation, place them into K clus-

ters and then adapt the clusters through centroid re-computation.23 Then, for each

user u we can return the k most similar users by assigning u to the cluster/profile

with the closest centroid and then depicting the k nearest neighbours to u from

this cluster.

It is thinkable that the cosine similarity used in Eq. (3) is extended to consider

only co-inspected items, in a similar way that only co-rated items are used in

Collaborative Filtering to compute user similarity. In particular, for the similarity

between two users in CF, items not rated by one of the users are ignored. By this,

it is avoided that user similarity takes into account items that one user has never

inspected. In simCB(), we could similarly restrict the similarity computation to

skip features (derived attributes, cf. subsection 3.1) that have not perceived by one

of the users being compared. For example, if a user has never seen a movie of a

specific producer, we could ignore the attribute referring to this producer, when

comparing this user with others. This extension has not been considered in the

following; it is left as future work.

3.2.2. Similarity on the basis of ratings

Using the underpinnings of Refs. 7 and 12, let the rating of a user u over an item i

be denoted as ru,i. If the user has not rated the item i we set ru,i to NULL. Since we

perform collaborative filtering on a stream, we slide a window of length W over the

stream of ratings and consider at each time point t only the set of ratings Rt inside

the window (t−W, t]. At timepoint t, let It,u be the set of items rated by u within

Rt and It,v the corresponding dataset for another user v. Then, the ratings-based

similarity between u and v is computed as:

1540009-12

March 27, 2015 17:37 IJAIT S0218213015400096 page 13

2nd Reading

Learning Relational User Profiles

simCF (u, v) =

∑
i∈It,u∩It,v

(ru,i · rv,i)√∑
i∈It,u

(ru,i)2
√∑

i∈It,v
(rv,i)2

(4)

where It,u and It,v are computed anew at each time point t and may have an

empty intersection inside some window, although they were overlapping before that

window.

Combining different aspects of user similarity: The conventional similar-

ity function simCF () exploits similarity of ratings between two users. Knowledge

about each user’s profile and expressed past preferences is captured by our new

similarity function simCB(), which exploits accumulated past information from

the aggregated feature profile of the users. As in conventional collaborative filter-

ing, the expected rating is computed as the weighted average of the ratings made

by users similar to u, but xStreams combines the two similarity functions when it

computes the expected rating of user u for item j, r̂u,j . For rating prediction, we

use Eq. (5), which is explained in subsection 3.3.2.

r̂u,j = avgu +

∑
v∈TopUsersku∧rv,jNOTNULL

simTotal(t, u, v) ∗ |rv,j − rj |∑
v∈TopUsersku

simTotal(t, u, v)
. (5)

3.3. xStreams BackEnd and xStreams FrontEnd

The xStreams BackEnd adaptive learner and xStreams FrontEnd recommendation

interface are decoupled, indirectly interacting modules. The back end slides a win-

dow of width W over the stream and maintains the perennial entities of seen users

and products in a database. It maintains the learned user profiles up to date. These

are used by the front end for the identification of the k most similar users to a given

user u, for whom the algorithm formulates n recommendations.

3.3.1. xStreams BackEnd

The pseudo-code of our adaptive learner is depicted in Algorithm 1. At each time-

point t, the algorithm processes all ratings arrived in (t − w, t]. These ratings

constitute a set Rt (line 3), from which the active users Uact in the interval are

extracted. For a user u that has performed ratings in Rt, her vector is fetched from

the database D (line 5). The vector is modified to accommodate the current rat-

ings (line 6), as described in Section 3.1. For a user that already exist in Uact, the

algorithm replaces the old vector with the newer one (line 8). The vectors of new

users are simply inserted it into the list (line 9). All the users that have become

inactive, i.e. they have no ratings in Rt, are removed from the list of active users

(line 10). Since BackEnd processes a continuous stream, hence it contains no re-

turn operation. It rather writes the updated list of users to the Output (line 11)

before processing the new timepoint (line 2).

1540009-13

March 27, 2015 17:37 IJAIT S0218213015400096 page 14

2nd Reading

Z. F. Siddiqui et al.

Algorithm 1: xStreams BackEnd

Input : stream of ratings R,

database of perennial entities D,

window length W in timepoints

1 Uact ← ∅
2 foreach timepoint t do

3 Rt ← ratings arrived in (t− w, t]
4 foreach user u who performed ratings in Rt do

5 Retrieve the state of the user’s vector et
′

u from D

6 Expand et
′

u with the ratings of Rt that were performed by u into etu
7 if user u is already in Uact then

8 replace the old vector of u in Ut with etu

9 else insert (u, etu) to Uact

10 Remove all users that are inactive in Rt from Uact
11 Write (t, Uact) to Output

3.3.2. xStreams FrontEnd

The interactive front end of our recommender predicts the items and their ratings

for a specific user u. The pseudo-code is given in Algorithm 2. Note that the time-

point t is the timepoint “now”, the moment at which user u is observed. It must

be passed as parameter to the interface between front end and back end, so that

the correct similarity values are computed on the basis of the stream chunk Rt
(cf. Algorithm 1).

To build the set TopUsersku (line 1), we compute the similarity between u and

all other active users by using both simCB() and simCF (). We use simCB() of

Eq. (3) to compute the similarity of u to each user u′ ∈ Uact (line 11, Algorithm 1),

where similarity refers to aggregated information on these users. We use simCF ()

of Eq. (4) to compute the similarity of u to active users on the non-aggregated

individual ratings in Rt. We then compute for each of the users in CBu(t)∪CFu(t)

the valued

simTotal(t, u, v) = weight ∗ simCB(t, u, v) + (1− weight) ∗ simCF (u, v) . (6)

Thereafter, we sort the users on decreasing similarity and depict the top-k users,

forming the set TopUsersku.

If the weight of simCB() is set to 1, then we ignore simCF (). This makes sense

if the current data are so volatile that we cannot draw safe conclusions from the

dThis value might be perceived as the result of a similarity function sim(). However, this operation
can be computed only over the set CBu(t) ∪ CFu(t) for some user u; these sets are computed

independently.

1540009-14

March 30, 2015 14:7 IJAIT S0218213015400096 page 15

2nd Reading

Learning Relational User Profiles

Algorithm 2: xStreams FrontEnd

Input : user u,

k neighbours,

n recommendations, timepoint t, and

corresponding set of ratings Rt
Output: list of recommended items RIu for user u

1 Compute TopUsersku, the set of k most similar users to u at timepoint t,

using simCF () and simCB()

2 avgu ← average rating value of u in Rt
3 RIu ← ∅
4 foreach item j in Rt so that ru,j is NULL do

5 compute the average rating for j within Rt, rj
6 compute r̂u,j using Eq. (5)

7 add (j, r̂u,j) to RIu

8 Sort RIu on r̂u,j and retain only the top-n positions

9 return RIu

current behaviour of the users, and should concentrate on their past profiles. If

the weight is less than 1, then we use simCF () to exploit also the current user

behaviour, as reflected in their ratings in Rt. Using this we estimate the rating r̂u,j
that u would have given to item j within the current time window. Let rj be the

avg. rating for item j in Rt, considering only items not yet rated by u (line 4).

Further, let rv,j be the rating that user v ∈ TopUsersku has given to item j within

Rt. Then, the predicted r̂u,j (line 6) is computed as shown in Eq. (5). The items

with the estimated rating values are accommodated in a list (line 7), and the top-n

rated items are returned for recommendation (lines 9–10).

The items and their estimated ratings are added to set RIu (line 6), which is

then sorted on rating value, retaining only the top-n positions (line 8). The items

at these positions are recommended to the user u (line 9).

4. MultiGen: Generating Multiple Streams of Recommendation Data

For the evaluation of xStreams on synthetic data, we use the data generator we

presented in Ref. 25, which we refer to as MultiGen hereafter. This generator creates

a multi-relational stream of users, items and ratings of the users on the items, and

imputes drift to it.

As we explain in Ref. 25, the generator creates three streams: the stream of

Users, which is also the Target Stream, the stream of Rankings and the stream of

Items (perennial) feed the target stream. The preference of a user towards some

item(s) defines its behaviour. Multiple users’ exhibiting similar behaviour can be

grouped/categorised together as a single user profile. Conversely to learning task

1540009-15

March 27, 2015 17:37 IJAIT S0218213015400096 page 16

2nd Reading

Z. F. Siddiqui et al.

Algorithm 3: MultiGen

Input : N i, Nu, ni, nu, vi, vu, τd,L, R,
Output: P i, Pu, profile transition graph and perennial stream of ratings

/* INITIALISE GENERATOR */

1 Generate a set of item profiles P i with vi attributes.
2 Generate a set of user profiles Pu with vu attributes.
3 Select the active profiles Ad for each drift moment d.
4 Compute profile transition graph using Ad.

5 Generate ni items per item profile in P i.
6 Generate nu users per user profile in Pu.

/* DATA GENERATION */

7 for d = 1→ τd do
8 foreach user u do
9 U ← profile of user u

10 if d > 1 then
11 Mutate user profile U using profile transition graph.

12 Generate data for u using user profile U
13 βud ← PowerLaw(R, sR)

14 Ld ← Uniform(0,L) /* #timepoints for drift moment d */

15 for t = 1→ Ld do
16 foreach user u do
17 U ← profile of user u
18 αut ← Uniform(0,βud)
19 βud ← βud − α

u
t

20 for j = 1→ αut do
21 Select an item based on φU→I & rate it wrt. to U .

where these profiles are learned from among a group of users, MultiGen first creates

these user profiles which serve as prototypes. These profiles are then used to gen-

erate individual user data according to the item preferences stored in them. Noise

can be imputed to the data by forcing a user to rank in discordance to her profile

with some probability. Drift is imputed to the data by allowing a profile to exist

only for some timepoints and then forcing it to mutate to one or more profiles with

some probability.

The complete algorithm for generating a perennial stream of ratings is given in

Algorithm 3. The algorithm starts by creating a set of user profiles Pu and items

profiles P i (Lines 1–2). It then computes the set active user profiles Ad for each drift

moment d (Line 3). The computation involves distributing the user profiles equally

across all drift moments. Using Ad, the algorithms computes the profiles transition

graph using the active profiles from consecutive drift moments, i.e. between Ad−1
and Ad (Line 4). The creation of nu users and ni items, concludes the initialisation

of MultiGen (Lines 5–6).

1540009-16

April 2, 2015 14:5 IJAIT S0218213015400096 page 17

2nd Reading

Learning Relational User Profiles

The algorithm, then iterates over the defined drift moments. At the beginning,

a user u is assigned a random user profile U . For the first drift moment, it uses U
to generate the data. For the subsequent drift moments, when the drift moment

changes, the U gets mutated into U ′ by the profile transition graph (Lines 10–11)

and the mutated profile U ′ is used for generating further data. Then for each user,

the power law distribution is used to generate ratings at a drift moment (Line 13).

A drift moment d contains multiple timepoints (Line 14) and the ratings are

generated at individual time points. The number of ratings to be generated for a

user u at timepoint t, αud , is calculated using the uniform distribution, whose lower

limit is 0 while upper limit is βud (Line 18). Once αud is calculated, the same amount

is also subtracted from βud to ensure that u’s rating don’t exceed more than βud items

(Line 19).e The individual ratings are generated using the specifications based on

the affinities of user profile U towards the different item profiles.

5. Challenges in Evaluating a Stream Recommender

Evaluation for recommenders on timestamped data is a challenging issue. Diaz-

Aviles et al.4 define a timepoint tsplit and use all objects arriving prior to this

timepoint for learning and all objects arriving afterwards for testing. This approach

is based on the implicit assumption that past data are adequate to predict the

whole future, i.e. no concept changes occur. However, stream mining is based on

the assertion that changes do occur.

In contrast to Diaz-Aviles et al.,4 Nasraoui et al.15 partition the data into

batches, where each batch stores the data from a single user-profile: the batches are

presented to the recommender one after the other, thus enforcing a concept shift at

the end of each batch. However, Nasraoui et al.15 cater for concept change in their

evaluation, but only for one particular change. For a proper evaluation, we need a

less heuristic approach.

In this section we discuss some issues that are critical in order to successfully

evaluate a recommender over data streams. We discuss the conventional stream

evaluation, some works on streaming evaluation for recommenders and juxtapose

them with the challenges that arise in evaluating a recommenders on streams.

Item recommendation can be modelled as classification problem. Stream classi-

fiers are evaluated using hold-out evaluation or prequential evaluation.6 In hold-out

evaluation, a subset of the newly arriving objects is reserved for evaluation. This

approach has the disadvantage of completely wasting the information carried by

the held-out objects. In prequential evaluation, new objects are first labelled by the

model, so that the quality of the model is evaluated; the objects with their true

labels are then used for model learning. We study whether prequential evaluation

can be used for stream recommenders and devise an appropriate evaluation plan.

eFor the last timepoint t′ of drift moment d, αu
t′ ← βu

d . This ensures that there are outstanding
items to be rated.

1540009-17

March 27, 2015 17:37 IJAIT S0218213015400096 page 18

2nd Reading

Z. F. Siddiqui et al.

5.1. Prequential evaluation?

In Fig. 2, we depict the interplay of learning and evaluation for a stream recom-

mender. At each timepoint, the recommender’s model is updated by incorporating

the new batch of active ratings, while the batch of old ratings is forgotten. Pre-

quential evaluation is done on future ratings. The evaluation is subject to following

challenges.

t it i−1t i−2t i−3t i−4t i−5t i−6t i−7 t i4t i3t i2t i1

Active Ratings Future RatingsOld Ratings

Concept Drift

Fig. 2. Data exploitation in a stream recommender: learning is done on the active ratings (those

in the window), evaluation on the future ratings, which are gradually incorporated to the sliding
window and used for learning.

Challenge 1 — the span of the future: In conventional prequential evaluation,

all objects to be labelled appear in the very next batch, i.e. at timepoint ti+1. In

recommenders, the users in the current batch may not appear in the batch of ti+1.

For example, assume that the recommender suggests item x to user u. u indeed

rates x favourably, but does so at t′ � ti+1. Prequential evaluation will count

a miss. A naive way to alleviate this caveat is to consider all future ratings for

evaluation. This leads to the second challenge.

Challenge 2 — the drift in the future: Assume that we evaluate on all future

ratings. At timepoint ti+1, let item x be recommended to user u, who rates it

negatively at ti+4 (a miss). At ti+2 the model adapts to drift and learns that u

would dislike everything like x. So, after ti+2, the model would not recommend x

to u, yet the recommendation is already done and counted. Hence, we must limit

the horizon of the prequential evaluation to a window of predefined size.

Challenge 3 — the one-time users: In social and commercial sites, many users

appear rarely or even only once. In the MovieLens dataset (Section 6.1), 300 users

(ca. 14% of all users) appear only once. Prequential evaluation demands a recom-

mendation for each user seen at ti, but the outcome cannot be verified since some

users might not show up again.

Challenge 4 — the casual users: Many users re-appear irregularly at timepoints

that are far apart. When we discretized the MovieLens dataset into 140 months,

we identified 400 users (ca. 19%) who appear at less than 5 timepoints that are

very far apart. If we use an evaluation horizon that ends before the user’s next

re-appearance, then prequential evaluation cannot categorize the outcome as hit or

miss (similarly to Challenge 3). If we specify a huge evaluation horizon to capture

the next re-appearance of such users, then we would provoke again Challenge 2.

1540009-18

March 27, 2015 17:37 IJAIT S0218213015400096 page 19

2nd Reading

Learning Relational User Profiles

5.2. Prequential evaluation with hold-outs

In the light of the above challenges, we propose a hybrid method that sets apart

a splittest portion of the ratings in each incoming batch for hold-out evaluation,

and performs prequential evaluation on the remaining ratings. In particular, if

splittest > 0, then we use 1 − splittest of the ratings first for evaluation and then

for learning (i.e. for prequential evaluation), and splittest only for evaluation. If

splittest = 0, we use all data for prequential evaluation only. Based on preliminary

experiments, we have used splittest = 0.5.

6. Experimental Evaluation

We use the evaluation plan proposed in subsection 5.2 to study the performance of

our method. We compare xStreams to a stream-based extension of the collaborative

filtering (CF) algorithm of Ref. 26, which we call CFStream. Since we evaluate

on recommendations to users, we adjust the conventional evaluation measures for

recommenders as follows: for a test user who receives a list of n recommended items,

Precision is the ratio of the hits (favourably rated items) among the n ones; Recall

is the ratio of hits from the top-n list to the complete set of items rated favourably

by the user; RMSE is the Root Mean Square Error between predicted and true

rating for the test user. Additionally, we also carry out the evaluation for MultiGen

to determine how well it can simulate the distributions from the real data.

6.1. Synthetic and real datasets

6.1.1. Synthetic dataset

To study how xStreams responds to concept changes, we generated a synthetic

dataset with predefined moments of drift. We use the MultiGen to create streams

of users, items and ratings. The schema of the generated relational data is shown

in Figure 3(a).

Items

Ratings

User

MoviesRatings

User

TagsActors

Genre

(a) (b)

Fig. 3. Schema of (a) synthetic dataset, and (b) MovieLens dataset.

1540009-19

March 27, 2015 17:37 IJAIT S0218213015400096 page 20

2nd Reading

Z. F. Siddiqui et al.

0 500 1000 1500 2000 2500 3000
Ratings

0

50

100

150

200

250

300

350

400

450

#
 U

se
rs

50 100 150 200 250 300 350 400 450
Ratings

0

200

400

600

800

1000

1200

#
 M

ov
ie

s

0 2 4 6 8 10 12 14 16 18
Timepoint

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

av
g

ra
tin

g

(a) (b) (c)

Fig. 4. Statistics for synthetic dataset: (a) number of ratings vs. user, (b) number of ratings vs.

movies, (c) average rating value vs. timepoint.

0 500 1000 1500 2000 2500 3000 3500
Ratings

0

50

100

150

200

250

300

350

400

450

#
 U

se
rs

0 200 400 600 800 1000 1200 1400 1600 1800
Ratings

0

1000

2000

3000

4000

5000

6000

#
 M

ov
ie

s

0 20 40 60 80 100 120 140
Timepoint

0

5000

10000

15000

20000

25000

#
 ra

tin
gs

(a) (b) (c)

0 20 40 60 80 100 120 140
Timepoint

3.2

3.3

3.4

3.5

3.6

3.7

3.8

#
 a

vg
 R

at
in

g

0 20 40 60 80 100 120 140
Timepoint

0

50

100

150

200

250

300

#
 c

ol
d

st
ar

t i
te

m
s

0 20 40 60 80 100 120 140
Timepoint

0

500

1000

1500

2000

2500

3000

3500

4000

#
 a

ct
iv

e
ite

m
s

(d) (e) (f)

Fig. 5. Statistics for MovieLens, recorded at each timepoint: from top: l-to-r, (a) #ratings per

user, (b) #ratings per movie, and for each timepoint (c) #ratings, (d) avg. rating, (e) # cold start

items and (f) # rated items.

MultiGen is capable of simulating the properties of real world datasets as shown

in Figures 4(a) and 4(b), which they both follow the Zipf distribution similar to

the results shown in Figures 5(a) and 5(b), respectively. Moreover, in Figure 4(c)

we have incorporated explicit concept drift into our synthetic data. It is a shift of

average rating that happens around timepoint 8, where the mean rating value jumps

from around 2.25 stars to 2.55 stars. This concept drift forces the users to change

their rating behaviour abruptly around timepoint 8. As will be later experimentally

shown, our xStreams algorithm is able to adapt fast to the concept drift.

This generator simulates the properties of datasets like MovieLens: users, items

and ratings follow power law distributions and over time, users change their rating

preferences.

1540009-20

March 27, 2015 17:37 IJAIT S0218213015400096 page 21

2nd Reading

Learning Relational User Profiles

6.1.2. Real dataset

We have used MovieLensf dataset. It contains 2113 users, 10,197 movies and ap-

proximately 0.85 million ratings. Additionally to the user-item rating matrix, the

dataset includes information on each movie’s genre, directors, actors and user tags.

This auxiliary information is provided as separate streams/tables. We have created

a multi-stream by using the schema of Figure 3(b), whereby we grouped actors into

6 categories, by ranking them on importance of their role in a movie multiplied by

the average rating of those movie. Summing up these values over all the movies an

actor was involved gives us an AScore for an actor:

AScore(a) =
∑

m∈movies(a)

(250−Rank(a,m)) ∗MScore(m) .

The six categories are based on AScore where, C1 accommodates first 18 actors,

C2 the next 50, C3 the next 200, C4 the next 500, C5 the next 5000 and C6 all the

rest.

In Figure 5 we show statistics on MovieLens. MovieLens dataset follows zipf

distribution for both the number of ratings provided by users and the number of

ratings given to a particular movie, i.e. there is a small number of users who have

rated many items (short head) and many users that have only rated a small number

of items (long tail). There are only few ratings before t30 (Figure 5(c)). The bulk

of rating starts arriving after t70. The average rating value increases continuously

with a sharp increase (concept shift) at t80 (Figure 5(d)). Around t80, there also is

a large influx of new cold-start items (Figure 5(e)). We show later that the concept

shifts and the cold-start items affect the performance negatively, while the increase

in #ratings and of rated items have a positive effect.

6.2. Experiments with MultiGen

In this section, we show that MultiGen is capable of simulating the properties of a

real world dataset, namely the dataset hetrec2011-movielens-2k described be-

low. In this section we provide the empirical analysis of our generator.g In the

experiments, we first vary the main parameter s of the distribution (skewness pa-

rameter) by keeping v = 1 (cf. Ref. 25, Table of parameters) and we vary the

parameter v and the maximum number items rated by a user, by keeping the value

of s equal to 3.

6.2.1. Quantitative results

Datasets from the MovieLens are widely used for testing of the algorithms. From

the various datasets available at the GroupLens web site,h we chose hetrec2011-

fGroupLens website: http://grouplens.org/datasets/hetrec-2011/; Dataset: hetrec2011-movielens-

2k.zip
gThe data generator along with further results can be downloaded from http://www.kmd.ovgu.de/

kmd media/Downloads/Software/2014 MultiGen generator.zip
hhttp://www.grouplens.org/node/73

1540009-21

March 27, 2015 17:37 IJAIT S0218213015400096 page 22

2nd Reading

Z. F. Siddiqui et al.

movielens-2k. It has 2113 users, approximately 10,000 movies and approximately

0.85 million ratings provided by the users. Additionally with the dataset the infor-

mation about each movie, i.e. genre, cast, location is also provided. We treat this

as our baseline and compare the results of MultiGen against it.

6.2.2. Validation measures

Common measures used for parameter calibrations and validation are the Mean

Absolute Error (MAE) and the Root Mean Square Deviation (RMSD). Especially

RMSD is a good measure of the accuracy.8

For two separate samples, both of cardinality N : A = {a1, . . . , aN}, B =

{b1, . . . , bN}, MAE and RMSD are defined as follows:

MAE =
1

n

n∑
i=1

|ai − bi| , RMSD =

√√√√ 1

n

n∑
i=1

(ai − bi)2 .

We haveN = 2113 users, ai is the number of ratings in hetrec2011-movielens-

2k for the user i, (i = 1, . . . , n), and bi are the corresponding number of ratings for

the user i in the generated dataset.

6.2.3. Results

We found experimentally that the best fit holds when s = 21.5, v = 10000, R =

3000. In the Figure 6 we compare the distributions from the MovieLens dataset and

the dataset generated by MultiGen. The discovered parameter settings minimize

both errors: MAE = 105.13, RMSD = 142.57. However, these parameter settings

can still be further improved as seen in the figure, especially in terms of which items

get rated more and how much (see left of Figure 6). The skewed effect on the items

rating is more clearly visible in Figure 7. Currently, we use random variable for

generating the number of ratings by a customer only and the same random number

0 500 1000 1500 2000 2500 3000 3500
Number of Ratings

0

100

200

300

400

500

600

Us
er

 C
ou

nt

nu ≈2000, R=3000, s=21.5, v=10000

0 200 400 600 800 1000 1200 1400 1600 1800
Number of Ratings

0

1000

2000

3000

4000

5000

6000

7000

8000

Ite
m

 C
ou

nt

nu ≈2000, R=3000, s=21.5, v=10000

Fig. 6. (Color online) Comparison of the dataset from MultiGen and hetrec2011-movielens-
2k dataset. (Left) distribution of the number of ratings provided the user (right) number of ratings
an item has.

1540009-22

March 27, 2015 17:37 IJAIT S0218213015400096 page 23

2nd Reading

Learning Relational User Profiles

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5, v=10000

MovieLens
Generator

100 101 102 103 104

Item Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5, v=10000

MovieLens
Generator

Fig. 7. (Color online) Log-Log plot from Figure 6.

is used implicitly for selecting an item. For this reason, it is easier to predict the

effect of parametric changes on the number of ratings by the customers but not on

the items.

In Figure 7 we see that the distributions are similar, but plot for users in Movie-

Lens (on the left) one ends abruptly. This is because the data provider has removed

all the users who have less than 20 ratings. This made it slightly difficult to estimate

the correct parameter for the Zipf distribution.

In Figures 8–11 we show the effects of parametric change on how the ratings for

the items get affected.

6.3. Experiments on synthetic data

We first study the performance of xStreams for various sizes of the sliding window:

w = 2, 4, 8. We set xStreams to return the top-n recommendations for n = 7 and

to consider the k = 7 nearest neighbors (cf. Algorithm 2). We use only simCB(),

i.e. set weight = 1.0 in Eq. (5) and splittest = 0.0.

In Figures 12(a) and (b), we see that the smallest window size w = 2 achieves

the best RMSE curve: the values are low and the recovery after the concept shift

at t8 is fast. This indicates that forgetting old data soon is best if the data exhibit

drifts. We have also run this experiment for Precision, Recall and F-Measure and

also for k = 30; we observed the same trend.

In Figures 12(c) and (d), we compare xStreams to CFStream. For xStreams,

settings are same except the window is set to w = 2 and varying the weight

of simCB() in Eq. (5), assigning the values 1.0, 0.67, 0.34. xStreams outperforms

CFStream and exhibits lowest RMSE when the weight of simCB() in the ratings

is 0.67; this means that both the similarity of users on accumulated past data, as

captured by simCB(), and the conventional similarity on the ratings should be

taken into account. However, CFStream that only considers the conventional simi-

larity has lower performance. When evaluating on F-measure, Precision and Recall

(not shown), xStreams also outperformed CFStream; for Precision and Recall, the

1540009-23

March 27, 2015 17:37 IJAIT S0218213015400096 page 24

2nd Reading

Z. F. Siddiqui et al.

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, R=3000, v=10000

s=25
s=15
s=21.5

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5

v=10000
v=15000
v=5000

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, v=10000, s=21.5

R=3000
R=5000
R=1000

Fig. 8. (Color online) Effect of changing various parameters of the Zipf distribution on the user’s
rating behaviour (left) variable s, (right) variable v and (bottom) variable R.

values for weight = 1.0 were better than for weight = 0.67 in the first half of the

timepoints but deteriorated thereafter; for weight = 0.67, the performance was more

stable.

6.4. Experiments on real data

We evaluate xStreams to CFStream on MovieLens. Over the 140 timepoints

(months) of the MovieLens data, we slide a window w of length 12.

We show the curves on Precision and RMSE for w = 12, n = 2, and k = 100

in Figures 13(a) and (b), respectively. The evaluation measures illustrate nicely

how different parameter settings respond to these two counteracting measures. All

the strategies had a low recall, which was around 0.04 with little variance among,

therefore we omit their graphs. The algorithm allows for the exploitation of more

past data because of the larger window size (w = 12). We have set the number

of neighbours k = 100 and used a splittest = 0.5, i.e. half of the arriving ratings

are held-out for evaluation. We start with the delivery of recommendations at t30,

because the numbers of ratings and rated items are very low in the first timepoints,

while the number of cold-start items is very high (see Figures 5(a), (d) and (c),

respectively).

1540009-24

March 27, 2015 17:37 IJAIT S0218213015400096 page 25

2nd Reading

Learning Relational User Profiles

100 101 102 103 104

Item Count
100

101

102

103

No
 o

f R
at

in
gs

nu ≈2000, R=3000, v=10000

s=25
s=15
s=21.5

100 101 102 103 104

Item Count
100

101

102

103

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5

v=10000
v=15000
v=5000

100 101 102 103 104

Item Count
100

101

102

103

No
 o

f R
at

in
gs

nu ≈2000, v=10000, s=21.5

R=3000
R=5000
R=1000

Fig. 9. (Color online) Effect of changing various parameters of the Zipf distribution on the how
items get rated (left) variable s, (right) variable v and (bottom) variable R.

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

ni =9000, R=3000, s=21.5, v=10000

n^u=2000
n^u=1000
n^u=4000

100 101 102 103 104

Item Count
100

101

102

103

No
 o

f R
at

in
gs

ni =9000, R=3000, s=21.5, v=10000

n^u=2000
n^u=1000
n^u=4000

Fig. 10. (Color online) Effect of changing the parameter nu on the ratings’ distribution for user

and item.

It is obvious that precision (and also recall) values depend strongly on the

number of recommendations. Thus, if we increase the n parameter, precision will fall

(and recall will increase). Comparing the curves for the two n values, we observe that

the setting n = 2 and n = 7 (see Figures 13(d) and (d)) leads to lower performance.

Returning the top-2 recommendations is more challenging, but we expected that

1540009-25

March 27, 2015 17:37 IJAIT S0218213015400096 page 26

2nd Reading

Z. F. Siddiqui et al.

100 101 102 103 104

User Count
100

101

102

103

104

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5, v=10000

n^i=4500
n^i=9000
n^i=18000

100 101 102 103 104 105

Item Count
100

101

102

103

No
 o

f R
at

in
gs

nu ≈2000, R=3000, s=21.5, v=10000

n^i=4500
n^i=9000
n^i=18000

Fig. 11. (Color online) Effect of changing the parameter ni on the no of ratings distribution for
user and item.

2 4 6 8 10 12 14 16 18
1.20

1.25

1.30

1.35

1.40

R
M

S
E

w=2

w=4

w=8

2 4 6 8 10 12 14 16 18
Timepoint

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Pr
ec

is
io

n

w=2

w=4

w=8

(a) (b)

2 4 6 8 10 12 14 16 18
1.20

1.25

1.30

1.35

1.40

R
M

S
E

xStreams (weight=1.00)

xStreams (weight=0.67)

xStreams (weight=0.34)

CFstream

2 4 6 8 10 12 14 16 18
Timepoint

0.19

0.20

0.21

0.22

0.23

0.24

0.25

Pr
ec

is
io

n

xStreams (weight=1.00)
xStreams (weight=0.67)
xStreams (weight=0.34)
CFstream

(c) (d)

Fig. 12. (Color online) RMSE values for xStreams: (a) and (b) under different windows sizes
w = 2, 4, 8 (simCB() = 1.0); (c) and (d) when comparing xStreams to CFStream (w = 2), for

k = 7 nearest neighbours and returning n = 7 recommendations; lower values are better.

the large window size and the use of simCB() would have partially compensated

it. The precision drops faster for n = 7 (Figure 13(a) vs. (c)). A further reason for

the low performance is the use of splittest = 0.5: setting aside half of the data for

evaluation has a stronger negative impact in the larger window.

1540009-26

March 27, 2015 17:37 IJAIT S0218213015400096 page 27

2nd Reading

Learning Relational User Profiles

30 40 50 60 70 80 90 100 110 1200.0

0.1

0.2

0.3

0.4

0.5

P
re

ci
si

o
n

xStreams

xStream(weight=0.66)

xStream(weight=0.33)

CFStream

30 40 50 60 70 80 90 100 110 1201.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

R
M

S
E

xStreams

xStream(weight=0.66)

xStream(weight=0.33)

CFStream

(a) (b)

20 40 60 80 100 120 140

Timepoint

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
re

ci
si

o
n

xStreams
xStream(weight=0.66)

xStream(weight=0.33)

CFStream

20 40 60 80 100 120 140

Timepoint

1.05

1.10

1.15

1.20

1.25

1.30

R
M

S
E

xStreams
xStream(weight=0.66)

xStream(weight=0.33)

CFStream

(c) (d)

Fig. 13. (Color online) Comparison of xSreams & CFStream: (a) Precision and (b) RMSE for
n = 2, w = 12, k = 100; (c) Precision and (d) RMSE for n = 7, w = 12, k = 100.

Among the different variants of xStream and the CFStream there is no clear

winner. Rather, each strategy outperforms the others at different moments. CF-

Stream performs comparably to xStreams in the first moments, while the variants

of xStreams with a weight of 67% or 0.33% for simCB() show consistently better

performance after t60, i.e. they cope well with the influx of cold start items at t80

(Figure 5(c)). Since CFStream corresponds to a weight of 0, and since xStreams

with weight = 1.0 shows lower precision/recall values, we conclude that it is nec-

essary to combine the similarity among recent ratings (done by simCF ()) with

the similarity of the profiles incorporating the users’ past behaviour (as done by

simCB()).

7. Conclusion

7.1. Summary

We have presented a stream-based recommendation method that learns and adapts

to the user preferences, as these preferences evolve over time. Preferences are re-

flected in the ratings that users give to items; we accumulate them to user profiles,

1540009-27

March 27, 2015 17:37 IJAIT S0218213015400096 page 28

2nd Reading

Z. F. Siddiqui et al.

and use stream clustering to build the profiles and adjust them to change. This

gives the basis for a more elaborate notion of similarity: instead of a static similar-

ity between users, we have a dynamic similarity between user profiles. To alleviate

possible negative effects caused by very large profiles (sparse clusters with large

radius), we also restrict similarity further by requiring proximity within the profile.

Hence, two users are similar at some moment, if they have the same profile at this

moment and are proximal within the profile.

We have also presented a multi-stream generator that has been inspired from

the domain of recommendation system. It generates ratings data for users according

to user profiles. With time the profiles mutates into newer ones. The mutation can

be adjusted to simulate drastic shifts as well more gradual drifts. The generator can

be used for evaluating supervised and unsupervised learning task for discovering

and adaptation to concept drift.

We have studied our approach on a synthetic and a real dataset. The synthetic

dataset has been used to depict the effects of change in a controlled, transparent

way. For this dataset, we have shown that our method experiences a performance de-

terioration after the imputed change, whereupon it replaces gradually but swiftly

the outdated profiles with new ones, and recovers fast. The real dataset Movie-

Lens exhibits less drastic forms of change, whereupon our approach also shows

smoother performance. Strategies with larger window size achieve higher precision

and average RMSE (which is apparently dominated by precision) at the cost of low

recall. The best balance between precision and recall is achieved by a strategy with

small window size, i.e. one that maintains little profile information and replaces the

profiles as soon as performance deteriorates.

7.2. Discussion and future work

An intriguing finding was the discrepancy between precision and recall for all strate-

gies, i.e. for both our stream-based strategies with different window sizes and for

the change-insensitive baseline. A possible explanation, which requires further in-

vestigation though, is the power law that governs the data distribution. The long

tail shown in Figure 2 implies that little information is available for most of the

users: perhaps, high precision is achieved by learning a lot about the few users in

the short head, while the low recall is caused by the long tail. This seems to be

supported by the fact that best recall is achieved by the strategy with the smallest

window size, which exploits little information about the users and forgets learned

profiles fast. A deeper study of this issue is our next planed task.

Related to the above is the future study of the implications of power law on the

similarity among users: there are many users with many ratings, but most users

have few ratings on mostly different items. This makes the computation of similarity

more complicated. We want to investigate elaborate similarity measures for such

users. This will allow us to tackle the problem of formulating recommendations for

the many users in the long tail, whose preferences evolve no less than those of the

few users in the short head.

1540009-28

March 27, 2015 17:37 IJAIT S0218213015400096 page 29

2nd Reading

Learning Relational User Profiles

In multi-stream generator, we allow the user profiles to mutate over time, how-

ever, the items remain static. In real world the item profiles under go change as

well, e.g. comedy movies have gradually gotten more and more anarchic or with

the advances in technology the sci-fi genre have gradually changed its outlook.

While the mutation of user profiles represents sudden shift in the distribution of

the data, by incorporating the dynamics of change for item profiles, more gradual

shift can be incorporated into the dataset. Such a generator would also be beneficial

trajectory-based stream methods.

Acknowledgments

Part of this work was funded by the German Research Foundation project SP

572/11-1 “IMPRINT: Incremental Mining for Perennial Objects” (first author),

and by the Greek Scholarship Foundation (IKY) for postdoctoral studies (ESPA

2007-2013) (third author).

References

1. M. Balabanovic and Y. Shoham, Fab: Content-based, collaborative recommendation,
ACM Communications 40(3) (1997) 66–72.

2. M. Deshpande and G. Karypis, Item-based top-N recommendation algorithms, ACM
Transactions on Information Systems 22(1) (2004) 143–177.

3. M. B. Dias, D. Locher, M. Li, W. El-Deredy and P. J. Lisboa, The value of personalised
recommender systems to e-business: A case study, in Proc. of the 2nd ACM Conference
on Recommender Systems (RecSys 2008) (2008), pp. 291–294.

4. E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme and W. Nejdl, Real-time top-N
recommendation in social streams, in Proc. of the 6th ACM Conference on Recom-
mender systems (RecSys 2012) (2012).

5. Y. Ding and X. Li, Time weight collaborative filtering, in Proc. of the 14th ACM Int.
Conf. on Information and Knowledge Management (CIKM 2005) (2005), pp. 485–492.

6. J. Gama, R. Sebastião and P. P. Rodrigues, Issues in evaluation of stream learning
algorithms, in Proc. 15th ACM Int. Conf. on Knowledge Discovery and Data Mining
(KDD 2009) (ACM, 2009), pp. 329–338.

7. J. Herlocker, J. A. Konstan and J. Riedl, An empirical analysis of design choices
in neighborhood-based collaborative filtering algorithms, Information Retrieval 5(4)
(Oct. 2002) 287–310.

8. J. L. Herlocker, J. A. Konstan, L. G. Terveen and J. T. Riedl, Evaluating collaborative
filtering recommender systems, ACM Trans. Inf. Syst. 22(1) (Jan. 2004) 5–53.

9. Y. Koren, Collaborative filtering with temporal dynamics, in Proc. 15th ACM Int.
Conf. on Knowledge Discovery and Data Mining (KDD 2009) (2009), pp. 447–456.

10. Y. Koren, Collaborative filtering with temporal dynamics, Communications of ACM
53(4) (2010) 89–97.

11. Y. Koren and R. Bell, Advances in collaborative filtering, in Recommender Systems
Handbook, eds. F. Ricci, L. Rokach, B. Shapira and P. B. Kantor, Chap. 5 (Springer
Science+Business Media, 2011), pp. 145–186.

12. M. R. McLaughlin and J. L. Herlocker, A collaborative filtering algorithm and evalu-
ation metric that accurately model the user experience, in Proc. of the 27th ACM Int.

1540009-29

March 27, 2015 17:37 IJAIT S0218213015400096 page 30

2nd Reading

Z. F. Siddiqui et al.

Conf. on Research and Development in Information Retrieval (SIGIR 2004) (ACM,
2004), pp. 329–336.

13. R. J. Mooney and L. Roy, Content-based book recommending using learning for text
categorization, in Proc. of the 5th ACM Conference on Digital Libraries (CDL 2000)
(ACM, 2000), pp. 195–204.

14. O. Nasraoui, C. Cardona-Uribe and C. Rojas-Coronel, Tecno-Streams: Tracking
evolving clusters in noisy data streams with an scalable immune system learn-
ing method, in Proc. of the 3rd IEEE Int. Conf. on Data Mining (ICDM 2003)
(Melbourne, Australia, 2003).

15. O. Nasraoui, J. Cerwinske, C. Rojas and F. Gonzalez, Performance of recommendation
systems in dynamic streaming environments, in Proc. of the SIAM Int. Conf. on Data
Mining (SDM 2007) (2007).

16. A. Papadimitriou, P. Symeonidis and Y. Manolopoulos, A generalized taxonomy of
explanation styles for traditional and social recommender systems, Data Mining and
Knowledge Discovery 24(3) (2012) 555–583.

17. M. J. Pazzani and D. Billsus, Learning and revising user profiles: The identification
of interesting web sites, ML 27(3) (1997) 313–331.

18. A. Prieditis and S. J. Russell (eds.), Machine Learning, Proc. of the Twelfth Int. Conf.
on Machine Learning (Morgan Kaufmann, 1995) (Tahoe City, California, USA, July
9–12, 1995).

19. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, GroupLens: An open
architecture for collaborative filtering on netnews, in Proc. of the Computer Supported
Collaborative Work Conference (RISBR 1994) (1994), pp. 175–186.

20. J. Salter and N. Antonopoulos, CinemaScreen recommender agent: Combining collab-
orative and content-based filtering, Intelligent Systems Magazine 21(1) (2006) 35–41.

21. B. Sarwar, G. Karypis, J. Konstan and J. Riedl, Item-based collaborative filtering
recommendation algorithms, in Proc. of the 10th International World Wide Web
Conference (WWW 2001) (2001), pp. 285–295.

22. Z. F. Siddiqui and M. Spiliopoulou, Combining multiple interrelated streams for
incremental clustering, in Proc. of the 21st Int. Conf. on Scientific and Statistical
Database Management (SSDBM 2009) (2009).

23. Z. F. Siddiqui and M. Spiliopoulou, Stream clustering of growing objects, in Proc. of
12th Int. Conf. on Discovery Science (DS 2009) (2009).

24. Z. F. Siddiqui and M. Spiliopoulou, Tree induction over perennial objects, in Proc. of
the 22nd Int. Conf. on Scientific and Statistical Database Management (SSDBM 2010)
(Springer-Verlag, 2010), pp. 640–657.

25. Z. F. Siddiqui, M. Spiliopoulou, P. Symeonidis and E. Tiakas, A data genera-
tor for multi-stream data, in Proc. of the 2nd Int. Workshop on Mining Ubiqui-
tous and Social Environments (MUSE 2011) (at the ECML PKDD 2011, Athens,
Greece, September 5, 2011), pp. 70–78 of the document. http://www.kde.cs.uni-
kassel.de/ws/muse2011/proceedings.pdf

26. P. Symeonidis, E. Tiakas and Y. Manolopoulos, Product recommendation and rating
prediction based on multi-modal social networks, in Proc. of the 5th ACM Conference
on Recommender Systems (RecSys 2011) (2011), pp. 61–68.

27. L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang and J. Sun, Temporal
recommendation on graphs via long- and short-term preference fusion, in Proc. 16th
ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD 2010) (Washington,
DC, 2010), pp. 723–732.

28. G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu and Z. Chen, Scalable collabora-
tive filtering using cluster-based smoothing, in Proc. of the 28th ACM Int. Conf. on

1540009-30

March 27, 2015 17:37 IJAIT S0218213015400096 page 31

2nd Reading

Learning Relational User Profiles

Research and Development in Information Retrieval (SIGIR 2005) (Salvador, Brazil,
2005), pp. 114–121.

29. Q. Yuan, G. Cong, Z. Ma, A. Sun and N. Magnenat-Thalmann, Time-aware point-
of-interest recommendation, in Proc. of the 36th ACM Int. Conf. on Research
and Development in Information Retrieval (SIGIR 2013) (Dublin, Ireland, 2013),
pp. 363–372.

1540009-31

