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Abstract

Energy conservation and access efficiency are two fun-
damental though competing goals in broadcast wireless net-
works. To tackle the energy penalty from sequential search-
ing, the interleaving of index with data items has been pro-
posed. Although, quite important contributions exist on pro-
viding broadcast indexes, they have one or more of the fol-
lowing problems. Firstly, all of them assume total ordering
among broadcast data, and none considers the more gen-
eral case of partial ordering. Secondly, they are balanced
structures, which does not fit the “linear (one-dimensional)
structure” of the wireless medium, in which imbalanced
structures may offer significant advantages. Thirdly, they
do not take into account the skewness in the access pattern,
which prohibits larger performance gains to be reaped. Fi-
nally, they require all index items to be of equal size, which
may not always give the optimal performance. To cope with
all these problems, we introduce a new imbalanced tree-
structured index. The new index is shown to be a gener-
alization of two previously proposed high-performance in-
dexes, and it introduces for the first time the problem of
indexing partially ordered broadcast data. We present an
experimental analysis of the proposed method, contrasting
it with competing techniques. The analysis exhibits the ef-
ficiency of the proposed index in reducing the energy con-
sumption without noticeably worsening the access latency.

Keywords: Energy saving, skewed access, indexing, sensor
networks, ad hoc networks, wireless networks.

1 Introduction

Consider the following scenario from sensor network ap-
plications, where a node (assumed to be energy-rich, due
to its special duties) with various sensing capabilities (e.g.,
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temperature, humidity, pressure, carbon-dioxide concentra-
tion), is able to sense the environment at regular time inter-
vals (different for each measured quantity). These measure-
ments are broadcast and collected by surrounding energy-
starving nodes/sensors, which implement various applica-
tion protocols, dealing with aspects of temperature only,
of gas only, of concentrations only, etc., or with various
combinations of them. Such an application scenario could
be built on the basis of the architecture described in [4].
Clearly, ordering of the measurements for the same “quan-
tity” (e.g., temperature, pressure) across time is meaningful,
but ordering of measurements of different “quantities” for
the same time instance does not make sense. The surround-
ing application-oriented, energy-starving nodes serving the
different applications, will require energy-efficient access
to the broadcast information (and not continuous tuning to
the broadcast channel). Though, due to the different pref-
erences of the running applications for the measured quan-
tities, the access pattern of the sensors to the disseminated
information will be heterogeneous, i.e., skewed.

In a second possible scenario, encountered in a cellular
wireless network (e.g., a PCS), resource-constraint mobile
units within a wireless cell, retrieve information from a re-
lational database, whose contents are broadcast by a base
station serving the cell. The recent Smart Personal Objects
Technology (SPOT) by Microsoft proves the industrial in-
terest in such kind of services and exhibits their feasibility.
In the general case, the information pieces consist of “pro-
jections” (i.e., columns) of relational table rows, for which
the row-key is able to differentiate only among rows, and
not between columns of the same row. Evidently, the mo-
bile users are interested in different combination of rows
and columns, and as it is common in realistic situations, the
resulting access pattern is skewed.

Finally, in a third scenario inspired from a modern au-
tomated battlefield where an ad hoc network is deployed, a
power-rich node e.g., an Unmanned Ground Vehicle or Un-
manned Airborne Vehicle, is designed to supply intelligence
and other tactical operations information to allied troops. It



broadcasts reports to power-starving mobile units carried,
for instance, by individual (or small groups of) soldiers, or
by small unmanned exploring vehicles. Apparently, not all
transmitted information pieces is of interest to all receiving
units and moreover, it may be the case where the “descrip-
tive key” of the information pieces does not impose a global
ordering among the pieces.!

In these application scenarios, it is evident that:

e The information “consumers” need to retrieve the data
as quick as possible (i.e., with small access latency,
which is the time elapsed between when the need for a
datum arises in a node and the moment the node gets
that datum from the channel).

e The consumers are energy-starving nodes; therefore
they should refrain from continuously monitoring the
broadcast channel (i.e., pursuit a small funing time,
which is the amount of time a node spends while mon-
itoring the channel).

e There is no global ordering among the data, but only
partial ordering.

e The access pattern to the broadcast information is
skewed; some data are more “hot” than other.

Access efficiency is a common objective in many sys-
tems, (e.g., databases), but energy conservation is a vital
goal in wireless networks for prolonging the longevity of
the sensor network or for guaranteeing as much power-
independence as possible for the mobile hosts. To achieve
energy savings, mobile nodes support two generic modes
of operation, the active mode, which is a fully operational
state, and the doze mode, which is a power saving state.
The ratio of energy consumption between the two modes is
usually an order of magnitude [22]. Similarly, sensor nodes
can be in one of three active states — transmit, receive, idle
—orin sleep state; a sensor in the sleep state consumes 7-20
times less energy than when it is in the idle state [5].

Clearly, when the data are broadcast in the channel the
node has no alternative, but continuously monitor the chan-
nel until it receives them, which results in huge energy
penalty. To allow the nodes to remain in the doze/sleep
mode so as to save energy, we must incorporate indexing
information within or before the broadcast data. Using this
air indexing [11], which includes information about arrival
times of data, the nodes need not stay tuned to the channel
all the time, but they can “wake up” at specific instances,
when data useful to the node are to be transmitted.

Disk-based indexing techniques is thoroughly investi-
gated in the database literature. Some of these techniques
have been adapted to the wireless case, e.g., hashing [10,
23], Bt-tree [11, 25, 27], with different tradeoffs between
access and tuning time performance, but the BT -tree based
methods exhibit the best overall performance [25].

IThe terms (information) piece, datum and data item are used inter-
changeably.

However, all existing indexing schemes (cf. Subsec-
tion 2.2) are designed with the assumption that there exists
a global ordering among the indexed data. The only ex-
ception is the index tree proposed in [3], which assumes no
ordering at all among the indexed data. Unfortunately, this
scheme is not an indexing method at all, because it requires
scanning the whole tree in order to discover an item, since
the tree provides no guidance (i.e., branch following). In
addition, most of the indexing schemes [11, 23, 25, 27] are
tailored to uniform data access, thus ignoring the possibility
of reaping large performance gains (in terms of access time)
from the skewed access pattern. A detailed discussion of the
relevant work along with the shortcomings of each method
will be presented in Subsection 2.2.

We propose a novel tree-structured index, named the
Partial Ordering Broadcast Index, POBZ to be interleaved
with or precede broadcast data, which minimizes the en-
ergy expenditure at minimal access time aggravation, and
it is tailored to realistic skewed access patterns. The nov-
elty of the proposed structure is the fact that the index can
handle partial ordering among the transmitted data, which
is a feature that is not present in any previously presented
index. The key point is that the proposed index is a natu-
ral generalization of two state-of-the-art indexing schemes,
i.e., the Variant Fanout, VF [3] and k-ary Alphabetic Tree,
kAT [21] indexes. A performance analysis of the index
in terms of the access latency and tuning time is provided.
A wide range of experiments are conducted to compare
the proposed index with the state-of-the-art relevant air-
indexing schemes.

The rest of this paper is organized as follows. Section 2
introduces useful concepts and possible assumptions and
it surveys the research work related to indexing broadcast
data. Section 3 presents the formulation of our problem
and Section 4 presents the construction method of the novel
broadcast index; we compare the proposed index with the
existing schemes in Section 5. Finally, the paper is con-
cluded in Section 6.

2 Background
2.1 Preliminaries

We consider a generic data dissemination system which
uses broadcasts to send information to clients. There exists
a resource-rich node, we name it the server, which broad-
casts the information through a broadcast channel. Each
information piece can be identified by a key value. This key
value does not impose a global ordering among the data,
but only partial order. The nodes are resource-constraint
devices, and they can be, for instance, sensor nodes of a
wireless sensor network or mobile hosts roaming inside the
coverage area of a Personal Communications System. We
assume that the server is able to estimate the popularity of
each information piece, e.g., using subscriptions. In order



to retrieve the required broadcast data, the nodes tune into
the broadcast channel and retrieve the packets containing
indexing information until they get the information about
the arrival time of the sought datum. This selective tuning
mechanism achieves the energy savings.

We assume here a single broadcast channel. Our pro-
posed index POBZ though, can be adapted with minimal
design changes to the existence of multiple channels.

Although not critical for our study, we assume a flat
broadcast, where each datum appears exactly once, instead
of skewed broadcast [1], where some items may appear
more than once. The proposed index POBZ can straight-
forwardly be extended to support replicated items. Apart
from data replication, a number of other client-side tech-
niques can also be used to reduce the access time, like data
caching [13], prefetching [14], but all these are orthogonal
to our work and will not be considered.

Here, we assume that a server broadcasts n equi-sized
data records, each denoted as R; (1 < i < n) and with
access probability Pr(R;), where >, Pr(R;) = 1. Let
I, (R;) be the number of index probes to reach R; in the
index tree and d(a;) be the fanout of a node a; of the index
tree. We denote with Path(R;) the set of index nodes from
the root of the tree to R;. Similarly to [3], we define the
average cost of any index tree as:

> Pr(Ri) * I(Ry), (1)

1<i<n

where the cost of index probing is estimated as:

Lp(Ri)= > d(a). 2)

a; EPath(R;)

Although the definition of alternative cost models is
possible, this model is the most realistic in the literature.
Having defined the cost formula, we can easily see why
non-uniform access pattern combined with unbalanced tree
structures provides opportunities for gains. Initially, con-
sider four data items with uniform access patterns, i.e.,
P’I“(Rl) = P?“(RQ) = P?“(Rg) = P’I“(R4) = 0.25 (or—
dered as Pr(R;) < Pr(Rz) < Pr(Rs) < Pr(Ry)
and suppose we build a balanced tree like the one de-
scribed in [11] with fanout d(a;) = 2. Then, the result-
ing tree will be the one illustrated in the left part of Fig-
ure 1 and its cost will be the optimal one and equal to
Dicica Pr(R) * Ip(Ri) = 301 2;<40.25 % 4 = 4. Sup-
pose now, that the access pattern is skewed, and the prob-
abilities are Pr(Ry) = 0.40, Pr(Rz) = Pr(Rs) =
Pr(R4) = 0.20. Then, the tree in the left part of Figure 1
would result in a cost equal to 4, whereas the tree in the right
part of Figure 1 would result in a cost equal to 3.8, reaping
gains up to 5% even for this tiny example.

Our target is to create an index tree minimizing the cost
of Equation 1, under the assumptions of non-uniform access

Figure 1. Opportunities for gains by exploit-
ing access skewness and tree imbalancing.

pattern and partial data ordering. The complete problem
definition will be given in Section 4.

2.2 Related work

Disk-based indexing (e.g., BT -trees, Hashing, R -trees,
Quadtrees, Skip Lists) for traditional as well as for ad-
vanced applications is a thoroughly investigated area dur-
ing the past years. An adaptation of the idea of B -tree in-
dexing in wireless environments was first described in [11],
where instead of the disk addresses the leaves of the BT -tree
store the arrival time of each datum in the broadcast chan-
nel. Similarly, an adaptation of the traditional hash-based
indexing technique in wireless environments was earlier de-
scribed in [10], and later was generalized in [23]. Hybrids
between the two approaches are described in [20, 25] and
application of signature trees as indexing methods in re-
ported in [15], which of course can support only equality
queries. Adaptation of such indexing schemes (e.g., B*-
tree) to work in multiple broadcast channels are described
in [8, 26]. They do not propose new schemes but simply dif-
ferent allocation methods for the nodes of the indexing tree.
In all these works it is assumed that: a) there is a global or-
dering among the transmitted data, and b) the access pattern
is uniform, that is, the access probability is the same for all
data, which is quite unrealistic.

Deviating from the uniform access probability assump-
tion, several works considered the effect of access skew on
the design of indexing schemes. A new scheme is proposed
in [21], which is a k-ary version of the basic binary Al-
phabetic Tree [9] over the data, whereas [24, 26] adapted
the indexing method of [11] to deal with non-uniformity
in access. Various methods were based on the construc-
tion of a binary or k-ary Alphabetic Tree to develop in-
dexing schemes for multiple broadcast channels [12, 17].
These methods do not provide new types of tree-structured
indexes, but rather a new allocation method for the tree-
structured method of Alphabetic trees to the multiple chan-
nels. All these works [12, 17, 21, 24, 26] assume that: a)
there is a global ordering among the transmitted data.

There is only one work [3], which deviated from both
the uniformity and global ordering assumptions. Though,
it assumed no ordering at all for the data, therefore turning
the proposed indexing not to be a searching structure at all.

For the case of wireless sensor networks, since the ma-
jority of research has focused for the moment on topics like



routing, clustering, sleep scheduling, localization, medium
access control, the issue of indexing has received much less
attention and the literature has solely developed distributed
indexes that reside on the sensor nodes and are not broad-
cast. These indexes comprise (in one form or another) adap-
tations of the traditional disk-based indexes, with special
care to achieve only local (to the extend possible) communi-
cation during their creation or maintenance, and small stor-
age overhead. The GHT [19] is based on a (geographic)
hashing scheme, DIM [16], DIFS [7] and DIST [18] are
based on the quadtree structure, and TSAR [4] is based on
Skip Graphs (a generalization of Skip Lists for distributed
environments). None of these indexes is broadcast over
wireless channels and they all assume global ordering for
the data they index.

3 The Partial Ordering Broadcast Index con-

struction problem

Assume (as stated in subsection 2.1) that we are given
a set of equi-sized n data items, each with access proba-
bility of Pr(R;). Also, assume that these n items are dis-
tributed (by the nature of the each application) into m bins
(or groups) Bj; each bin B; contains |B;| items. Without
lost of generality, we assume that bin B; contains the items
1,...,|Bi1], bin B contains the items |By|+ 1,...,|B1| +
|B2|, and bin B; contains the items >3, o, ,[B:| +
L. X i<acio [Bel + Bl where 30, [Bj| = n.
Moreover, assume that for the items within a bin there is no
ordering, whereas each item of bin B; is “smaller” than each
item of bin B;, iff 7 < j. Then our goal can be formulated
in mathematical terms as follows:

Definition 1 (Partial Ordering Broadcast Index). Given
the number n of data items, their access probabilities
Pr(R;), the number m of bins (groups) Bj and a member-
ship function (specifying which item belongs to which bin),
our goal is to construct an indexing tree minimizing the cost
of Equation 1, such that in the tree we build, the item x pre-
cedes item y in an inorder traversal of the tree, if v € B;
andy € Bj fori < j. The order of items within each bin is
arbitrary.

3.1 Generalizing earlier indexes

Clearly, our problem definition embraces the problems
defined in [21] and [3]. If we consider that there is only one
bin, i.e., m = 1, then our problem reduces to that in [3],
since there will be no ordering at all among the data, and it
can be solved as a formulation of (binary or k-ary) Huffman
tree. On the other hand, if there are as many bins as the
number of items (m = n) and each bin accommodates only
one item, then our problem reduces to that in [21], since a
global ordering among all data will be imposed, and thus
the problem can be solved as a formulation of the (binary or
k-ary) Alphabetic tree.

4 The Partial Ordering Broadcast Index

To deal with the aforementioned problem, which defines
the partial ordering broadcast index, we firstly attempt to
gain some insights into it. Apparently, a brute force ap-
proach is to generate every possible permutation of the n
items (respecting the group membership and inter-group or-
dering) and construct an alphabetic tree over them, selecting
the one with the least cost. It is clear that such a method of
attack is inefficient, since we have to examine exponentially
many permutations, roughly, the product of each group’s
possible permutations. Indeed, we can easily see that we
can not design a polynomial-time algorithm like that of [6],
to solve our problem. Therefore, the exploitation of smart
approximations with small execution time is preferable.

A cheap solution is to select a random ordering for the
items inside each group and then apply a binary or k-ary al-
phabetic tree construction algorithm to all the items. We can
prove no analytic performance results for such a solution,
but we can do better than this. We call this baseline naive
scheme, as kATr, where parameter k reveals the fanout of
each node (for a binary tree k = 2).

Can the ordering of items in each group provide some
benefits? It can be proven that for the special case where
all groups, but the first and last group, contain only one
item, then the lowest cost POBZ can be obtained if we or-
der the items of the first group in non-ascending order and
the items of the last group in non-descending order. But in
the case that several groups, not only the first and last, con-
tain more than one item, then such an ordering can not lead
to the optimal solution. Using these orderings though, we
can design some approximations to our problem. In partic-
ular, an heuristic could be obtained by sorting the items of
each group in non-descending order and then constructing
an alphabetic tree; we call it kAT4. Similarly, by sorting the
items of each group in non-ascending order, we get another
heuristic, the kATd.

The aforementioned approximations are relatively
straightforward making use of some ordering, based on pop-
ularity among the items of each group, trying to push the
less popular items deeper into the resulting tree. Their draw-
back though is that the rely on the alphabetic tree construc-
tion algorithm to form the final tree. Departing from these
naive heuristics, we adopt a more structured way, with the
same objective of trying to push the less popular items of
each group deeper into the resulting broadcast search tree.
This structured approach consists of creating subtrees, each
subtree corresponding to one group. Then, treating each
subtree as a single node with the tree’s cost as the node’s
weight, we apply an alphabetic tree construction algorithm.

The main issue in this approach is to devise a subtree
construction algorithm. We propose the following three
generic strategies: a) “place the most popular item at the
root of the tree, then proceed similarly on the branches of



the root”, b) “choose the root so as to equalize the total
weight of the branches”, and c) “construct a Huffman tree
with variant fanout over the items of each group”. We name
these approximations as MostPop, EqWeig and POBZ,
respectively. The first two strategies are simple to under-
stand. We explain in a little more detail only the third one.
This strategy works similarly on all groups. It starts
from an initial node, say = which has as its children all
items of the group, i.e., c1,c2,...cy. Initially, it sorts in
non-ascending popularity the items of the group. Then, if
it finds a z, such that (y — 2 — 1) * 37, Pr(c;) >
> t1<j<y Pr(cj), it creates a new node, say na as father
of the nodes ¢, 1, . .., ¢, and makes this new node as child
of the node x. This partitioning is applied recursively to
both x and nx, until no further partitioning is possible. This
procedure is tailored to minimizing the cost of Equation 1.

4.1 Directing the search in the subtrees of
each group

In order to characterize a tree structure as a search tree, it
must posses a distinct feature, i.e., the internal nodes of the
tree must provide guidance as where to continue the search,
while seeking for a particular item. The tree structures, like
B -tree [11, 25], and alphabetic tree [21] do posses this
feature and thus they are characterized as search tree. On
the other hand, the VF tree [3] is not a search tree, because,
in an inorder traversal of the tree, the items are not retrieved
in the sorting (lexicographic or numeric) order; therefore
there is no way to use the internal nodes of this tree to prune
parts of the tree while searching.

Our developed tree structure faces a similar problem,
though to a more limited extent, because we only need to
provide guidance for the items of each group. Suppose we
are seeking for an item ¢ belonging to group g. We can eas-
ily discover the subtree, which corresponds to group g, by
comparing item ¢ to other items not belonging to group g,
since there is an ordering between ¢ and these items. At the
root of the subtree corresponding to group g, we must make
a decision about which branch to follow, that will direct us
to item ¢. Each node is equipped with a Bloom filter [2], that
provides this facility. Thus, we are able to bypass the lack
of ordering between the items of a group, at the expense of
a very small false-drop probability, i.e., some cases where
we have to follow more than one branch, which though can
be controlled to become really insignificant.

S Performance Evaluation

For the evaluation of the proposed algorithms, we de-
veloped a system that simulates an environment where a
number of nodes (clients) access the data served by a server
through a broadcast channel. Each node has a cache to store
previously accessed data and selects the next data to access
based on its profile. Whenever a node needs an item which

is not stored locally, it tunes to the broadcast channel read-
ing the index information and alternating between sleep and
active mode, until it gets the required information.

We implemented a Zipfian model for node request dis-
tribution, for group sizes distribution, for item popularity
distribution and group popularity distributions, i.e.,

_ (/)

DS INCVEL
where 6 controls the skewness of the distribution. For § =
0 the Zipfian reduces to the uniform distribution, whereas
larger values of 6 derive increasingly skewer distributions.
Using this formula, we can derive relative popularities for
items and groups and relative sizes for the groups.

The formation of groups and item popularities were gen-
erated roughly as follows. Suppose we have decided to gen-
erate n items to be assigned to m groups. Firstly, we decide
the relative sizes of the groups using the Zipfian distribution
(Equation 3); setting small values for 6 all groups have sim-
ilar sizes, whereas for larger 6 values some groups have sig-
nificantly larger number of items. Then, we assign to each
group a relative popularity, using again the zipfian law. De-
pending on the combination, we can generate large groups
with large popularity, small groups with large popularity,
equi-sized groups with roughly equal popularity and so on.
Then in a third invocation of the Zipf’s law, this popularity
is distributed to the group’s items. The preference of users
to items are decided again with the Zipfian law.

We performed a large number of experiments to assess
the impact of the volume of data, of the access distribu-
tion of the data, of the client cache, of the very interesting
tradeoffs involved in the use of Bloom filters, etc. For the
interest of space, in this article we take up only with the
analytic assessment of the proposed tree structures as they
are defined by Equation 1. In particular, we will present
the performance of the algorithms with varying number of
items, with varying number of groups, with varying pop-
ularity distribution of the groups and with varying relative
size (in terms of items) of the groups; all these for a cou-
ple of combinations for the default parameters. In Table 1
we present the major symbols used in the simulation, along
with a brief explanation for it and its default value. We use
the notation NAgBgsCgpD in the title of the plots to de-
note the parameters, where each of the symbols A, B, C or
D is replaced either from numeric value or from an under-
score to denote that it is varying. For instance, the notation
n500g10gs01gp_ means that we are investigating various
values for the relative group popularity in a collection of
500 items divided into 10 groups, where the relative skew-
ness in group sizes is 0.1.

Since this article introduces for the first time the prob-
lem of indexing partially ordered data for wireless broad-
casts, there are no relevant competing methods in the lit-

1<z<nrl<z<m) @A)



| Var | Meaning Default |
n # of database items 500
g # of groups 10
gs skew in group size 0.1

(0.0 — equi-sized)
p skew in group popularity | 0.1
(0.0 — equi-popular)

Table 1. Simulation parameters.

erature to compare with. Though we have already devised
some straightforward extensions of existing tree structures,
which can serve the role of the competitor methods. We
developed a straightforward extension of the VF tree [3],
with the same name, to take into account the partial or-
dering of items. Also, we implemented a straightforward
extension of the original k-ary Alphabetic tree, by employ-
ing a random ordering of the items inside each group and
denote this variant as kAT, as well, but it coincides with
kATr; consequently we do not expect this variant to show
good performance. Finally, we implemented our approxi-
mation schemes, namely kAT, kATd, MostPop, EqWeig
and POBZ. In the plots of the following subsection, we ex-
clude from the presentation the FqWeig method, because it
exhibited the same performance as that of MostPop.

5.1 Impact of the number of items

The first experiment aimed to investigate the impact of
the number of items on the relative performance of the al-
gorithms. We varied the number of items from 100 to 1000
and investigated the average index cost incurred by the al-
gorithms along two dimensions, i.e., relative group size
and relative group popularity, considering equal and quite
skewed sizes for the groups and also considering equal and
quite skewed popularities; thus we came up with four com-
binations. The resulting graphs are illustrated in Figure 2.

The general trend is the increase of the average index
cost with increasing number of items. This is due to the
fact that the larger the number of items is, the deeper the
resulting tree is. The average index cost increases in a log-
arithmic fashion, since the resulting tree is quite bushy, and
not a degenerate left (or right) deep tree. Regarding the per-
formance of each algorithm, the first observation is that the
kAT method is the worst of all, as expected, since it makes
no smart decisions in the construction of the search tree.
The performance of the methods, which are based on a kind
of sorting of the items of each group, before constructing
the final alphabetic tree (i.e., kATi, kATd and MostPop)
is almost equal (indistinguishable in the plots), but signifi-
cantly better than that of kAT

The most effective algorithms are VF and POBZ, with
the latter to be the champion method outperforming the
former in all cases. It is interesting to node that, ignor-
ing some statistical error, the performance of VF' deterio-

rates compared to that of POBZ, with increasing number
of items. This is obviously due to the better decisions taken
by POBZ, which exploits intra-groups item relationships.
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Figure 2. Impact of the number of items on
tree performance.

5.2 Impact of the number of groups

We investigated the impact of the number of groups on
the relative performance of the algorithms. We varied the
number of groups from 10 to 50 and investigated the av-
erage index cost incurred by the algorithms along two di-
mensions again, i.e., relative group size and relative group
popularity, considering equal and quite skewed sizes for the
groups and also considering equal and quite skewed pop-
ularities; thus we came up with four combinations. The
resulting graphs are illustrated in Figure 3.

The general trend here is not similar for all four graphs; it
is apparent although not very intense. In the upper two plots
of the figure, which represent the case where the groups are
equi-sized, where observe a gradual increase in the average
index cost, with increasing number of groups. This is due
to the fact that the larger the number of items is, the deeper
the resulting tree is. But, in the case of the lower two plots,
which represent the case where there is a skewness in the
groups’ sizes, we can observe that the average index cost
is relative stable and thus robust to the increasing group
number. This behaviour has its origin in the fact that the
skewness in group sizes results in a few groups collecting
the largest part of probability mass; thus these few groups
are responsible for incurring the largest part of index cost,
which cost, in its turn, remains relatively unaffected by the
large number of groups.

Regarding the performance of each algorithm, the com-
ment for the kAT, kATi, kATd, MostPop are analogous
with those when we examined the impact of the number of
items. The interest here lies is in the relative performance
of VF and POBZ. The general trend is that VF is less
effective than POBZ, when the groups are relatively equi-
sized, and it achieves to close its performance lag, only the
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skewness in groups’ sizes or the skewness in groups’ popu-
larity becomes significant. In these cases the largest part of
probability mass is concentrated in a few groups (items) and
thus the erroneous decisions in the tree construction proce-
dure by VF become less significant, because it can han-
dle relatively easily a few but very popular items. On the
other hand, POBZ’s performance is not really affected by
the number of groups, except from the case of equi-sized
and equi-popular groups, where it naturally exhibits a small
increase in the average index cost.

5.3 Impact of the relative group sizes

The third experiment investigated the impact of the rel-
ative sizes of groups on the performance of the algorithms.
We varied the skewness in groups sizes from 0.0 to 1.0 and
investigated the average index cost incurred by the algo-
rithms along two dimensions, i.e., the number of groups and
the relative group popularity, considering 10 and 20 groups,
and also considering equal and quite skewed popularities;
thus we came up with four combinations. The resulting
graphs are illustrated in Figure 4.

The general trend is a decrease of the average index cost
with increasing skewness in group popularity; this is ex-
pected since the largest part of popularity mass in concen-
trated into fewer groups and thus items, which items are
successively placed on the upper parts (near the root) of
the resulting search trees. Now we can clearly see that the
POBT index is particularly better than VF for the cases
when there is no excessive skewness in the group popular-
ity, but the skewness is moderate or small. The reason has
adequately being explained in subsection 5.2. In any case
though, it outperforms the VF tree.

Impact of skewness in groups' sizes (n500g10gs_gp01) Impact of skewness in groups' sizes (n500g10gs_gp0S)
T T T T T T

average index cost
average index cost

2 04 06
‘skewness in relative sizes of groups
Impact of skewness in groups' sizes (n'500g20gs_gp0s)
T T T T

2 0.4 06
‘skewness in relative sizes of groups

Impact of skewness in groups' sizes (n'500g20gs_gp01)
88 T T : 88

average index cost
average index cost

0 1 0

02 04 06 08
skewness in relative sizes of groups

Figure 4. Impact of the relative groups’s sizes
on tree performance.

02 04 06 08
skewness in relative sizes of groups

5.4 Impact of relative group popularity

Finally, the last experiment aimed to investigate the im-
pact of the relative group popularity on the performance of
the methods. The conclusions drawn from this experiment
for all methods are consistent with those being observed in
the aforementioned plots. POBZ reveals another virtue; for
relatively large amount of skewness in group popularity is
able to reduce the average index cost in even larger pace,
than that for moderate and small skewness. This is evident
from the larger slope exhibited by the POBZ’s curve for
skewness values beyond 0.5.
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6 Summary

This paper investigated for the first time the issue of in-
dexing broadcast information, for the case of partially or-
dered data. The emerged applications running over wire-
less ad hoc or wireless sensors are the the main motivation
for investigating the case of partially ordered data. Though,
usual applications like those developed for the now tradi-
tional wireless cellular networks could benefit from the is-
sues discussed in the article.

We defined the problem of indexing partially ordered
data and showed that it naturally generalizes two problems
proposed earlier in the literature, that lead to the devel-



oped of two high performance indexing structures. We pro-
vided approximation algorithms to generate the broadcast
search trees that attack the defined problem, since provid-
ing optimal algorithms require solving exponential number
of subproblems. The design of the search structure took
into account the skewness in access distribution and thus we
proposed an imbalanced structure as solution to the access
skewness.

We implemented a simulation environment to investigate
the performance of the proposed approximation algorithms
and presented detailed experiments that assess the superi-
ority of one of the methods, namely of the POBZ index
search tree. POBZ was proven to be the champion algo-
rithm outperforming clearly all other competing methods.
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