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I N T R O D U C T I O N  

 
In many application domains, data can be represented as a series of values 

(time series). Examples include stocks, seismic signals, audio and many more. 
Similarity search in time series databases is an important research direction. 
Several methods have been proposed in order to provide algorithms for efficient 
query processing in the case of static time series of fixed length. Research in 
this field has focused on the development of effective transformation 
techniques, the application of dimensionality reduction methods and the design 
of efficient indexing schemes. These tools enable the process of similarity 
queries in time series databases. In the case where time series are continuously 
updated with new values (streaming time series), the similarity problem 
becomes even more difficult to solve, since we must take into consideration the 
new values of the series. The dynamic nature of streaming time series make the 
methods proposed for the static case inappropriate. To attack the problem, 
significant research has been performed towards the development of effective 
and efficient methods for streaming time series processing. In this article, we 
introduce the most important issues concerning similarity search in static and 
streaming time series databases, presenting fundamental concepts and 
techniques that have been proposed by the research community.  

 
 
B A C K G R O U N D  
 

Time series are used in a broad range of applications, modeling data that 
change over time. For example, stock changes, audio signals, seismic signals, 
electrocardiograms, can be represented as time series data. In fact, any 
measurement that changes over time can be represented as a time series. Two 
simple time series examples are depicted in Figure 1. 
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time(a) stock changes (b) electrocardiogram
Figure 1: Examples of time series data. 

 
 

We differentiate between two types of time series, namely: 1) static time 
series, and 2) streaming time series. In the first case, we assume that the time 
series is composed of a finite number of sample values, whereas in the second 
case the size of the series is increasing since new values are appended. For 
example, if the data correspond to stock prices for the year 2004, then we can 
use static time series to capture the stock prices of the time period of interest. 
On the other hand, if there is a need for continuous stock monitoring as time 
progresses, then streaming time series are more appropriate.  

Streaming time series is a special case of streaming data, which nowadays 
are considered very important and there is an increasing research interest in the 
area. Traditional database methods can not be applied directly to data streams. 
Therefore, new techniques and algorithms are required in order to guarantee 
efficient and effective query processing in terms of the CPU time and the 
number of disk accesses. The most important difficulty that these techniques 
must address is the continuous change, which poses serious restrictions.     

The purpose of a time series database is to organize the time series in such a 
way that user queries can be answered efficiently. Although user queries may 
vary according to the application, there are some fundamental query types that 
are supported: 
 

• whole-match queries, where all time series have the same length, and 
• subsequence-match queries, where the user’s time series is smaller than 

the time series in the database, and therefore we are interested in time 
series which contain the user’s time series. 

 
In contrast to traditional database systems, time series databases may contain 

erroneous or noisy data. This means that the probability that two time series 
have exactly the same values in the same time instances is very small. In such a 
case, exact search is not very useful, and therefore similarity search is more 
appropriate. There are three basic types of similarity queries: 
 

• similarity range query: given a user time series Q and a distance e, this 
query retrieves all time series that are within distance e from Q.  

• similarity nearest-neighbor query: given a user time series Q and a 
integer k, this query retrieves the k series that are closer to Q. 
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• similarity join query: given two sets of times series U,V and a distance e,  
this query retrieves all pairs (u,v)  u∈U and v∈V such that the distance 
between u and v is less or equal to e.  

 
It is evident from the above definitions, that in order to express similarity 

between two time series objects, a distance measure D is required. This distance 
measure usually ranges between 0 and 1. If two time series u and v are similar, 
then the value D(u,v) should be close to 1, whereas if they are dissimilar then 
D(u,v) should be close to 0. Similarity search can be applied for whole-match 
queries and subsequence-match queries as well, for static or streaming time 
series.  
 
S I M I L A R I T Y  S E A R C H  I N  T I M E  S E R I E S   
 

We begin our study with methods proposed for static time series. Streaming 
time series are considered later in this section. The efficient processing of 
similarity queries requires the addressing of the following important issues: 
 

• the definition of a meaningful distance measure D in order to express the 
similarity between two time series objects, 

• the efficient representation of time series data, and 
• the application of an appropriate indexing scheme in order to quickly 

discard database objects that can not contribute to the final answer. 
 

Assuming that each time series has a length of m, then it is natural to think 
that each time series is represented as a vector in the m-dimensional space. In 
such a case, the similarity between two time series u and v can be expressed as 
the Euclidean distance: 
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where u[i], v[i] is the value of u and v for the i-th time instance. The Euclidean 
distance has been widely used as a similarity measure in time series literature 
(Agrawal 1993, Faloutsos 1994, Chan 1999, Kontaki 2004), because of its 
simplicity.  
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Figure 2: Examples of translation, rotation and scaling of time series. 
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Several alternative distance functions have been proposed in order to allow 
translation, rotation and scaling invariance. Consider for example the time 
series depicted in Figure 2. Note that although all time series have the same 
shape, they will be considered different if the Euclidean distance is used to 
express similarity. Translation, rotation and scaling invariance is studied in 
(Agrawal 1995, Yi 1998, Chan 1999, Yi 2000). 

The main shortcoming of the Euclidean distance is that all time series must 
have equal length, which is a significant restriction. If time series are sampled 
using different time intervals, then their length will not be the same, and 
therefore the Euclidean distance can not be applied. In order to express 
similarity between time series of different lengths, other more sophisticated 
distance measures have been proposed (Yi 1998, Park 2000). One such distance 
measure is Time Warping (TW) that allows time series to be stretched along the 
time axis. The time warping distance maps each element of a time series u to 
one or more elements of another time series v. Given two time series u and v the 
time warping distance  is defined as follows (several variations have 
been proposed): 

),( vuDTW

⎪
⎩

⎪
⎨

⎧
+−=

*]):2[*],:2[(
)*],:2[(

*]):2[,(
min|]1[]1[|),(

vuD
vuD

vuD
vuvuD

TW

TW

TW

TW  

 
where u[2:*] and v[2:*] denote the suffix of u and v respectively. The TW 
distance has been used extensively in pattern matching, for voice, audio and 
other types of signals (e.g., electrocardiograms). The computation cost of the 
TW is much higher than that of the Euclidean distance.  

Many string similarity functions as the Edit Distance (Bozkaya 1997) and 
the Longest Common Subsequence have been modified in order to match similar 
time series. These similarity functions can be used in time series with different 
lengths or different sampling rates because some elements may be unmatched. 

The number of samples of each time series may range from a few to 
hundreds or thousands. Therefore, representing each time series as an m-
dimensional vector may result in performance degradation during query 
processing, due to high computation costs of the distance function. It is 
preferable to compute the distance as efficiently as possible, towards increased 
processing performance. To attack this problem, dimensionality reduction is 
applied to the time series, in order to transform them to a more manageable 
representation. Figure 3 illustrates an example.  
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Figure 3: Applying dimensionality reduction using transformation .  
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One of the first dimensionality reduction techniques applied to time series is 

the Discrete Fourier Transform (DFT), which transforms a time series to the 
frequency domain. For many real time series (e.g. stock changes) it is observed 
that most of the information is concentrated in the first few DFT coefficients. 
Therefore, each time series can be represented by using only a few real 
numbers, instead of using all the values in the time domain. DFT has been 
successfully used for whole-match and subsequence-match in static or streaming 
time series (Agrawal 1993, Faloutsos 1994, Yi 2000, Kontaki 2004). Among 
other dimensionality reduction techniques we note the Singular Value 
Decomposition (SVD), the Discrete Wavelet Transform (DWT), and FastMap  
which have been successfully applied in time series databases. 

Note that dimensionality reduction is a lossy operation, since after the 
transformation of the time series some information is lost. This means that the 
transformed data is an approximation of the original data, and the latter must be 
retained in order to be available for reference. The original and the transformed 
data are used for query processing by means of the filter-refinement processing 
technique: 

 
• During the filter step, the approximations (transformed data) are 

investigated in order to quickly discard time series that can not 
contribute to the final answer. The result of this step is a set of candidate 
time series that may be part of the final answer. 

• Candidates are investigated further in the refinement step, by accessing 
the original time series in the time domain. Candidate objects that do not 
satisfy query constraints are characterized as false alarms, and are 
discarded. 

 
It is important that the filter step be very efficient with respect to the 

processing performance and the number of candidates determined. The number 
of candidates depends on the transformation technique used to produce the 
approximations, whereas the processing performance depends heavily on the 
indexing scheme applied. If the time series approximations are vectors in a 
multi-dimensional space, then spatial access methods can be used to organize 
data hierarchically. One of the most influential spatial access methods is the R-
tree (Guttman 1984) and the R*-tree (Bechmann 1990), which is one of its 
successful variations. The multi-dimensional approximations are organized in an 
efficient way, in order to speed-up query processing. The R*-tree manages to 
discard quickly a large portion of the database, and therefore helps significantly 
in the efficient processing of the filter step. Efficient algorithms have been 
proposed for similarity range search, similarity nearest-neighbor search and 
similarity join. An R*-tree example for a 2-dimensional point dataset is 
illustrated in Figure 4. 

If the dimensionality of the transformed data is still large after the application of 
the dimensionality reduction method, then indexing schemes for high-dimensional 
data can be used. These schemes are influenced by the R*-tree access method and 
they use several optimization techniques in order to attack the dimensionality curse 
problem. Among these sophisticated access methods we highlight the TV-tree (Lin 
1995) and the X-tree (Berchtold 1996). 
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Figure 4: An R*-tree example for 2-dimensional approximations. 

 
Although a significant amount of research work has been performed for 

static time series, the field of streaming time series is quite immature, since the 
data stream model has been recently introduced (Babou 2001, Babcock 2002, 
Gilbert 2003). The difficulty in a streaming time series database is that new 
values for the time series are continuously arrive. This characteristic yields 
existing techniques for static time series inefficient, because the index must be 
updated continuously for every new value.   

Similarity queries in streaming time series have been  studied in (Gao 2002) 
where whole-match queries are investigated by using the Euclidean distance as 
the similarity measure. A prediction-based approach is used for query 
processing. The distances between the query and each data stream are calculated 
using the predicted values. When the actual values of the query are available, 
the upper and lower bound of the prediction error are calculated and the 
candidate set is formed using the predicted distances. Then, false alarms are 
discarded. The same authors have proposed two different approaches, based on 
pre-fetching (Gao 2002b, Gao 2002c).  

The aforementioned research efforts examine the case of whole-match 
queries, where the data are static time series and the query is a streaming time 
series. In (Liu 2003) the authors present a method for query processing in 
streaming time series where both the query object and the data are streaming 
time series. The VA-stream and VA+-stream access methods have been 
proposed, which are variations of the VA-file (Weber 1998). These structures 
are able to generate a summarization of the data and enable the incremental 
update of the structure every time a new value arrives. The performance of this 
approach is highly dependent on the number of bits associated with each 
dimension. 

In (Kontaki 2004) a different approach is followed in order to provide a 
flexible technique for similarity range queries when both data and queries are 
streaming time series. The proposed method (IDC-Index) is based on the R-tree 
which is used as the indexing scheme for the underlying time series 
approximations. The dimensionality reduction technique applied to the original 
time series is based on an incremental computation of the DFT which avoids re-
computation. Moreover, the R-tree is equipped by a deferred update policy in 
order to avoid index adjustments every time a new value for a streaming time 
series is available. Experiments performed on synthetic random walk time series 

 6



and on real time series data have shown that the proposed approach is very 
efficient in comparison to previously proposed methods. 
 
F U T U R E  T R E N D S  
 

The research interest in the last years has focused to the streaming time 
series. Apart from the investigation of more efficient techniques for similarity 
search, there is significant work performed towards data mining of streaming 
data. The challenge is to overcome the difficulty of continuous data change, and 
apply clustering algorithms to streaming time series. Some interesting results 
have been reported (Guha 2003). 

Another important research direction is the management of continuous 
queries over streaming time series. In this case users pose queries that must be 
continuously evaluated for a time interval. Therefore, when a new value for a 
time series arrives, the value must be used to determine which queries are 
satisfied. Continuous queries over data streams are studied in (Chandrasekaran 
2002, Gao 2002, Gao 2002b, Gao 2002c, Babcock 2002). 

So far we have focused on 1-dimensional time series, since there is only one 
measurement that changes over time. However, there are applications that 
require the manipulation of multi-dimensional time series. For example, 
consider an object that changes location and we are interested in tracking its 
position. Assuming that the object moves in the 2-dimensional space, there are 
two values (x and y coordinates) that change over time. Some interesting 
research proposals for multi-dimensional time series can be found in (Vlachos 
2003). 
 
C O N C L U S I O N  
 

Time series data are used to model values that change over time, and they 
are successfully applied to diverse fields such as online stock analysis, 
computer network monitoring, network traffic management, seismic wave 
analysis. In order to manipulate time series effectively and efficiently, 
sophisticated processing tools are required from the database viewpoint.  

Time series are categorized as static or streaming. In static time series each 
sequence has a static length, whereas in the streaming case new values are 
continuously appended. This dynamic characteristic of streaming time series 
poses significant difficulties and challenges in storage and query processing. 

A fundamental operation in a time series database system is the processing 
of similarity queries. To achieve this goal, there is a need for a distance 
function, an appropriate representation and an efficient indexing scheme. By 
using the filter-refinement processing technique, similarity range queries, 
similarity nearest-neighbor queries and similarity join queries can be answered 
very efficiently. 
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Terms and Definitions 
 
Time Series: It is composed of a sequence of values, where each value corresponds to a time 
instance. The length remains constant. 
 
Streaming Time Series: It is composed of a sequence of values, where each value 
corresponds to a time instance. The length changes, since new values are appended. 
 
Distance Function: It is used to express the similarity between two objects. It is usually 
normalized in the range between 0 to 1. Examples of distance functions used for time series 
data are the Euclidean distance and the Time Warping distance. 
 
Dimensionality Reduction: It is a technique that is used to lower the dimensionality of the 
original dataset. Each object is transformed to another object which is described by less 

 9



information. It is very useful for indexing purposes, since it increases the speed of the filtering 
step. 
 
Similarity Queries: These are queries that retrieve objects which are similar to a query 
object. There are three basic similarity query types, namely, similarity range, similarity 
nearest-neighbor and similarity join. 
 
Filter-Refinement Processing: A technique used in query processing, which is composed of 
the filter step and the refinement step. The filter step discards parts of the database that can 
not contribute to the final answer, and determines a set of candidate objects, which are then 
processed by the refinement step. Filtering is usually enhanced by efficient indexing schemes 
for improved performance. 
 
Data Mining: A research field which investigates the extraction of useful knowledge from 
large datasets. Clustering and association rule mining are two examples of data mining 
techniques.  
 
 

 10


	Similarity Search
	in Time Series Databases
	INTRODUCTION
	BACKGROUND
	FUTURE TRENDS
	CONCLUSION
	REFERENCES
	Terms and Definitions




