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Abstract

Performing data mining tasks in streaming data is con-
sidered a challenging research direction, due to the continu-
ous data evolution. In this work, we focus on the problem of
clustering streaming time series, based on the sliding win-
dow paradigm. More specifically, we use the concept of
α-clusters in each time instance separately. A subspaceα-
cluster consists of a set of streams, whose value difference
is less thanα in a consecutive number of time instances
(dimensions). The clusters can be continuously and incre-
mentally updated as the streaming time series evolve. The
proposed technique is based on a careful examination of
pair-wise stream similarities for a subset of dimensions and
then, it is generalized for more streams per cluster. Perfor-
mance evaluation results show that the proposed pruning
criteria are important for search space reduction, and that
the cost of incremental cluster monitoring is computation-
ally more efficient than reclustering.

1 Introduction

The study of query processing and data mining tech-
niques for data stream processing has recently attracted the
interest of the research community [4, 6, 10], due to the fact
that many applications manage data that change very fre-
quently with respect to time. Examples of such emerging
applications are network monitoring, financial data analy-
sis, sensor networks to name a few. The most important
property of data streams is that new values are continuously
arriving, and therefore efficient storage and processing tech-
niques are required to cope with the high update rates.

Due to the highly dynamic nature of data streams, ran-
dom access is prohibitive. Therefore, each data stream is
possible to be read only once (or a limited number of times).
This feature poses additional difficulties for query process-
ing and data mining tasks.

Clustering is an important data mining task [9] and sig-
nificant results have been reported for several data types.
The challenge in a set of streaming time series is to update
the clustering information as time progresses, avoiding the
computationally intensive reclustering process.

Given a set of streaming time series, clustering can be ap-
plied to all available values within a specified length, known
as thesliding window. The sliding window size defines the
dimensionality of each streaming time series. For example,
a sliding window of size 256 means that each time series is
a 256-dimensional vector. Each dimension corresponds to
a time instance. Searching for clusters in a large number of
dimensions may result to failure, because as the size of the
sliding window increases the probability that two streams
will belong to the same cluster decreases. In many cases,
although two or more streams do not belong to the same
cluster for the whole sliding window, they do so by consid-
ering a subset of dimensions.

Figure 1 illustrates three streaming time seriesA, B and
C with a sliding window of size 17. We assume that two
streams belong to the same cluster if the difference of the
values in the corresponding dimensions is less than or equal
to 2. By inspecting Figure 1, it is evident that these streams
can not belong to the same cluster, since the difference of
values in several dimensions is more than 2. For example,
the value difference ofA andB in the second dimension is
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Figure 1. Example of subspace clustering.



7− 4 = 3. However, by considering subsets of dimensions,
streamsA andB belong to the same cluster for the dimen-
sion intervals[d3, d6], which containsd3, d4, d5, d6 and
[d9, d17], which containsd9, d10, d11, d12, d13, d14, d15,
d16, d17. It is evident that the value difference of streamsA
andB in each of these dimensions is less than or equal to 2.

The basic requirements for the generation of subspace
clusters is that each cluster should contain a sufficient num-
ber of streams, in a sufficient number of consecutive dimen-
sions. The generated subspace clusters contribute to the dis-
covery of useful knowledge, since they reveal a high degree
of similarity among streams participating in the same clus-
ter.

The paper presents a methodology to attack the continu-
ous subspace clustering problem by proposing the subspace
α-cluster. We study effective algorithms towards efficient
subspaceα-cluster generation for a set of streaming time
series. Towards this direction, we propose a method to up-
date the clusters when new stream values become avail-
able, avoiding the process of reclustering. The generated
α-clusters are defined only on consecutive dimensions. In
summary, the contributions of this work is as follows:

(i) the study of the subspace clustering problem in stream-
ing time series,

(ii) the study of continuous subspace clustering taking into
account the time series evolution, and

(iii) the performance evaluation of the proposed method
based on real-life and synthetic data sets.

The rest of the work is organized as follows. In Section
2 we discuss the appropriate related work. Section 3 stud-
ies in detail the proposed method for continuous clustering
of streaming time series. Section 4 presents performance
evaluation results, whereas Section 5 concludes the work.

2 Related Work

Clustering is a well studied research field in diverse dis-
ciplines with significant research contributions. In [5] it has
been demonstrated that similarity search and clustering are
meaninglessfor spaces that are embedded in a very large
number of dimensions. This observation has lead a signif-
icant number of researchers to study alternative clustering
methodologies. One research direction that has been fol-
lowed is subspace clustering.

In [3], the authors have studied the problem of subspace
clustering in a high-dimensional space and they have pro-
posed CLIQUE, which is a grid-based bottom-up algorithm
to discover density-based clusters. CLIQUE determines
dense cells and merges them to create clusters in a high-
dimensional space. In [7], the concept of entropy is used to

determine a dense cell. The aforementioned methods apply
to static data sets, and their adaptation to the streaming case
is not obvious.

In [1, 2] the authors have proposed top-down algorithms
for subspace cluster discovery. The basic drawback of these
methods is the usage of parameterk, which is the number of
subspace clusters that each method should report. In many
real applications, this value is not known a priori.

Several research contributions have usedδ-clusters to
discover subspace clusters [8, 12, 13, 14]. However, the
concept of δ-clusters is treated differently. In [8],δ-
biclusters have been proposed to find subspace clusters in
a set of genes and conditions of DNA microarrays. In [13],
the pScore metric has been proposed to measure the coher-
ence of a cluster. The method determines object and at-
tribute pair-wise clusters and utilizes a prefix-tree to gen-
erate clusters in a high-dimensional space. The same met-
ric has been used in [12] to find pair-wise clusters, along
with a depth-first-search algorithm to prune redundant non-
maximal clusters. In [14], it has been shown that the above
methods do not scale well in large data sets, and therefore
the authors have proposed the Counting Tree data structure,
that provides a compact summary of the dense patterns. The
above methods operate on non-evolving data sets. It is not
straightforward to apply these methods for the streaming
case, since they rely on algorithms that can not be easily
adapted.

Recently, the problem of data stream clustering has at-
tracted the research interest [6, 10]. The majority of these
contributions apply thek-median clustering technique. The
fundamental characteristic of the proposed methods is that
they attack the problem of incremental clustering for the
values of only one data stream. However, this is quite re-
strictive, taking into account that modern applications re-
quire the management of a large number of data streams.
Moreover, in [11], the authors show that the clustering of
the values of streaming time series is meaningless. Notice
that our method groups incrementally steaming time series,
that produced by different data streams, in clusters by using
their values and doesn’t group their values.

To the best of the authors’ knowledge, this is the first at-
tempt to solve the incremental subspace clustering problem
in streaming time series.

3 Incremental Clustering

Table 1 summarizes the basic symbols and the corre-
sponding definitions that are used throughout the study.

We begin our exploration with a number of basic
definitions that are used for the rest of the work.

Definition 1 (simpleα-cluster)
A simple α-cluster contains a number of streams with



Symbol Description

s, si a streaming time series
s[i] the value ofs in thei-th dimension
N the number of streams
W the size of the sliding window
Ci a maximal subspaceα-cluster
ci,j thej-th simpleα-cluster of thei-th dimension
c, c′ simpleα-clusters
m number of streams in a cluster
G, Gi a group of candidateα-clusters
minRows minimum number of streams contained in a

subspaceα-cluster
minCols minimum number of consecutive dimensions

contained in a subspaceα-cluster
α maximum distance between any two streams

for a given dimension

Table 1. Basic symbols used throughout the
study.

pair-wise distances at mostα in a single dimension. There
is no restriction applied to the number of streams contained
in each cluster. 2

The j-th simpleα-cluster in thei-th dimension is rep-
resented asci,j . The previous definition does not take into
consideration possible restrictions applied to the number
of streams in each cluster and the number of consecutive
dimensions. By forcing each cluster to contain at least
minRows streams and at leastminCols dimensions we
have:

Definition 2 (subspaceα-cluster)
A subspaceα-clustercontains at leastminRows streams,
for which the maximum value difference is at mostα in at
leastminCols consecutive dimensions. 2

In the example illustrated in Figure 1, assuming that
minRows = 2, minCols = 3 andα = 2, we have two gen-
erated subspaceα-clusters containing streamsA andB, de-
fined by the dimensions[d3, d6] and [d9, d17]. However,
assuming thatminCols = 5, we have only one subspace
α-cluster defined by the dimensions[d9, d17].

A subspaceα-cluster C is represented as a pair
(S,[di,dj ]), whereS is a set of streams and [di,dj ] is an in-
terval ofj − i + 1 consecutive dimensions (time instances),
wherei ≤ j. Evidently, the cardinality ofS must be at least
minRows, whereas the number of consecutive dimensions
must be at leastminCols. We assume that the streams
contained inS are represented by their corresponding IDs.
Furthermore, we assume that stream IDs are stored inS in
a non-decreasing order.

Definition 3 (maximal subspaceα-cluster)
A subspaceα-cluster (S,[di,dj ]) is maximal, if a) we can
not find anotherα-cluster (S,[dk,dl]) such thatk ≤ i and

l ≥ j and b) we can not find anotherα-cluster (T ,[di,dj ])
such thatS ⊂ T . 2

We proceed with the detailed description of the proposed
methodology, which attacks the following problem:Given
a set of streaming time series, a maximum value differ-
enceα, a sliding window sizeW and two integer numbers
minRows andminCols, determineall maximal subspace
α-clusters continuously,whereeach cluster contains at least
minRows streams, and the value difference is less than or
equal toα, in at leastminCols consecutive dimensions.

The proposed methodology comprises the following
phases: (i) the initialization phase, which determines an
initial set of maximal subspaceα-clusters, and (ii) a series
of update phases which incrementally maintain the clusters
when new stream values become available.

3.1 Cluster Initialization

The purpose of the cluster initialization (CI) is to deter-
mine an initial set of maximal subspaceα-clusters, based
on the lastW values of each streaming time series. The CI
process comprises a series of steps. In the first step, each
time instance (dimension) is inspected separately to deter-
mine simpleα-clusters (which are defined in one dimen-
sion only). Next, all clusters containingm = 2 streams in
the maximum possible number of dimensions are generated.
In each subsequent step the algorithm tries to increase the
number of streams per cluster (m = m + 1), until all pos-
sible maximal subspaceα-clusters are generated, according
to the values ofα, minRows andminCols. Clusters that
contain less thanminCols dimensions are discarded per-
manently in each step of the algorithm, since they can not
contribute to the final answer.

d
1

d
4

d
3

d
2

s
1

s
4

s
3

s
2

7.4

5.8

5.6

8.0

5.5

5.5

8.6

8.2

6.7

6.0

3.9

3.7

4.6

5.2

8.1

6.4

s
5

8.37.83.28.0

(a) stream values

dimensions

s
tr
e
a
m
s

d
1

{5.2, 6.4}, {6.4, 7.4, 8.0, 8.1}

d
2

{3.2, 3.7, 3.9, 4.6}, {4.6, 6.0}

d
3 {5.5, 6.7}, {6.7, 7.8, 8.2, 8.6}

d
4

{5.5, 5.6, 5.8}, {8.0, 8.3}

(b) stream values clustered per dimension

d
1

d
2

d
3

d
4

c
1,1
={s

2
, s

4
}, c

1,2
={s

1
, s

2
, s

3
, s

5
}

c
2,1
={s

1
, s

2
, s

3
, s

5
}, c

2,2
={s

1
, s

4
}

c
3,1
={s

1
, s

4
}, c

3,2
={s

1
, s

2
, s

3
, s

5
}

c
4,1
={s

1
, s

3
, s

4
}, c

4,2
={s

2
, s

5
}

(c) all simple α-clusters

clustered stream valuesdimension

dimension simple α-clusters

Figure 2. Cluster initialization.

We illustrate the CI process by means of an example,



which is depicted in Figures 2, 3 and 4. Assume that there
areN = 5 streaming time series with a sliding window of
sizeW = 4. Moreover, letα = 2, minRows = 4 and
minCols = 3. Figure 2(a) shows the value of each stream
in every dimension, Figure 2(b) shows subsets of values that
satisfy theα constraint, whereas Figure 2(c) shows the gen-
erated simpleα-clusters forα = 2.

To determine the simpleα-clusters for each dimension
we proceed as follows. The values in each dimension are
sorted in a non-decreasing order. The produced sorted
sequenceS is processed by means of two pointerspleft

and pright. Initially, pleft and pright are placed on the
first element of the sorted sequence. The pointerpright

is continually increased until it reaches an element where
|S[pleft]−S[pright]|> α. If this happens, then all elements
S[pleft], S[pleft + 1], ..., S[pright − 1] form a cluster in
the corresponding dimension. Then, the pointerpleft is in-
creased by one, and the same process is applied untilpright

reaches the end of the sorted sequence. If two clusters end at
the same element, the one containing the minimum number
of elements is discarded.
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Figure 3. Cluster initialization (continued).

Following the generation of the initial set of simple
α-clusters, the next step considers pairs of streams and
determines if there are any simpleα-clusters with two
streams (m = 2). Figure 3(a) depicts the generated simple
α-clusters for each dimension, whereas Figure 3(b) shows
all possible 2-level clusters that are generated. Each 2-level
cluster is formed by combining two streams that have com-
mon simpleα-clusters, in each one of at leastminCols
consecutive dimensions. The common simpleα-clusters
are illustrated in the fourth column of Figure 3(b). The
candidate 2-level clusters are separated in four different
groups, as it is indicated by the dashed lines in Figure 3(b).
All candidate clusters in each group must sharem − 1
streams and can differ in only the last one. Each group is
treated separately, and therefore, we begin with the first
group which is composed of candidate clusters containing

streams1. Some of these clusters will be rejected, whereas
the others will be used to form candidate 3-level clusters.

Proposition 1 (cluster pruning criterion)
If the number of candidatem-level clusters contained
in a group is less thanminRows − m + 1 then all the
clusters in this group can be safely discarded from further
consideration1. 2

Evidently, all candidate clusters in the first group survive
the cluster pruning criterion. At a first glance, it seems that
all four clusters qualify, since each pair of streams contain
at least three dimensions. However, with a more careful
look we can see that dimensiond4 must be rejected. The
following proposition explains.

Proposition 2 (dimension pruning criterion)
If each candidateα-cluster in a groupG contains exactlym
streams and the number of occurrences of a dimension in
G is less thanminRows−m + 1, then this dimension can
not contribute to the generation of subspaceα-clusters. 2

If dimension pruning affects an existing cluster, either
the cluster will be rejected, if the number of dimensions is
less thanminCols, or will shrink, if the number of dimen-
sions is at leastminCols. Applying the dimension pruning
criterion to our case, it is evident that dimensiond4 has only
two occurrences, (see Figure 3(c) and therefore must be re-
jected from further consideration. This means that clus-
ter no.3 contains streams{s1, s4} and dimensionsd2, d3.
However, sinceminCols = 3 this cluster is rejected (Fig-
ure 3(b)).
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Next, the method tries to merge the clusters that survived
the previous step, towards the generation of clusters con-
taining m + 1 streams. Therefore we try to combine the
clusters no.1 with no.2, no.1 with no.4 and no.2 with no.4
(recall that no.3 has been rejected). These combinations are
depicted in tabular form in Figure 4(a). The clusters are cat-
egorized in two different groups. Each group should contain
clusters that share all stream IDs, except the last. For exam-
ple, candidate clusters no.1 and no.2 are contained in the
first group since they differ in the last stream only, and they
have two streams in commons1 ands2. Again, at a first

1The proofs of the propositions are omitted due to lack of space.



glance all three candidate clusters of Figure 4(a) qualify.
However, cluster no.3 can be safely rejected, as it is sug-
gested by the cluster pruning criterion (Proposition 1). This
is illustrated by the shaded row in Figure 4(a).

By inspecting clusters no.1 and no.2 in the first group it
is evident that both clusters survive both pruning criteria.
Therefore, these two clusters can be combined towards the
generation of a single 4-level cluster, which is illustrated in
Figure 4(b). Recall, thatminRows = 4 andminCols =
3. Therefore, this cluster is recorded as an answer, since
it contains four streams and these streams form a subspace
α-cluster in three dimensions.

Let us now check the second group of clusters depicted
in Figure 3(b). The candidate cluster no.6 would never
be created by the algorithm, since it does not satisfy the
minCols restriction. It is shown here only for demonstra-
tion purposes. This means that there are now only two can-
didate clusters in this group. According to the cluster prun-
ing criterion these clusters should be discarded without any
further consideration.

Up to this point, we have checked all candidate clusters
of streamss1 ands2. Is it necessary to check the clusters
for streamss3, s4 ands5? Since there are three remaining
streams it is impossible to generate a 4-level cluster
(minRows = 4), as it is illustrated by the Proposition 3.

Proposition 3 (stream pruning criterion)
If the number of remaining streams is less thanminRows
then all groups of candidate clusters generated by these
streams can be safely discarded since it is impossible to
give subspaceα-clusters. 2

Algorithm CI stops at this point and reports as an answer
the cluster illustrated in Figure 4(b). Proposition 4 shows
that it is not possible to miss any cluster.

Proposition 4 (correctness of CI algorithm)
By treating each group of candidate clusters separately, it is
impossible to miss a maximal subspaceα-cluster. 2

Algorithm CI computes all maximal subspaceα-
clusters, by considering only candidateα-clusters which
belong to the same group. This way, it is impossible to dis-
cover the same cluster more than once and therefore, less
computational effort is required. The outline of the CI algo-
rithm is depicted in Figure 5.

3.2 Cluster Maintenance

The purpose of the cluster maintenance (CM) phase is to
keep the answers up to date. This phase is executed when
new values for all the streams become available. Since pro-
cessing is based on the sliding window paradigm, the left-

Algorithm CI (S,α, minRows, minCols, W )
Input

S: set of streams,
α: max value difference for a dimension in a cluster,
minRows: min number of streams per cluster,
minCols: min number of dimensions per cluster,
W : sliding window size

Output
A: set of maximal subspaceα-clusters

1. for i=1 to W
2. compute all simpleα-clusters for dimensiondi;
3. end for
4. for i=1 to N −minRows + 1
5. setm = 2;
6. generatem-level candidateα-clusters for streami;
7. apply cluster pruning;
8. apply dimension pruning;
9. while there existm-level candidatesdo
10. generatem + 1-level candidateα-clusters that

containminCols or more dimensions;
11. increase m;
12. if m ≥ minRows and
13. C is maximal subspaceα-clusterthen
14. updateA;
15. end if
16. apply cluster pruning;
17. apply dimension pruning;
18. end while
19. end for
20. reportA;

Figure 5. Outline of CI algorithm.

most dimension should be discarded and a new one should
be included. An example is illustrated in Figure 6(a), where
stream values in dimensiond1 should be rejected, whereas
stream values in dimensiond5 should be taken into consid-
eration to update the clustering information. This requires
the deletion of all simpleα-clusters of dimensiond1 and
the determination of all simpleα-clusters for dimensiond5.
These clusters are illustrated in Figure 6(b).
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Algorithm CM-UPALL (S, α, minRows, minCols, W )
Input

S: set of streams,
α: max value difference for a dimension in a cluster,
minRows: min number of streams per cluster,
minCols: min number of dimensions per cluster,
W : sliding window size

Output
A: set of maximal subspaceα-clusters

1. delete all the simpleα-clusters of the first dimension;
2. find all the simpleα-clusters for the new dimension;
3. update existing maximal subspaceα-clusters;
4. delete the clusters that have less thanminCols

dimensions;
5. for i=1 to N −minRows + 1
6. setm = 2;
7. generatem-level candidateα-clusters of

streami only for the lastminCols dimensions;
8. apply cluster pruning;
9. while there existm-level candidatesdo
10. generatem + 1-level candidateα-clusters that

containminCols dimensions;
11. increase m;
12. if m ≥ minRows and
13. C is maximal subspaceα-clusterthen
14. updateA;
15. end if
16. apply cluster pruning;
17. end while
18. end for
19. reportA;

Figure 7. Outline of CM-UPALL algorithm.

The cluster maintenance algorithm CM-UPALL, which
is depicted in Figure 7, operates in two steps.

1. In the first step, existing maximal subspaceα-clusters
are checked, since some of them may be rejected due
to the deletion of dimensiond1. Moreover, some of the
existing clusters may be expanded by the inclusion of
the newly created dimensiond5.

2. In the second step, the algorithm searches for new
maximal subspaceα-clusters that may be generated
due to the arrival of the new dimensiond5.

Initially, each cluster containingd4 as its right-most
dimension is checked for possible expansion by adding
dimensiond5. If the cluster can be expanded, it is included
in the answer. Next, dimensiond1 is deleted from all
clusters that contain it. If by deletingd1 a cluster is left

with less thanminCols dimensions, then it is deleted.
Finally, the other clusters that are not affected by the
deletion ofd1 and the inclusion ofd5 are considered part
of the new answer. To search for new clusters that may
have been formed due to the inclusion of dimensiond5,
the algorithm inspects only the lastminCols dimensions
(Proposition 5).

Proposition 5 (correctness of CM-UPALL algorithm)
Let dnew be the newly created dimension. To search for
new clusters it is sufficient to study the lastminCols
dimensions (i.e.,dnew−minCols+1, dnew−minCols+2, ...,
dnew). 2

4 Performance Evaluation

The proposed method has been implemented in C++
and all experiments have been conducted on a Pentium IV
at 3.6 GHz, with 1 GB RAM, running Windows XP. In the
sequel, we present the data sets that have been used in our
experiments and the experimental results obtained by the
performance study. The performance evaluation is based
on the following data sets:

SYNTHETIC : The parameter values used (if not otherwise
specified) are: the number of streams (N ) is 5000, the
sliding window (W ) is 100, α = 0.0, the number of
embedded maximal subspaceα-clusters is 100, and each
one contains 50 streams in 10 dimensions.

STOCKS: The data set consists of a number of series
denoting the closing prices of stocks and can be obtained
from http://finance.yahoo.com. Each stock has been subdi-
vided to a number of subseries of length 200, to obtain a
total of 2313 different time series.

ECG: The data set contains electrocardiograms of two-
channel recordings and can be obtained from the MIT-BIH
Arrhythmia Database (http: //www.physionet.org/physio
bank/database/mitdb/). Each channel was digitized at 360
samples per second. We chose an electrocardiogram of a
sixty nine years old male, containing 650000 samples. To
form the data set, we picked 30000 of out of the 650000
points randomly and each time series is formed from the
consecutive 200 values of the selected point.

Initially, we examine the efficiency of the proposed prun-
ing criteria. Recall that to generatem-level α-clusters, the
(m − 1)-level clusters are required. It can be shown that
the total number of possible clusters that can be generated
is 2N − 1, whereN is the number of streaming time se-
ries. However, the application of the pruning criteria man-
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Figure 8. Pruning power for STOCKS.

ages to reduce drastically the number of generated clusters.
This effect is demonstrated in Figure 8, which depicts (1)
the total number of clusters in each level, (2) the number
of pruned clusters due to cluster pruning, (3) the number of
pruned clusters due to dimension pruning and (4) the num-
ber of affected clusters by the dimensionality shrinkage. It
is evident, that the majority of the candidateα-clusters is
discarded. Cluster pruning is more significant when it hap-
pens in the first levels, since more clusters are pruned sub-
sequently.
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Figure 9. Response time vs (a) sliding win-
dow size and (b) number of streams.

Next, we study the scalability of the method with re-
spect to the size of the sliding window (W ) and the num-
ber of streams (N ). The corresponding results are depicted
in Figure 9. The graph has logarithmic scale along the y
coordinate. We give both the initialization and the update
time. Figure 9(a) illustrates the scalability of the method
with respect to the sliding window size. Figure 9(b) depicts
the scalability of the method with respect to the number of
streams. In order to have a similar set up, we generated dif-
ferent synthetic data sets of 1000 to 20000 streams. In each
data set, we embedded 100 maximal subspaceα-clusters,
but we varied theminRows parameter so that the number
of values used in the clusters to be proportional to the to-
tal number of values. In both cases, the cost of CI is more
significant than that of CM-UPALL. It is evident that the
incremental subspace clustering using the CM-UPALL pro-
cedure outperforms the reclustering process by applying the

CI procedure every time an update occurs.

Next, we examine the relationship among the parame-
tersminRows, minCols andα. The sliding window size
is set to 100. Figure 10(a) shows that the cost decreases as
the parametersminRows andminCols increase their val-
ues. In Figure 10(b), it is shown that the cost decreases as
minRows increases andα decreases. A smallα gives a
large number of simpleα-clusters and therefore, the prob-
ability that two streams will belong to the same simpleα-
cluster is reduced. Thus, the number of maximal subspace
α-clusters decreases.

Finally, Table 2 shows the number of maximal subspace
α-clusters for the ECG data set. The sliding window size
is set to 100. The table depicts the number of clusters, the
cost of cluster initialization phase, the number of clusters
when some update operations have been performed and the
average update time.

Figure 11 illustrates some of the clusters identified by the
proposed algorithm in the ECG (α = 2) data set. It is evi-
dent, that there is a high degree of similarity among streams
belonging to the same cluster for the specific dimensions.
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clusters for ECG data set.



number of clusters and average update time after

α minRows minCols initialization 5 updates 10 updates 15 updates 20 updates

0.0 30 3 984 2695.75 980 65.08 984 68.41 979 68.15 986 68.90
0.0 150 2 76 8211.28 75 65.96 72 64.60 71 86.40 69 76.88
1.0 10 9 335 1362.11 321 73.67 314 75.27 310 76.06 311 77.31
1.0 35 5 220 9879.22 209 219.32 203 231.61 201 231.60 194 237.57

Table 2. Number of clusters and average update time for ECG.

5 Conclusions

We have studied the problem of continuous subspace
clustering in streaming time series data. More specifically,
a novel method has been proposed towards efficient cluster
generation and maintenance. Each cluster is composed of a
number of streaming time series, where the pair-wise value
difference inside a cluster is at mostα, subject to the restric-
tions that the minimum number of streams isminRows and
the minimum number of dimensions isminCols. It has
been demonstrated that by using the proposed pruning cri-
teria, significant search space reduction is achieved.

Acknowledgments

Research supported by the Research Program PENED
2003, funded by the General Secretariat of Research and
Technology (GSRT), Ministry of Development, Greece.

References

[1] C.C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu,
J.S. Park, “Fast Algorithms for Projected Cluster-
ing”, ACM International Conference on Management
of Data, pp.61-72, 1999.

[2] C.C. Aggarwal, P.S. Yu, “Finding Generalized Pro-
jected Clusters in High Dimensional Spaces”,ACM
International Conference on Management of Data,
pp.70-81, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopoulos, P. Ragha-
van, “Automatic Subspace Clustering of High Dimen-
sional Data for Data Mining Application”,ACM Inter-
national Conference on Management of Data, pp.94-
105, 1998.

[4] S. Babu, J. Widom: “Continuous Queries over Data
Streams”, ACM SIGMOD Record, Vol.30, No.3,
pp.109-120, 2001.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft,
“When is nearest neighbors meaningful”,Interna-
tional Conference on Database Theory, pp.217235,
1999.

[6] M. Charikar, L. O’Callaghan, R. Panigrahy, “Better
Streaming Algorithms for Clustering Problems”,Sym-
posium on the Theory of Computing, pp.30-39, 2003.

[7] C. Cheng, A.W. Fu, Y. Zhang, “Entropy-based Sub-
space Clustering for Mining Numerical Data”,ACM
International Conference on Knowledge Discovery
and Data Mining, pp.84-93, 1999.

[8] Y. Cheng, G.M. Church, “Biclustering of Expression
Data”, International Conference on Intelligent Sys-
tems for Molecular Biology, pp.93-103, 2000.

[9] M.H. Dunham: “Data Mining: Introductory and Ad-
vanced Topics”, Prentice Hall, 2002.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L.
O’Callaghan, “Clustering Data Streams: Theory and
Practice”,IEEE Transactions on Knowledge and Data
Engineering, Vol.15, No.3, pp.515-528, 2003.

[11] J. Lin, E. Keogh and W. Truppel: “Clustering of
Streaming Time Series is Meaningless”,ACM SIG-
MOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 2003.

[12] J. Pei, X. Zhang, M. Cho, H. Wang, P.S. Yu, “MaPle:
A Fast Algorithm for Maximal Pattern-based Cluster-
ing”, IEEE International Conference on Data Mining,
pp.259-266, 2003.

[13] H. Wang, W. Wang, J. Yang, P.S. Yu, “Clustering by
Pattern Similarity in Large Data Sets”,ACM Interna-
tional Conference on Management of Data, pp.394-
405, 2002.

[14] H. Wang, F. Chu, W. Fan, P.S. Yu, J. Pei, “A Fast Algo-
rithm for Subspace Clustering by Pattern Similarity”,
International Conference on Statistical and Scientific
Database Management, pp.51-60, 2004.


