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Ranking genes based on kernels
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Abstract. Retrieval queries in microarray databases can rank genes according either to their similarity by detecting functionally
related genes, or to their importance by detecting genes with significant regulation role. Although both rankings are useful, they
can be contradicting. For instance, similar highly ranked genes may have low importance and vice versa. Thus, we propose a
Web-inspired kernel method for fusing the two rankings according to the user needs.
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1. Introduction

Several microarray databases have been developed
in recent years, such as the Stanford Microarray
Database and the GenBank Database, serving as stor-
age sites for microarray data and facilitating their pub-
lic dissemination.1 These data can be expression data
or gene ontology terms. Users query such databases to
retrieve information and associated annotations about
genes, by specifying certain criteria, e.g. retrieve genes
whose expression level varies by a certain amount.

Similarity queries are a versatile primitive for query-
ing microarray databases. They seem to be very useful
in important applications, such as gene clustering and
ranking. Chabalier et al. [1] cluster genes according
to biological, medical, genomic and expression anno-
tations, which results in several gene functional and
biologically relevant networks. In general, a similarity
query aims at retrieving similar genes, which means
detecting those genes that are functionally related to
the query gene. Using techniques from Information
Retrieval (e.g., the vector space model and the cosine
correlation similarity), similarity between two genes is
measured in terms of expression levels or gene ontol-
ogy (GO) annotations [1]. The output of a similari-
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1See genome-www5.stanford.edu and www.ncbi.nlm.nih.gov.

ty query contains genes ranked in descending order of
their similarity.

The problem that arises here is that a similarity query
usually returns a vast amount of results. The order
of the returned results plays a very important role to
the user needs; for instance, every user would wish
the first result also to be the desirable one. Inspired
from algorithms used in web search engines, such as
the well-known Google’s PageRank [2], many meth-
ods have been developed that rank results according
to their importance. Especially in relational databases
the notion of using web inspired algorithms for ranking
is very common in recent years. Authors in [3] have
developed a method for progressively identifying the
top-k answers from a relational database, while authors
in [4] propose a rank-join algorithm that makes use of
the individual orders of its inputs to produce join results
ordered on a user-specified scoring function.

The need for ranking exists in biological databases,
as well. The idea of ranking genes by importance has
appeared in [5], where the GeneRank algorithm was
introduced showing great resemblance to PageRank.
Google’s PageRank was originally devised for assess-
ing the importance of web pages in search engine re-
sults and was based on the premise that a web page
should be highly ranked if other highly ranked pages
contain hyperlinks to it. By analogy, GeneRank clas-
sifies a gene higher, if it is correlated, either in terms
of GO annotations or in terms of expression levels, to
other highly ranked genes. Ranking by importance can
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draw attention to genes with low expression level but
with an important regulation role among other genes.
In [6] gene ranking is performed with the Kleinberg’s
HITS algorithm [7].

Therefore, given a query gene, we can rank search
results either by their similarity to the query or by their
importance, but not by both at the same time. This
means that ranking by importance may show up sev-
eral genes, while the similarity measure may show up
some other different kind of genes. For example, ac-
cording to Schilde et al. [8] some genes that are re-
lated to each other (which denote high similarity) are
under-expressed in gskA null cells (which denote that
they are not important). As will be shown later, the two
rankings may differ significantly, i.e., results with high
similarity may have low importance and vice versa.
However, both rankings detect useful properties, i.e.,
functional relation vs. overall regulation role. Thus, it
is necessary to devise a method allowing users to fuse
the two rankings according to their needs.

Here, we investigate the problem of ranking genes
by respecting at the same time the trade-off between
similarity and importance and by taking into account
user needs each time. We study two sets of data sep-
arately: one with expression values and one with GO
terms. We propose a kernel-based fusion method that
uses an intuitive parameter to express favor towards the
one or the other ranking scheme and combine their ad-
vantages. The role of this regulatory mechanism plays
the Kernel Similarity measures that have been proposed
for the World Wide Web [9]. We also provide interest-
ing results that prove the need for the existence of such
a fusion method.

The remainder of the paper is organized as follows.
Section 2 mentions previous related work on ranking
genes. Section 3 describes our proposed fusion method
as well as the terms similarity and importance. The
following section provides an analytical and detailed
description of the data sets used in our study, the derived
experimental results and the whole process of ranking
genes in general. Lastly, we draw some conclusions
derived from this work.

2. Related work

Ranking of search results in microarray databases is
a relatively new research problem. Chabalier et al. [1]
suggest a clustering method that computes semantic
similarities between genes. Clustering is performed
according to different kinds of knowledge:

1. biological knowledge provided by the GO terms
that are organized according to three hierarchies:
Biological Process (P), Molecular Function (F)
and Cellular Component (C),

2. medical knowledge supplied by the Unified Med-
ical Language System (UMLS) [10],

3. genomic knowledge corresponding to the se-
quence features of the studied genes, and

4. expression pattern knowledge provided by exper-
imental results. According to this method, the
more information two genes share in common,
the more functionally related they are and, thus,
the different descriptions of each gene are taken
into account.

Gudivada et al. [6] propose another gene prioriti-
zation method that detects functional relationship be-
tween genes and diseases. This method ranks genes
according to model-driven semantic relationships and
enables to utilize the combination of mouse phenotypes
and human disease clinical features apart from GO and
pathways in their prioritization approach.

GeneRank algorithm proposed by Morrison et al. [5]
provides a method to assess the importance of a gene.
Just like the ranking score of a web page will be high
if it is linked to other highly ranked pages, the relative
ranking of a gene will be increased if it is linked to other
highly differentially expressed genes. In [11] authors
suggest a multi-criterion approach to perform ranking
of genes that are both biologically and statistically sig-
nificant using signal processing methods.

Bie et al. [12] present an approach to provide an-
swers to a recently identified problem in bioinformat-
ics, which is to discover disease genes to diagnose and
understand the biology of disease processes. Their
method fuses gene datasets using kernels to perform
disease gene hunting. A method for combining multi-
ple kernel representations is also proposed by Lanck-
riet et al. [13]. The method is applied to the problem
of predicting yeast protein functional classifications us-
ing a support vector machine (SVM) trained on several
types of data.

3. Proposed fusion method

Here, we focus on two data types that are common
in microarray databases:

(i) arrays including expression levels and
(ii) arrays including GO annotations.
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In case (i), we have an n × k array A, where element
A(i, j) is the expression level (real number) of gene i
to condition j. In case (ii), we have an n × k array A,
where element A(i, j) equals 1, if gene i is annotated
with term j and 0 otherwise. To treat both cases equiv-
alently, we use the Biclustering Analysis Toolbox2 for
case (i) to discretize the data to binary values. Hence-
forth, we use the A notation without ambiguity to refer
to an inclusion matrix either for expression levels or
GO annotations. In the sequel, we first describe sep-
arately ranking by similarity and by importance, and
next the proposed method to fuse them.

3.1. Gene similarity

As mentioned above, two genes can be functionally
related in several ways. For instance, they can be in-
volved in a same biological process (for example, iron
ion transport), where they can carry a specific molec-
ular function (for example, ferric iron binding) or they
can be involved in the same disease (for example, liver
disease). Therefore, the more information two genes
share in common, the more similar they are.

Co-citation coupling [14] is a classical means in In-
formation Retrieval for defining relatedness between
documents as the number of other documents that cite
them both. Bibliographic coupling [15] also defines
relatedness between two documents as the number of
common references cited by the two. The two afore-
mentioned measures can be formally defined as fol-
lows. Let A be an adjacency matrix of a citation graph.
Then, the number of co-citations between nodes i and
j is given by the (i, j)-element of the co-citation matrix
M = AT A. Similarly, the bibliographic coupling ma-
trix M = AAT gives the values of bibliographic cou-
pling. Since these matrices are symmetric, their graph
counterparts, the co-citation graph and bibliographic
coupling graph, are undirected.

In an analogous manner, when we have to do with
gene similarity, relatedness between genes is measured
by the co-occurrence of genes in an inclusion ma-
trix. Thus, given an inclusion matrix A, apparently
the matrix M = AT A is the co-occurrence matrix.
As the similarity between two vectors is represented
by the angle between these two vectors, then given a
co-occurrence matrix M and by normalizing with the
lengths, we can get the well-known cosine similari-
ty matrix M(i,j)

(M(i,i)·M(j,j))
1
2

, which computes similarity

between genes.

2Downloaded from http://www.tik.ee.ethz.ch/sop/bicat/.

3.2. HITS and gene importance

As already mentioned, co-citation coupling defines
relatedness between documents, but computing impor-
tance of documents from their contents is a very diffi-
cult task. Citation counts have long been used as the
index of document importance. Even though citations
are made for various reasons, a positive correlation was
observed between the number of citations and the sig-
nificance or impact of the cited work.

Kleinberg’s HITS algorithm, along the lines of
PageRank, is a more recent and sophisticated method
for evaluating document as well as web document im-
portance. HITS discusses the problem of finding the
“most relevant" web pages in response to a given broad
query. The algorithm assigns the so-called authority
and hub scores to each web document. An underlying
assumption behind HITS is that mutual reinforcement
relation exists between authorities and hubs: authorita-
tive documents are cited by many hub documents and
hub documents are those that cite many authoritative
documents.

By analogy, we can use Kleinberg’s HITS algorithm
to assign authority and hub scores to each gene. In
this case, a mutual reinforcement relation between au-
thorities and hubs exists as well: authoritative genes
are related to many hub genes, and hub genes relate to
many authoritative genes. Let A be an inclusion matrix
of genes. We apply HITS and compute the authori-
ty scores of genes, as the dominant eigenvector of the
co-occurrence matrix M = AT A.

3.3. Neumann kernels

Some formulations of link analysis measures that are
intermediate between importance and relatedness have
been introduced lately. These formulations are based
on the family of symmetric positive semi-definite ker-
nels [16], which define an inner product of graph nodes.
Here, it is important to note that an intermediate con-
cept between importance and relatedness might seem
strange, since importance is a measure defined on indi-
vidual nodes, whereas relatedness is defined between
them. However, given an importance score vector v
such as the HITS authority vector, vvT defines a ma-
trix where every row (and column) i gives a ranking of
nodes identical to the one given by v except for an i
such that v(i) �= 0. Importance can thus be treated as a
function over a pair of nodes, or a matrix, as well. The
Neumann kernel was proposed for computing the se-
mantic similarity between documents represented as set
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of terms [17]. It defines document similarity and term
similarity by using their complementary relation [18].
This bears reminiscence to the complementary relation
of authorities and hubs in HITS. Given an inclusion
matrix A and a parameter p, where 0 � p < 1, we
propose to first compute a C matrix:

C(i, j) =
M(i, j)

(M(i, i) · M(j, j))
1−p
2

(1)

The kernel matrix Kp, which defines the gene rank-
ing, is equal to C(I − p||C||−1C)−1. Thus, the kernel
ranking is user-controlled by tuning the parameter p in
the range [0,1). The interpretation of Neumann kernels
is as follows: When p = 0, clearly the kernel matrix
Kp is actually the cosine similarity matrix. When p ap-
proaches 1, as described in [9], the ranking induced by
the Neumann kernel is identical to the authority score
of HITS. Thus, the kernel ranking yields more similar
genes when p approaches 0 and it yields more important
genes when p approaches 1.

4. Experimental results

We examined the properties of our proposed ranking
approach (denoted as Kern) compared to ranking by
similarity with the cosine measure (denoted as Sim)
and by importance determined by the HITS algorithm
(denoted as HITS). We used two microarray data sets.
We ranked separately the two datasets first by using
Sim and HITS and then by using the proposed fusion
method Kern.

The first dataset contains expression levels of size
6,152 rows × 173 columns.3 Rows represent genes,
whereas columns represent conditions. Every value
corresponding to a particular gene and a particular con-
dition represents the expression level of the gene when
this specific condition is applied. This data set is a com-
bination of many microarrays and the data contained in
it represent the normalized, background-corrected log2
values of the Red/Green ratios measured on the DNA
microarrays.

The second dataset contains GO annotations with
terms related to three aspects, i.e., C, F, and P (32,724
lines in total).4 C stands for cellular component, F
for molecular function and P for biological process.

3Downloaded from www.genome.stanford.edu/yeast stress/data.
shtml.

4Downloaded from dictybase.org/Downloads.

Table 1
KMin distances.

p Expression Data GO Data
D(K,H) D(K,S) D(K,H) D(K,S)
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Fig. 1. Similarity measure for expression data.

The structure of a GO term is quite simple. In gener-
al, each GO entry consists of a term name (e.g. cell)
and a zero-padded seven-digit identifier (or accession
number) prefixed by GO: (e.g. GO: 0005623), which is
used as a unique identifier and database cross-reference.
Terms may have one or more secondary IDs, alternate
IDs that refer to them. GO terms should be equipped
with a text definition, which includes an indication of
the definition source. Terms may also have a comment,
which gives more information about the term and its
usage.

From the two datasets we formed two inclusion ma-
trices. In each case, we considered each gene as the
query gene, and ranked the rest genes according to the
three approaches (Kern, Sim and HITS). We kept the
top k results (default k = 20) and computed the nor-
malized Kendall distance D that counts the number of
pair wise disagreements between two lists [9]. Num-
ber 0 corresponds to the minimum distance, whereas
number 1 corresponds to the maximum distance, rep-
resented by value p. As mentioned before in this paper
parameter p is set by the user in the range [0,1). Table 1
presents the average distances between Kern (K) and
HITS (H) and between Kern (K) and Sim (S), for sev-
eral p values. When p = 0, as expected, Kern and Sim
produce identical results. When p approaches 1, then
its distance from HITS approaches 0. For intermediate
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Fig. 2. Similarity measure for GO data.
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Fig. 3. Authority measure for expression data.

p values, Kern is an amalgamation of the two others, as
it is about equally distant from them.

Next, we measured the average similarity and au-
thority (namely the HITS score that indicates impor-
tance) of the k results by varying p. Figures 1 and 2
illustrate the similarity measure for the two inclusion
matrices, whereas Figs 3 and 4 depict the authority
measure for the two inclusion matrices as well. Clear-
ly, HITS and Sim differ significantly in all four cas-
es. The former produces results that are important
(high authority) but not similar and the latter produces
results that are quite similar but not important. An
example from real life that confirms our statements
comes from the authors of [8]. Gene 2C that encodes
polypeptides of similar size is related to other 5 genes
(DDBG0280871, DDBG0281003, DDBG0280953,
DDBG0282317 and DDBG0281019). Relation be-
tween all these genes denotes similarity. However, on
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Fig. 4. Authority measure for GO data.

the other hand, all six genes are under-expressed in
gskA (Glycogen Synthase Kinase) null cells, which
mean that they are not important under these particular
circumstances. Our proposed ranking approach Kern
adapts smoothly between the two aforementioned cas-
es (similarity and importance), either we have expres-
sion or GO data and can be tuned according to the user
requirements.

5. Conclusions

Existing methods that rate results according to simi-
larity or importance are unable to provide the user with
information about both the aforementioned measures.
We proposed a kernel-based method for ranking re-
trieval results for microarray data. Our results indicate
that the proposed scheme can fuse the two measures
and detect genes that are both similar and important. It
can also adapt to the users’ requirements, by varying
the parameter p in the range [0,1).
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