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MusicBox: Personalized Music Recommendation
based on Cubic Analysis of Social Tags

Alexandros Nanopoulos, Dimitrios Rafailidis, PanagiotisSymeonidis and Yannis Manolopoulos

Abstract—Social tagging is becoming increasingly popular in
music information retrieval (MIR). It allows users to tag music
items like songs, albums, or artists. Social tags are valuable to
MIR, because they comprise a multifaced source of information
about genre, style, mood, users’ opinion, or instrumentation.
In this paper, we examine the problem of personalized music
recommendation based on social tags. We propose the modeling of
social tagging data with 3-order tensors, which capture cubic (3-
way) correlations between users-tags-music items. The discovery
of latent structure in this model is performed with the Higher
Order Singular Value Decomposition (HOSVD), which helps
to provide accurate and personalized recommendations, i.e.,
adapted to the particular users’ preferences. To address the
sparsity that incurs in social tagging data and further improve
the quality of recommendation, we propose to enhance the
model with a tag-propagation scheme that uses similarity values
computed between the music items based on audio features. As
a result, the proposed model effectively combines both infor-
mation about social tags and audio features. The performance
of the proposed method is examined experimentally with real
data from Last.fm. Our results indicate the superiority of the
proposed approach compared to existing methods that suppress
the cubic relationships that are inherent in social taggingdata.
Additionally, our results suggest that the combination of social
tagging data with audio features is preferable than the soleuse
of the former.

Index Terms—Social tags, Audio similarity, Music Recommen-
dation, Tensors, HOSVD.

I. I NTRODUCTION

Social tagging is the process through which users apply
free text metadata (tags) to annotate items and to facilitate
their retrieval. Social tagging is gaining increasing popularity
in music information retrieval (MIR). Web sites like Last.fm,
MyStrands, and Qloud, allow users to tag music items such
as songs, albums, or artists. The power of social tags lies on
the fact that they are shared among users. Social tags provide
information about various features that are desirable in MIR,
like the genre, style, mood, users’ opinion, or instrumentation.
Thus, conversely to a single piece of information, like the
genre assigned from a taxonomy, social tags comprise a
multifaced source of information about music content [7].

Social tags can be used in several ways. The most widely
applied way is to consider them as query terms, e.g., find all
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songs tagged as “classic”. However, there are some important
challenges posed by the free nature of social tags, which
impact their direct usage as query terms:

• The first challenge is that tags may have more than one
meaning, a problem calledpolysemy. For instance, several
users may refer to music composed in the 18th century
with the tag “classic”, but the tag “classic” may also
be assigned by other users to rock songs from the 60’s.
Thus, when applying “classic” as a query term, users may
unfortunately retrieve a mixture of music pieces from the
aforementioned categories.

• A second challenge is the existence of different tags
with similar meaning, a problem calledsynonymy. As a
result, related music items may not be retrieved together,
because they do not share any tags. For instance, some
music pieces composed in 18th century may be tagged
as “orchestral” and not be retrieved together with others
tagged as “classic”.

• A third challenge, not related to the meaning of tags, is
that most of the music items are tagged poorly, a problem
called sparsity (or cold-start). For instance, a new song
is not being as frequently tagged as one that topped the
charts. Therefore, users face difficulties when trying to
retrieve less frequently tagged content.

The widely used technique of latent semantic analysis
(LSA) [4] has recently been applied as a MIR method
for addressing the problems of synonymy, polysemy, and
noise in social tags [8]. LSA reveals latent structures in
the data by using techniques like the Singular Value De-
composition (SVD). Therefore, similar music items can be
retrieved and recommended to users based on their rep-
resentation in the resulting latent space, even if they do
not share any tags (not even the query tag)1. On the
other hand, the problem of sparsity has been investigated
in a number of ways. Tagging games, like Tag a Tune
(www.gwap.com/gwap/gamesPreview/tagatune), Major Miner
(majorminer.com), Listen Game (www.listengame.org), or
Herd It (apps.facebook.com/herd-it) collect tags with human
players that try to guess the tags of other players. Despite of
their potential, music tagging games have not reached the scale
of social tagging systems (like Last.fm) [7]. For this reason,
research has been conducted to employ features extracted
from audio to directly fight sparsity in social tagging systems.
A recent experimental evaluation demonstrated that content-

1As the results may not share the query tag, in the sequel we more generally
refer to the problem as the recommendation of music items, because the
retrieved results may contain items not explicitly requested.
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based similarity can help to propose labels to yet unlabeled
songs [12]. Autotagging [3] represents another approach that
uses automated content analysis to predict social tags directly
from audio.

A. Background and Motivation

Approaches based on LSA [8], compute the SVD of a
two dimensional matrix that represents 2-way relationships
between music items and tags. Although, as previously de-
scribed, this approach addresses synonymy and polysemy, it
suppresses the 3-way (cubic) relationships originally contained
in the social tagging data, i.e., between users-items-tags, to
just 2-way relationships, i.e., between items-tags. However,
music is an artistic concept and music items have a rich and
complex view, which is only partially perceived by particular
users, depending on their emotional and cultural perspective on
music. Social tags are a powerful mechanism that project for
each user his perception about a particular music item. For
instance, when only items-tags relationships are considered,
assume that a male userU1 is fond of young female singers
and has tagged Christina Aguilera as “sexy” and Beyonce
as “sensual”, whereas a female userU2 likes male singers
and has tagged Lenny Kravitz as “sexy”. When intending to
listen to “sexy” artists, the recommendation results forU1 will
include both Aguielera and Beyonce (i.e., synonymy between
“sensual” and “sexy” is addressed), but Kravitz as well, since
the personalized aspect of the tag “sexy” is ignored.

To overcome this problem, we have recently proposed [13]
to extent LSA towards the consideration of cubic relationships
between users-items-tags. This was attained by generalizing
the SVD method to higher dimensions through the Higher-
Order SVD (HOSVD), a technique that finds increasingly
more applications in various scientific fields [6]. Based on
HOSVD, substantially better personalized recommendations
can be provided. Nevertheless, the method presented in our
preliminary work did not address the problem of sparsity.
Along the lines of [3], [12], sparsity in social tagging systems
has to be confronted with features extracted from audio. How-
ever, the latter two works focused on automatic tag prediction
(used, e.g., for tag autocompletion) and not on personalized
recommendation of music items.

B. Contribution and Layout

Here, we propose a method based on HOSVD to extend our
previous work on recommending music items, by combining
similarities extracted from audio features with social tags. In
particular, we opt to address all described problems: (i) syn-
onymy and polysemy, as HOSVD is effectively an extended
LSA, (ii) consideration of the personalized aspect of tags,as
HOSVD is able to reveal 3-way latent correlations, and (iii)
sparsity, as similarities from audio features can account for
the absence of social tags. After summarizing related work
(Section II), we describe how the proposed method models
the social tagging data with a 3-ordertensor (three dimen-
sional matrix), for which we briefly describe the necessary
background information (Section III). Next (Section IV), we

present how the proposed method applies HOSVD to rec-
ommendation. To ease comprehension, the proposed method
is outlined with a motivating example. Since the model,
i.e., the 3-order tensor, is highly sparse, we subsequently
(Section V) describe a method to exploit audio features and
reduce sparsity. Our experimental results on real-world social
tagging data from Last.fm (Section VI) provide evidence about
the effectiveness of the proposed method and how it addresses
all the aforementioned problems. Finally, we furnish the basic
conclusions of our study (Section VII).

II. RELATED WORK

Music recommendation has been addressed in various
works. In an early attempt, Logan [10] proposed a music
recommendation method based solely on using acoustic-based
similarity measure. Other approaches try to bridge the seman-
tic gap and to employ hybrid music recommendation methods.
Yoshii et al. [14] model collaborative filtering (CF) data and
audio-content data together, and unobservable user preferences
are statistically estimated. Li et al. [9] employ a probabilistic
model estimation for CF. Celma [1] mines music information
from the Web (album releases, MP3 blogs, etc.) and combines
it with user profiling and audio-content descriptions. However,
these existing works are different from our proposed method
in the fact that they do not exploit social tags, whose large
potential for MIR has been only recently recognized [7], [8].

The application of LSA for discovering the latent semantic
structure in an items-tags space has been proposed by Levy
and Sandler [8]. As described in Section I-A, methods based
on LSA suppress the 3-way users-items-tags relationships
and, thus, do not consider the personalized aspect of tags.
This problem has been recently examined in [13]. However,
differently from this preliminary work, our proposed method
exploits not only social tags, but also features extracted from
the audio to address the problem of sparsity.

An innovative combination of social tags and audio features
has been proposed by Eck et al. [3], where new tags are
predicted, while using audio features extracted from music
and supervised learning. This method focuses on the task
of tag autocompletion, by allowing the system to suggest
tags to users, opting to a quick converge on a stable set of
tags, whereas we focus on the problem of recommending
music items, not tags. Sordo et al. [12] propose a way to
annotate music collections by exploiting audio similarityas
a way to propagate labels to untagged songs. We use a
similar approach, but we follow a different technique and for
a different purpose. We focus on how to propagate tags within
the tensor model of the social tagging data in order to help
HOSVD to discover better latent structure and to improve the
quality of personalized recommendation of music items.

III. T ENSORS ANDHOSVD

This section provides a concise introduction to the topic
of tensors and their decomposition. Atensor is a multi-
dimensional matrix. AnN -order tensorA is denoted as
A ∈ R

I1...IN , with elementsai1,...,iN
. In this paper, for the

purposes of the proposed approach, only 3-order tensors are
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used. In the following, tensors are denoted by calligraphic
uppercase letters (e.g.,A,B), matrices by uppercase letters
(e.g.,A, B), and scalars by lowercase letters (e.g.,a, b).

HOSVD generalizes SVD to multi-dimensional matri-
ces [2]. To apply HOSVD on a 3-order tensorA we need
the definition of the following threematrix unfoldings:

A1 ∈ R
I1×I2I3 , A2 ∈ R

I2×I1I3 , A3 ∈ R
I1I2×I3

EachAn, 1 ≤ n ≤ 3, is called then-mode matrix unfolding
of A and is computed by arranging the corresponding fibers
of A as columns ofAn. The left part of Figure 1 depicts
an example tensor, whereas the right one shows the 1-mode
matrix unfoldingA1 ∈ R

I1×I2I3 , where the columns (1-mode
fibers) ofA are being arranged as columns ofA1.
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Fig. 1. An example tensorA and its 1-mode matrix unfoldingA1.

Next, the n-mode product of anN -order tensorA ∈
R

I1×...×IN by a matrix U ∈ R
Jn×In is defined, which is

denoted asA ×n U . The result of then-mode product is an
(I1 × I2 × . . . × In−1 × Jn × In+1 × . . . × IN )-tensor, the
entries of which are defined as follows:

(A×n U)i1i2...in−1jnin+1...iN
=

∑

in

ai1i2...in−1inin+1...iN
ujnin

(1)

Since the focus is on 3-order tensors,n ∈ {1, 2, 3}, only
1-mode, 2-mode, and 3-mode products are being used. The
HOSVD of a 3-order tensorA can be written as [2]:

A = S ×1 U (1) ×2 U (2) ×3 U (3) (2)

whereU (1), U (2), U (3) contain the orthonormal vectors (called
the 1-mode, 2-mode and 3-mode singular vectors, respec-
tively) spanning the column space of theA1, A2, A3 matrix
unfoldings.S is the core tensor and has the property of all
orthogonality. Figure 2 illustrates the result of HOSVD.

Fig. 2. Visualization of the result of HOSVD.

IV. RECOMMENDATION BASED ONHOSVD

First, we outline the proposed method, which bases the
recommendation of music items on HOSVD, through a mo-
tivating example. Next, we analyze the steps of the proposed
method. To ease the presentation, this section bases its discus-
sion only on social tags. The combination with audio features
is separately described in the following section.

A. Outline

The data collection accumulated by the social tagging
system is calledusage data, which can be represented by a
set of triplets〈u, t, i〉. Each triple denotes thatu user labeled
with the t tag thei item.

To outline how the proposed approach works, we use as
running example the usage data illustrated in Figure 3, where
4 users tagged 4 different music items (artists). In this figure,
the arrow lines and the numbers placed on top of them give
the correspondence between the three types of entities. For
example, userU1 tagged Beyonce (item asI1) as “sensual”
(tagT1). From Figure 3, we can see that usersU1 andU2 have
a common interest about female singers, while usersU3 and
U4 have a common interests about male singers.

Fig. 3. Usage data of the example.

A 3-order tensorA ∈ R
4×4×4 can be constructed from these

usage data, whose elements are given in Table I. Along with
each element we associate a weight, initially set to 1 (the role
of this weight is explained in the end of this section).

Arrow Line User Tag Item Weight
1 U1 T1 I1 1
2 U2 T1 I1 1
3 U2 T2 I2 1
4 U2 T3 I3 1
5 U3 T3 I4 1
6 U3 T4 I4 1
7 U4 T4 I4 1

TABLE I
THE ELEMENTS OF THE TENSOR FROM THE EXAMPLE INFIGURE 3.

The proposed method applies HOSVD on the 3-order tensor
A constructed from these usage data. Similarly to LSA for
two dimensional matrices, we maintain only a number of the
original dimensions in each of the three modes (this procedure
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is detailed in Section IV-B). This way, we get a reconstructed
tensorÂ, which approximatesA. Â reveals the latent structure
in A and contains a reduced amount of noise compared toA.
Table II gives the elements of the reconstructed tensor for
the tensor of Table I. The graphical form of̂A is depicted in
Figure 4.

Fig. 4. Graphical form of the reconstructed tensor for the example.

Arrow Line User Tag Item Weight
1 U1 T1 I1 0.50
2 U2 T1 I1 1.20
3 U2 T2 I2 0.85
4 U2 T3 I3 0.85
5 U3 T3 I4 0.72
6 U3 T4 I4 1.17
7 U4 T4 I4 0.72
8 U1 T2 I2 0.35
9 U1 T3 I3 0.35
10 U4 T3 I4 0.44

TABLE II
THE ELEMENTS OF THE RECONSTRUCTED TENSOR FROM THE EXAMPLE IN

FIGURE 3.

The reconstructed tensor̂A additionally contains latent
associations discovered among the involved entities, which are
typed with boldface in the last three rows of Table II (the cor-
responding arrows in Figure 4 are depicted with dotted lines).
Each element ofÂ is represented as a quadruplet〈u, t, i, w〉.
The weightw of each quadruplet corresponds to the likeness
that useru will tag with t the i item. Please notice that the
reconstructed tensor̂A has modified weights compared to the
original tensorA. Therefore, we can use the reconstructed
tensor to reveal latent associations and recommend to a user
u items for a query tagt according to the weights in the
quadruplets that containu and t.

In our example, assume that both usersU1 andU4 provide
as query term the tag “sexy” (T3). From the reconstructed
tensor and the quadruplet〈U1, T3, I3, 0.35〉, we can recom-
mend Christina Aguilera toU1, whereas from the quadruplet
〈U4, T3, I4, 0.44〉, we can recommend Lenny Kravitz toU4.
It is worth mentioning that neitherU1 nor U4 have originally
tagged any artist as “sexy”. Thus, similarly to LSA [8], the
latent relationships provide toU1 andU4 recommendations for
this tag. Conversely to LSA [8], however, the consideration
by HOSVD of all 3 modes (users-items-tags) helps to provide

personalized recommendations to different users for the same
query.

B. Algorithm

In this section, we elaborate on the algorithm that applies
HOSVD on tensors and recommends musical items according
to the detected latent associations in the reconstructed tensor.
The procedure can be decomposed in 6 steps presented as
follows.

1) The initial construction of tensorA: Based on the usage
data, we construct an initial 3-order tensorA ∈ R

Iu×It×Ii ,
where Iu, It, Ii are the numbers of users, tags and items,
respectively. The initial weight assigned to each entry ofA
is equal to 1.

2) Matrix unfolding of tensorA: As described in Sec-
tion III, a tensorA can be unfolded i.e., transformed to a
two dimensional matrix. In our approach, the initial tensorA
is unfolded to all its three modes. Thus, after the unfoldingof
tensorA, we create 3 new matricesA1, A2, A3, as follows:

A1 ∈ R
Iu×ItIi , A2 ∈ R

It×IuIi , A3 ∈ R
IuIt×Ii

3) Application of SVD on each unfolded matrix:Next, SVD
is applied on the three matrix unfoldingsAn (1 ≤ n ≤ 3),
resulting to the following decomposition:

An = U (n) · Σ(n) · (V (n))T , 1 ≤ n ≤ 3 (3)

To reveal latent associations and reduce noise, the dimen-
sionality of each array containing the left-singular vectors (i.e.,
matricesU (1), U (2), U (3)) has to be reduced. Therefore, we
maintain the dominantcn left singular vectors in eachU (n),
1 ≤ n ≤ 3 matrix (as will be shortly explained, onlyU (n)

matrices are used in the following) based on the corresponding
singular values inΣ(n). The resulting matrix is denoted as
U

(n)
cn

. The value of cn parameters are usually chosen by
preserving a percentage of information of the original inΣ(n).
In our experiments this percentage was set to 60%, because
we found that higher values increase the computation time
without paying-off in terms of the accuracy of prediction.

4) The core tensorS construction: The core tensor S (see
Equation 2) governs the interactions among the three examined
modes. Its construction is implemented as follows:

S = A×1

(

U (1)
c1

)T

×2

(

U (2)
c2

)T

×3

(

U (3)
c3

)T

, (4)

whereA is the initial tensor and
(

U
(n)
cn

)T

is the transpose of

U
(n)
cn

. Notice thatS is a c1 × c2 × c3 tensor.
5) The reconstructed tensor̂A: Finally, the reconstructed

tensorÂ is computed by:

Â = S ×1 U (1)
c1

×2 U (2)
c2

×3 U (3)
c3

(5)

where Â is a tensor with the same size asA. Â is a good
approximation ofA, in the sense that the Frobenius norm
||A − Â||2F (element-wise squared differences) is small [2].
Moreover, as described,̂A contains less noise and contains
additional, latent associations, resulting from keeping only a
subset of the dominant left singular vectors in Step 3.
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6) The generation of the item recommendations:The el-
ements of the reconstructed tensor̂A are represented as
quadruplets〈u, t, i, w〉, where thew weight corresponds to
the likeliness that useru will tag item i with tag t. If N items
have to be recommended tou that queried with tagt, then
(as exemplified in Section IV-A) theN items are selected that
have the highest weights from quadruplets that contain bothu

and t.

V. EXPLOITING AUDIO SIMILARITY

Sparsity occurs in social tagging data, because users tend to
provide a relatively small number of tags and, moreover, they
tend to tag only a small subset of popular music items. As a
consequence, when using a 3-order tensor to model the social
tagging data, the resulting tensor can be very sparse. Sparsity
affects negatively the HOSVD and the discovery of latent
structure. Thus, the quality of the resulting recommendations
reduces.

An effective way to address sparsity is to exploit an audio-
based similarity measure, so that untagged items can inherit
social tags from tagged items to which they are acoustically
similar. This process is based on the assumption that similar
sounding music will have similar tags [7]. Similarly to [12],
the audio-based similarity can be considered as a “black
box” (the computed audio similarities are normalized in the
range 0–1). In our study, we focused on songs as music
items and we computed the audio similaritySim(i, j) between
any two songsi, j using the G1C algorithm2. G1C first
applies 1-Gaussian Mixture Model (GMM), based on the Mel
Frequency Cepstrum Coefficients (MFCC) and then it applies
KL-divergence. The number of MFCC used in our experiments
was 20. This similarity measure exploits mostly timbral and
rhythmical features, but it does not take into account other
mid-level features such as tonality.

The propagation of tags is performed as follows. For each
user-tag(u, t) pair in the original data,S1 denotes the set of
songs that have been tagged by useru with the t tag, andS2

the set of songs that have not been tagged by useru with the t

tag. Then, for eachs ∈ S2, a weightw is measured as follows:
w = max∀p∈S1

Sim(s, p). Given a parametera, if w ≥ a, then
we assume thatu has taggeds ast. We considerw as a weight
that represents the likelihood of this labeling. This process
results to new quadruplets of the form〈u, t, s, w〉, which are
added to the original data (recall that each quadruplet in the
original data has weight equal to 1).

As an example of the tag-propagation process, consider the
data in Table I. Assume that the similarities between the 4
items are given in Table III (due to symmetry, only the upper
diagonal is given). For the pair(U1, T1), it follows thatS1 =
{I1} (items tagged byU1 with T1), whereasS2 = {I2, I3, I4}
(items not tagged byU1 with T1). The computed weights for
the items ofS2 are 0.3, 0.6, and 0.2, respectively. Assuming
that a = 0.5, then an additional quadruplet〈U1, T1, I3, 0.6〉
can be inserted in the tensor, i.e., for the(U1, T1) pair, theT1

tag is propagated to itemI3.

2Implemented in the MA Toolboxwww.ofai.at/∼elias.pampalk/ma

I2 I3 I4
I1 0.3 0.6 0.2
I2 0.5 0.1
I3 0.2

TABLE III
EXAMPLE OF SIMILARITIES BETWEEN THE ITEMS OFTABLE I.

Thus, thea parameter acts as a threshold to decide whether
or not to propagate the tags. With higher values ofa, tags are
propagated with higher confidence, since only very similar
songs are taken into account. However, their number may be
not adequate to address the sparsity. Whena is low, more tags
can be propagated, but this time with lower confidence. Thus,
the latter case has the danger of including noise that will affect
the recommendation result. In our experimental evaluationwe
demonstrate the impact ofa and how tag propagation can help
to improve the provided recommendations.

VI. EXPERIMENTAL EVALUATION

We experimentally compare the proposed method, denoted
as MusicBox (MB)3, against the following methods: (i) Rec-
ommendation based on HOSVD that does not consider audio
features [13]. (ii) Recommendation based on LSA applied to
items-tags (2-way) relationships, with recommendations being
generated based on the Item-based (IB) algorithm [11]. In
simpler terms, LSA combines SVD and vector cosine similar-
ity (in the reduced space). Comparison against HOSVD will
indicate how much the consideration of audio features helps
to address sparsity, whereas comparison against LSA will
indicate how much the consideration of 3-way relationships
helps to provide personalized recommendations with higher
quality. The experiments were conducted with a 64-bit, with
an Intel Xeon CPU at 2 GHz with 4 cores and 8 GB RAM.

A. Experimental configuration

All examined methods have been implemented in Matlab.
For HOSVD and MB, we used the Multislice Projection (MP)
toolbox4 that scales to large tensors that cannot be maintained
in memory.

A real data set has been crawled from Last.fm. The data
was gathered during June 2008, using Last.fm web services.
The musical items correspond to song titles. The preprocessing
of tags involved their tokenization with a standard stop-list
and filtering by removing tags that are either personal (e.g.,
“seen live”, “I own it”) or organizational (e.g., “check out”).
The result was 64,025 triplets in the form user–tag–song,
with 732 distinct users, 2,527 tags and 991 songs. Please
notice that although in this work we considered a simple
and not automatic process for discarding some tags, a more
systematic approach can be followed in general, using the
process proposed by Geleijnse et al. [5].

To examine the combination of audio features with tagging
data, the USPOP’025 song collection is used, which contains

3The name MusicBox stems from the cubic (3-mode) tensor that contains
music audio-similarities.

4www.apperceptual.com/multislice
5labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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8,764 tracks from 400 artists. In particular, the crawling of data
from Last.fm was designed to detect songs that belong in the
USPOP’02 collection. Thus, the crawling procedure identified
the songs that both belong to USPOP’02 and have been tagged
in Last.fm. Audio features have been computed by keeping 30
sec from the center of each song and extracting 20 MFCC from
each frame. Based on the audio features, the G1C algorithm
computed the similarity between any two songs.

The following evaluation protocol is performed. Originally
we consider the input tensor (no propagated tags). For each
useru, one of his triplets in this tensor is randomly selected.
The set of all selected triplets forms the test data, whereas
the remaining triplets form the training data used to build the
models. Notice that for MB, the insertion of the additional
triplets is performed only to the training data6.

The objective of the recommendation task was to predict
the items in the test data. We used two performance metrics:
Recall and Reciprocal Rank (RR), which is defined as the
inverse of the correct answer’s rank. Recall characterizesthe
ability of a method to predict relevant items, whereas RR takes
also into account the position of predicted relevant items in
the recommendation list. We report mean values of Recall and
RR (denoted as MRR) for all the test data. Other common
measures, like precision orF1, are omitted, because for each
user/tag combination in the test data a constant number of
items has to be predicted and only a prespecified number
(N ) of recommendations is taken into account. Therefore, for
this kind of evaluation protocol, it is redundant to evaluate
precision (thusF1 too), because it is just the same as recall
up to a multiplicative constant.

Regarding parameters, HOSVD in MusicBox maintains sin-
gular vectors by preserving the 60% of information (variance),
as described in Section IV. For LSA, we have tried several
values for the percentage of singular vectors preserved by SVD
and kept the one that resulted to the best results. Moreover,
for the IB algorithm used by LSA, thek parameter (i.e., the
number of nearest neighbor items) was varied from 10 to 300
by an interval of 10, and we finally kept the value that leaded
to the best results (k = 30).

B. Results

First, we examined the impact ofa parameter on the perfor-
mance of MB. Table IV reports the percentage of propagated
triplets relative to the original number of triplets (i.e.,without
propagation) for varying values ofa.

a 0.25 0.5 0.75
perc. propagated triplets 69.17% 21.47% 14.3%

TABLE IV
PERCENTAGE OF PROPAGATED TRIPLETS.

Next, we compared all methods in terms of Recall (Figure 5)
and MRR (Figure 6) for varying the number of recommended
itemsN . For MB we consider 3 differenta values: 0.25, 0.5,
0.75. MB can be considered as a generalization of HOSVD,
since by settinga = 1 MB reduces to HOSVD.

6The triplets of the test set are excluded from tag propagation.
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Fig. 5. Results on Recall.
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Fig. 6. Results on Mean Reciprocal Rank (MRR).

Along the lines of Section V, lower values ofa can incur
noise and reduce the quality of recommendation of MB.
Conversely, higher values ofa do not adequately address
sparsity (see also Table IV). Values between the two extremes
(like a = 0.5) can address sparsity without being significantly
affected by noise, and thus compare favorably to HOSVD,
since the latter is impacted by sparsity. MB outperforms
LSA as well, mainly because it does not suppress the 3-way
relationships between users-items-tags, and also becausethe
tag propagation used in MB addresses the sparsity. To further
understand the differences between the examined methods, we
measured the (Spearman) correlation between the results of
MB (a = 0.5), HOSDV, and LSA. The correlation between
MB and HOSVD is 0.50, between MB and LSA 0.03, and
between HOSVD and LSA -0.14. This shows that MB and
HOSVD have a partial “agreement”, which is expected as MB
extends HOSVD, but both methods have different results than
LSA.

Finally, we compared MB and LSA in terms of execution
times (results for HOSVD are omitted because they are compa-
rable to MB). Both algorithms consist of an offline part to build
the model and an online part to generate the recommendations.
Table V presents the execution times of both parts in terms
of the percentage of preserved information (variance), which
mainly affects the offline times. Because MB builds a more
complex model than LSA, its offline times are higher.7 Regard-

7The presented offline times are for building the model in batch. Both LSA
and MB can be fast incrementally updated when new data arrive.
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ing online times, which affect users’ experience, MB compares
favorably against LSA, because MB needs just to sort a vector
of predictions to generate recommendations. Conversely, since
LSA is based on IB to generate recommendations, during its
online part it first requires to find items’ neighborhoods, then
to compute aggregated frequencies from the neighborhoods,
and finally to sort these frequencies.

info. perc. 10% 20% 30% 40% 50% 60%
MB (offline) 205.69 224.13 242.73 263.63 286.13 306.96
LSA (offline) 1.66 6.3 16.74 32.55 58.83 83.88

MB (online) 0.21 0.21 0.21 0.21 0.21 0.21
LSA (online) 13.39 13.63 13.63 13.71 13.71 13.69

TABLE V
EXECUTION TIMES (OFFLINE IN SEC AND ONLINE IN MSEC).

C. Discussion

To summarize the aforementioned experimental results, they
clearly indicate that by preserving the 3-way relationships
originally existing in social tagging data, the quality of recom-
mendation is improved against methods that suppress them.
The reason is that due to the consideration of the 3-way
relationships, the resulting recommendations can better match
the personalized perspectives of each user. This conclusion
is supported by the fact that all tensor-based methods (MB
and HOSVD) perform favorably against LSA. Moreover, the
proposed tag-propagation method, which exploits audio simi-
larities, is effective in reducing the sparsity that is particularly
pronounced in the case of the tensor-based methods.

For all these reasons, the proposed method outperforms
all the other examined methods. However, there exist some
issues that require further attention, because they can comprise
limitations of the proposed approach. The first one is the
computation overhead of the proposed method for the off-
line part (model computation). Although the proposed method
requires small execution times for the online part (that is most
important to users), it is also demanding to reduce the require-
ments for the off-line part as well. We have to mention that
we used a multi-sliced tensor decomposition algorithm (see
Section VI-A) that reduces memory consumption to permit the
use of large tensors, but increases the overall execution time
due to the separate processing of several slices. In our future
work, we plan to examine more efficient implementations
of multi-sliced methods, that will present a balance between
memory consumption and increased execution time for the
off-line computation.

Another important observation is that the proposed tag-
propagation process cannot be uncontrolled. By allowing ex-
tensive tag-propagation, the noise that incurs may affect the
quality of recommendations. In this work, we have proposed
a simple method to control the amount of propagated tags
by using thea parameter. In our future work, we plan to
investigate further this issue, by examining the impact of
different tag categories (like those that are related to time,
genre, instrumentation, etc.) and to develop more advanced
methods for the detection of noisy tags in order to avoid their
propagation.

VII. C ONCLUSIONS

We have examined the problem of personalized music
recommendation based on social tags. To capture the 3-
way correlations between users-tags-music items, we modeled
social tagging data with 3-order tensors. Recommendation
is performed based on the discovery of latent structure in
this model using HOSVD, which extends SVD to high di-
mensional matrixes (tensors). Moreover, we further improved
the quality of recommendation by addressing the sparsity
that incurs in social tagging data, by exploiting similarities
between the music items that are computed based on audio
features. The performance of the proposed method is examined
experimentally with real social tagging data from Last.fm.Our
experimental results indicate the superiority of the proposed
method in terms of improving the recommendation quality.

As future work, we will extend the proposed method to
the important task of using tags to explain the personalized
recommendations, as described in [7]. Another point of future
work, as mentioned in Section VI-C, is to investigate the
automatic categorization of tags and to use this information
for filtering the propagation of noisy tags and improving
the recommendation quality. Moreover, such categorization
can provide further insights about the type of tags that help
more the recommendation process. Finally, we will examine
additional audio-similarity measures, which will cope with
other mid-level audio features, like tonality.
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