Cache Management for Web-Powered Databases 201

Chapter VIII

Cache Management for
Web-Powered Databases

Dimitrios Katsaros and Yannis Manolopoulos
Aristotle University of Thessaloniki, Greece

ABSTRACT

The Web has become the primary means for information dissemination. It is
ideal for publishing data residing in a variety of repositories, such as
databases. In such a multi-tier system (client - Web server - underlying
database), where the Web page content is dynamically derived from the
database (Web-powered database), cache management is very important in
making efficient distribution of the published information. Issues related to
cache management are the cache admission/replacement policy, the cache
coherency and the prefetching, which acts complementary to caching. The
present chapter discusses the issues, which make the Web cache management
radically different than the cache management in databases or operating
systems. We present a taxonomy and the main algorithms proposed for cache
replacement and coherence maintenance. We present three families of predictive
prefetching algorithms for the Web and characterize them as Markov predictors.
Finally, we give examples of how some popular commercial products deal with
the issues regarding the cache management for Web-powered databases.

INTRODUCTION

In the recent years the World Wide Web or simply the Web (Berners-Lee,
Caililiau, Luotnen, Nielsen & Livny, 1994) has become the primary means for
information dissemination. It is a hypertext-based application and uses the HTTP
protocol for filetransfers. What started asamedium to serve the needs of aspecific

Copyright © 2003, Idea Group Publishing.

202 Katsaros & Manolopoulos

scientific community (that of Particle Physics), has now become the most popular
applicationrunningonthelnternet. Today itisbeing usedfor many purposes, ranging
from pureeducational to entertainment and lately for conducting business. Applica-
tionssuchasdigital libraries, video-on-demand, distancel earningandvirtual stores,
that allow for buying cars, books, computers etc. are some of the services running
ontheWeb. The advent of the XML language and its adoption fromthe World Wide
Web Council asastandardfor document exchange hasenlarged many old andfueled
new applicationsonit.

Duringitsfirst yearsthe Web consisted of static HTML pagesstored onthefile
system of the connected machines. When new needs arose, such as the E-
Commerce or the need to publish dataresiding in other systems, e.g., databases, it
wasrealized that we could not affordintermsof storageto replicatetheoriginal data
in the Web server’ sdisk in the form of HTML pages. Moreover, it would make no
senseto replicate datathat would never be requested. So, instead of static pages, an
application program should run on the Web server to receive the requests from
clients, retrieve therelevant datafrom the source and then pack them into HTML or
XML format. Even the emerged “semistructured” XML databases, which store
datadirectly into the XML format, need an application program which will connect
to the DMBS and retrieve the XML file (or fragment). Thus, anew kind of pages,
dynamically generated and a new architecture were born. We have no more the
traditional couple of aWeb client and a Web server, but athird part is added, the
application program, running ontheWeb server and serving datafromanunderlying
repository, in most of the casesbeing adatabase. Thisschemeissometimesreferred
to as Web-powered database and the Web site, which provides access to a large
number of pageswhose content isextracted from databases, is called data intensive
Web site (Atzeni, Mecca& Merialdo, 1998; Y agoub, Florescu, Issarny & Valduriez,
2000). The typical architecture for such a scenario is depicted in Figure 1. In this
schemethere arethreetiers, the database back-end, the Web/application server and
the Web client. In order to generate dynamic content, Web servers must execute a
program (e.g., server-side scripting mechanism). This program (script) connects
tothe DBMS, executesthe client query, getsthe results and packs them in HTML/
XML form in order to return them to the user. Quite alot of server-side scripting
mechanismshavebeen proposedintheliterature(Greenspun, 1999; Malaika, 1998).
An alternative to having a program that generates HTML is the several forms of
annotated HTML. The annotated HTML, such as PHP, Active Server Pages,
Java Server Pages, embeds scripting commands in an HTML document.

Thepopularity of theWebresultedinheavy trafficinthelnternet and heavy load
on Web the servers. For Web-powered databases the situation is worsened by the
fact that the application program must interact with the underlying database to
retrievethedata. So, thenet effect of thissituationisnetwork congestion, high client
perceived latency, Web server overload and slow response times for Web servers.
Fortunately the situation is not incurable due to the existence of reference locality
in Web request streams. The principle of locality (Denning & Schwartz, 1972)

Cache Management for Web-Powered Databases 203

asserts that: (a) correlation between immediate past and immediate future refer-
encestendsto be high, and (b) correl ation between disjoint reference patternstends
to zero asthedistance betweenthemtendstoinfinity. Existenceof referencelocality
isindicated by several studies (Almeidaet al., 1996; Breslau, Cao, Fan, Phillips &
Shenker, 1999).

Therearetwotypesof referencelocality, namely temporal and spatial locality
(Almeidaet al., 1996). Temporal locality can be described using the stack distance
model, asintroducedin (Mattson, Gecsei, Slutz & Traiger, 1970). Existenceof high
temporal locality in a request stream results in a relatively small average stack
distance and impliesthat recently accessed dataare morelikely to bereferenced in
the near future. Consider for exampl ethefollowing reference streams. AABCBCD
and ABCDABC. They both have the same popularity profile for each item.
Evidently, thestack distancefor thefirst streamissmaller than for thesecond stream.
This can be deduced from the fact that the number of intervening references
between any two references for the sameitem in thefirst streamissmaller than for
the second stream. Thus, the first stream exhibits higher temporal locality than the
second. Spatial locality on the other hand, characterizes correlated references for
different data. Spatial locality in astream can be established by comparing thetotal
number of unique subsequencesof thestream with thetotal number of subsequences
that would be found in a random permutation of that stream. Existence of spatial
locality inastream impliesthat the number of such unique subsequencesissmaller
that the respective number of subsequencesin arandom permutation of the stream.
Consider for example the following reference streams: ABCABC and ACBCAB.
They both have the same popularity profile for each item. We can observe in the
first stream that areference to item B always follows areference to item A and is
followed by areferenceto item C. Thisisnot the case in the second stream and we
cannot observe asimilar rule for any other sequence of items.

Due to the existence of temporal locality we can exploit the technique of
caching, that is, temporal storage of data closer to the consumer. Caching can save
resources, i.e., network bandwidth, since fewer packetstravel in the network, and

Figure 1: Architecture of a typical web-powered database

/ Web-Powered Database \
—

main DataBase
request memory - _Zg
cache requ kel
Web | reauesty (* proxy | _reduest, > —» §
Clint (g——| Server | g— response g (—»
o
response response —— Web response | 3
fo | e | F g e
prefetch 2
disk @
cache

—

\ /

204 Katsaros & Manolopoulos

time, since we have faster response times. Caching can be implemented at various
points along the path? of the flow of datafrom the repository to the final consumer.
So, we may have caching at the DBM Sitself, the Web server’ smemory or disk, at
various points in the network (proxy caches (Luotonen & Altis, 1994)) or at the
consumer’ s endpoint. Web proxies may cooperate so asto have several proxiesto
serve each other’s misses (Rodriguez, Spanner & Biersack, 2001). All the caches
present at various points comprise amemory hierarchy. The most important part of
acacheisthe mechanism that determines which datawill be accommodated in the
cache space and is referred to as the cache admission/replacement policy.

Caching introduces acomplication: how to maintain cache contentsfresh, that
is, consistent with the original data residing in the repository. The issue of cache
consistency isof particular interest for Web-powered databases, because their data
are frequently updated by other applications running on top of the DBM S and thus
the cached copies must be invalidated or refreshed.

Obviously, requests for “first-time accessed” data and “non-cacheable” data
(containing personalized, authentication information, etc.) cannot benefit from
caching. In these cases, due to the existence of spatial locality in request streams,
we can exploit the technique of preloading or prefetching, which acts complemen-
tary to caching. Prefetching deduces future requestsfor dataand bringsthat datain
cache before an explicit request is made for them. Prefetching may increase the
amount of traveling data, but on the other hand can significantly reducethe latency
associated with every request.

Contributions

This chapter will provide information concerning the management of Web
caches. It intends by no meansto provide a survey of Web caching. Such asurvey,
althoughfromavery different perspective, canbefoundin (Wang, 1999). Thetarget
of the chapter is twofold. Firstly, it intendsto clarify the particularities of the Web
environment that call for different solutions regarding the replacement policies,
cache coherence and prefetching in the context of the Web-powered databases. It
will demonstrate how these particularities made the old solutions (adopted in
traditional database and operating systems) inadequate for the Web and how they
motivated the evolution of new methods. Examples of this evolution regard the
replacement, coherence and prefetching techniques for the Web. The second
objective of the chapter isto present ataxonomy of the techniques proposed so far
andto sketchthemost important al gorithmsbel onging to each category. Throughthis
taxonomy, which goes from the simplest to the most sophisticated algorithms, the
chapter intends to clearly demonstrate the tradeoffs involved and show how each
category deals with them. The demonstration of some popular representative
algorithmsof each category intendsto show how thetradeoffsaffect the compl exity
in implementation of the algorithms and how the ease of implementation can be
compromised with the performance. Finally, another target of the present chapter is
to present the practical issues of these topics through a description of how some
popular commercial products deal with them.

Cache Management for Web-Powered Databases 205

The rest of the chapter is organized as follows. The Section “Background”
provides some necessary background on the af orementioned topicsand presentsthe
peculiarities of the Web that make Web cache management vastly different from
cachemanagement inoperating systemsand centralized databases. M oreover, itwill
give aformulation for the Web caching problem as a combinatorial optimization
problem and will define the performance measures used to characterize the cache
efficiency intheWeb. The Section“ Replacement Policies’ will present ataxonomy
alongwiththemaost popular and efficient cachereplacement policiesproposedinthe
literature. The Section “Cache Coherence” will elaborate on the topic of how to
maintain the cache contents consistent with the original datain the source and the
Section“ Prefetching” will deal withtheissue of how toimprovecache performance
through the mechanism of prefetching. For the above topics, we will not elaborate
on details of how these algorithms can beimplemented in areal system, since each
system providesits own interface and extensibility mechanisms. Our concernisto
provide only a description of the algorithms and the tradeoffs involved in their
operation. The Section “Web Cachesin Commercial Products” will describe how
two commercia products, a proxy cache and a Web-powered database, cope with
cache replacement and coherency. Finaly, the Section “Emerging and Future
Trends” will provide a general description of the emerging Content Distribution
Networks and will highlight some directions for future research.

BACKGROUND

The presence of caches in specific positions of a three-tier (or multi-tier, in
general) architecture, like that presented earlier, can significantly improve the
performance of the whole system. For example, a cache in the application server,
which stores the “hot” data of the DBMS, can avoid the costly interaction with it.
Similarly, data that do not change very frequently can be stored closer to the
consumer e.g., in aproxy cache. But in order for a cache to be effective, it must be
tuned so that it meetsthe requirementsimposed by the specialized characteristics of
the application it serves. The primary means for tuning a cache is the admission/
replacement policy. This mechanism decides which datawill enter the cache when
aclient requeststhem and which dataal ready in cachewill be purged out in order
to make space for the incoming data when the available space is not sufficient.
Sometimes these two policies are integrated and are simply called the replace-
ment policy. The identification of the cached pagesis based on the URL of the
cached page (with any additional datafollowingit, e.g., query string, the POST
body of the documents)3.

For database-backed Web applications, the issue of cache consistency is of
crucial importance, especially for applications that must always serve fresh data
(e.g., providers of stock prices, sports scores). Due to the requirements of data
freshness we would expect that all dynamically generated pages (or at least, al
pages with frequently changing data) be not cached at all. Indeed, thisis the most

206 Katsaros & Manolopoulos

simpleand effective approach to guarantee datafreshness. But, itisfar enough from

being the most efficient. Due to the existence of temporal locality, some data get

repeatedly requested and consequently arisestheissue of redundant computationfor
their extraction from the database and their formatting in HTML or XML. Wewould
liketo avoid such repeated computation, because it places unnecessary load on the

DBM Sandtheapplication server and doesnot useefficiently theexisting resources,

i.e., cache space in the Web/application server (or proxy, client). Moreover, the

update frequency of some data may not be very high and consequently we can

tolerate anot very frequent interaction with the DBM Sto refresh them. In addition,
recent studiesshow that eveninthepresenceof high updatefrequency, materializing
some pages into the Web server leads to better system performance (Labrinidis &

Roussopoulos, 2000). The mainissuein cache consistency ishow toidentify which

Web pages are affected by changes to base data and consequently propagate the

relevant changes. This issue concerns caches both inside the Web-powered

databases and outside it (client, proxy). For caches inside the Web-powered
database we have a second issue, the order in which the affected pages must be
recomputed. Consider for example two dynamically generated pages. Thefirst one
isnot very popular and is costly to refresh (dueto the expensive predicate involved
or the large volume of generated data) whereas the second oneis popular and very
fast to refresh. Obvioudly, recomputing the first page before the second oneis not

a wise choice, since it may compromise the accuracy of the published data or

contribute to the access latency. In general, we need efficient and effective

mechanisms to invalidate the contents of the cache or to refresh them.

The issues pertaining to the management of a cache (admission/replacement,
coherency) are not new and there exists a rich literature in the field. They were
examined in the context of operating systems (Tanenbaum, 1992) and databases
(Korth, Silberschatz & Sudarshan, 1998), as well. But, the Web introduces some
peculiarities not present in either the operating systems or databases.

1. First, thedatain the Web are mostly for read-only purposes. Rarely, we have
transactions in the Web that need to write the data back to the repository.

2. Second, we have variable costs associated with the retrieval of the data
Consider, for example, the case of a client who receives data from different
Web servers. It is obvious that depending on the load of the servers and the
network congestionitwill takedifferent timeto download thedata. Asasecond
example, consider a client retrieving data from the same Web server but it
requires different processing to generate them.

3. Third,theWebdataareof varying sizeswhereasinthedatabasesand operating
systems the blocks that move through the levels of memory hierarchy are of
constant size, which equals the size of adisk block.

4. Fourth, the access streams seen by aWeb server are the union of the requests
coming sometimes from a few thousands Web clients and not from a few
programmed sourcesashappensinthecaseof virtual memory paging systems.

These characteristics call for different solutions concerning Web cache
management. Consequently, an effective caching scheme should take into account

Cache Management for Web-Powered Databases 207

the aforementioned factors, that is, recency of reference, frequency of reference,
size, freshness, downloading time. Depending on the point in the data flow path
where caching isimplemented, some of these factors may be more important than
the others or may not be present at all.

The benefits reaped due to caching can be limited (Kroeger, Long & Mogul,
1997). Obviously, cachingisworthlessfor first-timeaccessed data. Also, cachingis
uselessfor datathat areinvalidated very frequently dueto changesin therepository
and thereis aneed for immediate propagation of the updates that take place in the
repository and affect cached data. Moreover, for Web-powered databases which
export base data in the form of Web pages (called WebViews in (Labrinidis &
Roussopoulos, 2000)), it is preferable to “materialize” the WebViews at the Web
server and constantly update them in the background when changes to base data
occur (Labrinidis& Roussopoul os, 2000).

Ingeneral, the drawbacks of caching originatefrom caching’ sreactive nature.
Caching attempts to cure a “pathological” situation, in our case the performance
inefficiency, after it hasbeen seenfor thefirst time. Thus, in situationswhen caching
isof l[imited usefulness, aproactive mechanismisneeded, amechanismthat will take
some actions in advance in order to prevent system’s performance deterioration.
Thismechanismisprefetching, whichisthe process of deducing future accessesfor
dataand bringing those datainto the cache in advance, before an explicit request is
made for that data.

Prefetching has also been extensively examined in the context of operating
systems and databases. In general, there exist two prefetching approaches. Either
the client will inform the system about its future requirements (Patterson, Gibson,
Ginting, Stodolsky & Zelenka, 1995; Cao, Felten, Karlin & Li, 1996) or, in amore
automated manner and transparently to the client, the system will make predictions
based on the sequence of the client’ s past references (Curewitz, Krishnan & Vitter,
1993). The first approach is characterized as informed prefetching, where the
application disclosesits exact future requests and the system is responsible for
bringing the respective objects into the cache. The second approach is charac-
terized as predictive prefetching, where the system makes predictions based on
the history of requests for data. Finally, there is another technique, termed
source anticipation, that is, the prefetching of all (or some part thereof) of the
embedded links of the document.

Inthedesign of aprefetching schemefor the Web, its specialtiesmust betaken
into account. Two characteristics seem to heavily affect such adesign: @) theclient
server paradigm of computing the Web implements, b) its hypertextual nature.
Therefore, informed prefetching seems inapplicable in the Web, since a user does
not know in advance its future requirements, due to the “navigation” from page to
page by following the hypertext links. Source anticipation (Klemm, 1999), may
work in some cases, but seemsinappropriate in general, because thereisno apriori
information about which of alargeset of embedded linkstheclientislikely torequest.
On the other hand, predictive prefetching seems more viable, especially under the

208 Katsaros & Manolopoulos

assumption that thereis sufficient spatial locality in client requests, because such a
prefetching method could use the history of requests to make predictions.

Problem Formulation

Let usnow provide aformal statement for the problem of cache management
for a Web-powered database. Let O be the set of al data objects that may be
requested in any instance of the time during cache operation. For each object d [J
O there apositive size s, and a positive cost ¢, associated with it. The cost ¢, isa
function £ of the following parameters: size s , recency of referencer , frequency
of reference f, and freshness a , that is, F=F(s ,r,f,a). A request sequence is a
function 2:[1..m] -~ O and will be denoted as 0=0, 0, ..., 0,. The set of all possible
request sequenceswill bedenoted as R. When no cacheisused, the cost in servicing

sequence gis C(0)= Z::lcm . Let the cache size be X. Wewill assumethat s, < X,

0 /< d <m,thatis, nodataobject islarger than the cache. We definethe cache state
S, at time k to be the set of objects contained in the cache at that time.

Definition 1 (The Generalized Caching Problem (Hosseini-Khayat,
2000)) Let 0=0,0,...,0, be a sequence of requests resulting in a sequence of
cache states S, S ..., S such that, for al S, k=1,2,...,m

I%(Sk—l_Ek) O{o} if oxOSk-1

S 0 Sk -1 if oxOSk -1 (@

where£, 1 % _ denotestheset of itemspurged out of thecache. Findamong all state
sequences satisfying Equation (1), astate sequencethat minimizesthe cost function

F((S),0) = ;&cm
where

M if o O08k-1
0= %]. if ox 0Sk-1
and (S,) denotes the state sequence.

Thisproblem can be viewed both as off-line and on-line depending on how
requests are presented to the algorithm. When the request sequence is apriori
known then the problem is off-line, otherwiseit ison-line. The off-line case of
this problem with equal s costs and sizes for each object has an optimal solution
duetoBelady (Belady, 1966) andisthe LFD #a gorithm, which evictsfrom cache
the page whose next reference is furthest in the future. But, non-uniformity in
costs and sizes introduces complications and LFD is not optimal any more as
shown in the next two examples.

Example 1 (Varying Costs). Let us consider the following four unit size

Cache Management for Web-Powered Databases 209

objects{1,2,3,4} withassociated costs{ 1,3,10,2} . Consider therequest sequence o
=1,2,3,4,2,3,4andacachewithsizeX=2. Then, LFD producesthefollowing states:
2, {1}, {12}, {32}, {4,2},{4,2},{4,3}, {4,3} and incurs a cost of 26. Another
algorithm, called CIFD ° which evicts the page with the smallest value of

Cost .
ForwardDistance producesthefollowing states g, { 1}, { 1,2}, { 3,2}, { 3,4},{2,3},

{2,3}, {4,3} andincursacost of 21.

Example2 (Varyingsizes). Letusconsider thefollowingfour unit cost objects
{1,2,3,4} with associated sizes {1,1,2,2}. Consider the request sequence o =
1,2,3,4,3,1,2,3,4,2 and a cache with size X = 4. Then, LFD produces the following
states: ,{1},{1,2},{1,2,3},{4,3},{4,3},{1,3},{1,2,3},{1,2,4},{1,2,4} andincurs
a cost of 7. Another algorithm, called Size ¢, which evicts the largest size page
producesthefollowingstatesg,{ 1},{ 1,2} ,{1,2,3},{1,2,4},{1,2,3},{1,2,3} ,{1,2,3},
{1,2,3},{1,2,4} and incursacost of 6.

The optimal solution for the generalized caching problem was presented in
(Hosseini-Khayat, 2000) which is proven to bein NP. Any solution for the on-line
version of the problem must rely on past information in order to make replacement
decisions. If someprobabilisticinformationregarding therequestsisknown, thenwe
can derive some optimal solutions for the on-line problem, as well (see (Hosseini-
Khayat, 1997)). But, inpracticeany solutionfor theproblem (optimal or suboptimal)
must be practical, that is, it must perform acceptably well, it must be easy to
implement and should run fast, without using sophisticated data structures and in
addition should take into account the peculiarities of the Web.

Performance Measures

Depending on the specific factors that we want to consider in the design of a
caching policy, (recency, frequency of reference, consistency, size, downloading
latency, etc.) we can modify the above definition appropriately and expressit asan
optimizationproblem.

The most commonly used performance measures used to characterize the
efficiency of acachingagorithmarethehitratio, bytehit ratioand delay savingsratio
(Shim, Scheuermann & Vingralek, 1999).

Let D be the set of objects in a cache in atime instance. Let r, be the total
references for object d, cr, the number of references for object d satisfied by the
cache. Let s, be the size of the object d and g, be the average delay incurred while
obtainingit.

210 Katsaros & Manolopoulos

Definition 2 (Hit Ratio). The hit ratio of a cache is the percentage of
requests satisfied by the cache:

d;cm/;)m

Inessence, improving thehit ratioisequivalent to reducing theaveragelatency
seen by aclient.

Definition 3 (Byte Hit Ratio). The byte hit ratio (or weighted hit ratio) of a
cache is the percentage of bytes satisfied by the cache. That is,

ng*CI"d/ZSd*I’d
D dlD

In essence, improving the byte hit ratio is equivalent to reducing the average
traffic of data from the source to the consumer.

Definition 4 (Delay Savings Ratio). The delay savings ratio determines the
fraction of communication delayswhichissaved by satisfying requestsfrom cache.

Thatis,
ng*crd/ng*m
dlD dlD

DSR isclosely related to BHR. The latter can be seen as an approximation for
the former, where the delay to obtain an object is approximated by its size.

REPLACEMENT POLICIES

Replacement al gorithmsdeal withthe problem of thelimited cache space. They
try to keep in cache the most “valuable” data. The “value” of adatum isusualy a
function of several parameters, say recency, access frequency, size, retrieval cost,
frequency of update etc. The replacement policy makes replacement decisions
based on thisvalue. A good replacement strategy should be able to achieve agood
balance among all of them and at the same time to “weigh” differently the most
important of them. An additional requirement for the policy isthe ability to easily
implement it without the need of maintaining sophisticated data structures.

Itisalmost impossibleto categorize all the Web cache replacement algorithms
proposed so far into categories with distinguishable boundaries. Nevertheless,
following the proposal of (Aggrawal, Wolf & Yu, 1999), we will catagorize the
algorithms into three main categories, namely a) traditional policies and direct
extensions of them, b) key-based policies and finally c) function-based policies.
Moreover, for the last category, which includes the majority of the proposed
algorithms, we will further discriminate them based on whether they are based on
LRU or LFU or incorporate both.

Traditional policies and direct extensions of them. The algorithms
belongingtothefirst category comprisedirect application of policiesproposedinthe
context of operating systems and databases or modifications of them to take into
account the variable size of documents. LRU replaces the object, which was least

Cache Management for Web-Powered Databases 211

recently referenced. Thisisthemost popular a gorithm used today and capitalizeson
temporal locality. Itssimplicity stemsfromthefact thatin order to makereplacement
decisions it only needs to maintain a heap with the IDs of the cached objects. Its
overhead is O(n) in space (n is the number of cached objects) and O(1) time per
access. This is the main reason for its use by many commercia products. An
extensionto LRU iSLRU-K (O’ Neil, O’ Neil & Weikum, 1993), which replacesthe
document whose -th reference is furthest in the past. FIFO replaces the objects,
which entered first in the cache. LFU replaces the object with the least number of
references. A variant of the LFU, the LFU-Aging policy (Robinson & Devarakoda,
1990) considers both the object’s access frequency and its age in the cache (the
recency of last access). Both LRU and LFU optimize the byte-hit ratio.

These policies were all examined in arecent study (Abramset al., 1996) and
they were found to be inadequate for Web caching. The primary reason isthat they
fail to take into account the variable size of Web objects. Object’ s size can have a
dramatic effect on cache's performance, asit has already been shown its effect on
the Belady’ s optimal algorithm in Example 2. In alleviating this drawback for the
LRU, LRU-THOLD wasproposed. LRU-THOLD isavariant of LRU that avoidsthe
situation in which a document that is large compared to the cache size causes the
replacement of alargenumber of smaller documents. Thispolicyisidentical toLRU,
except that no document larger than athreshold size is cached. (Even if the cache
has room, a document whose size is larger than the threshold is never cached.) A
policy tailored for Web objects is the SIZE policy (Abrams et al., 1996), which
replaces the largest object in the cache. SIZE aims at improving the hit ratio, since
it favors small objects.

K ey-based policies. All the above palicies suffer from the drawback that they
use only asimple characteristic of the cached objectsin order to make replacement
decisionse.g., LRU usesrecency, SIZE uses size, etc. In alleviating this drawback,
key-based policies use acouple or more“keys’ to obtain the objectsin sorted order
of their “utility”. Therecency of reference, the size, thefrequency of reference, etc.
canbeused askeysby thesepalicies. Oneof themissel ected asprimary key, another
as secondary key, etc. As replacement victim is selected the object with the least
(greatest) valueof theprimary key. Tiesarebroken usingasecondary key, thenusing
atertiary key and so on.

A representative algorithm of this category isthe LRU-MIN (Abrams et al.,
1996), which isavariant of LRU that tries to minimize the number of documents
replaced. Let s bethesize of theincoming object 4, which does not fit in the cache.
If thereareobjectsinthecachewithsizeat least s , then LRU-MIN removestheleast
recently used such object. If there are no such objects, then starts removing objects
inLRU order of sizes /2, then objectsof sizes /4, and so on until enough free space
has been created. LOG (SIZE) (Abrams et al., 1996) is another key-based policy
which uses the log (size) as primary key and time since last access as secondary
key. Hyper-G (Abramset al., 1996) is another algorithm, which uses frequency of
reference as primary key, recency of reference as secondary key and object’ s size
as tertiary key.

212 Katsaros & Manolopoulos

Itisevident that key-based policiesprioritize somefactorsover others. Thismay
not be always correct. In essence, traditional policiesand key-based policiesfail to
integrate all the relevant factorsinto a single value that characterizes the utility of
keeping an objectintothecache. For example, with LRU, the cache can be popul ated
with objectsreferenced only once purging out documentswith higher probability of
reference. Consequently, LFU would seem more appropriate, but LFU prevents
popular (in the past) “dead”” documents from being evicted from cache and needs
an“aging” mechanismto avoid“ cache pollution”. Such amechanismrequiresfine-
tuning of several parametersandthusitisdifficulttoimplement. SIZE performswell
with respect to hit ratio, but it is the worst policy when optimizing byte hit ratio
(Abramsetal., 1996) for which LFUisthebest policy. Thisisexactly what function-
based policies do. They assign a utility value to each cached object, which is a
function of various factors, such as recency, size, retrieval cost, etc.

Function-based policies. Function-based policiesassignto every objectinthe
cacheavalue, “ utility value”, which characterizesthe benefit of retaining thisobject
inthecache. This“utility value” isafunction of several parameters, such asrecency
of reference, frequency of reference, size, retrieval cost, etc. Replacement decisions
are made using this“utility value” .8

Itisnot possibleto partitionthese policiesinto disjoint groups, becausethey
incorporate into their “utility value” different subsets of the set of parameters
mentioned above. Neverthel ess, we chooseto categorizetheminto three groups,
based on whether they capture temporal locality (recency of reference),
popularity (frequency of reference) or both. Thusin the first category we have
the function-based policies extending LRU, in the second category the

function-based policies extending LFU and in the third, the function-based
policies integrating LRU-LFU.

Function-based policies extending LRU. The common characteristic of this
family of algorithmsis that they extend the traditional LRU policy with size and
retrieval cost considerations. Their target isto enhance the popular LRU agorithm
with factors that account for the special features of the Web. The most important
of them are the GreedyDual-Size (Cao & Irani, 1997) and Size-Adjusted LRU
(SLRU) (Aggrawal, Wolf & Y u, 1999). Both can be used for browser, proxy or Web
server caching, as well.

GreedyDual-Size (GD-Size) (Cao & Irani, 1997). The GreedyDual-Size is
an elegant algorithm based on the GreedyDual (Young, 1994) that combines
gracefully recency of reference with retrieval cost ¢, and size s, of an object. The
“utility value” associated with an object that enters the cacheis:

cd
UVGD-Size = E '

When replacement is needed, the object with the lowest UV, . isreplaced.
Upon replacement, the UV, . values of all objects are decreased at an amount
equal to the UV, . value of the replacement victim. Upon re-reference of an
objectditsUV

s valueisrestoredtoc /s . Thus, the UV, . for acached object

GD-Size

Cache Management for Web-Powered Databases 213

grows and reduces dynamically upon re-references of the object and evictions of
other objects.

Upon an eviction, the a gorithm requiresasmany subtractionsasisthe number
of objectsinthe cache. In order to avoid this, we can maintain an “inflation” value
L, which isset to the “ utility value” of the evicted object. Upon re-reference of an
object d, instead of restoring its UV, . to c /s , we offset this by L. Below we

'D-Size
present the algorithmic form of GreedyDual-Size with the above modification.

Algorithm 1 (GreedyDual-Size (GD-Size) (Cao & Irani, 1997))
InitializeL — O

Process each request in turn. The current request is for document d.
(1). ifdincache

(2). UV(d) « L +c/s,

(3). if d notincache

(4). while thereis not enough cache space for d

(5). LetL min ; ... UV(@)

(6). Evict g suchthat Ur(g) = L.

(7). Bringd into cache and set UV(d) = L+c /s,

Depending on the cost measurewewant to optimize, i.e., hitratio, bytehitratio
we can set the retrieval cost ¢, appropriately.

A nicecharacteristic of thisalgorithmisitson-lineoptimality. It hasbeen proved
that GreedyDual-Size is k-competitive, where k isthe ratio of the cache sizeto the
size of the smallest document. This means that for any sequence of accesses to
documents with arbitrary costs and arbitrary sizes, the cost of cache misses under
GreedyDual-Size is at most k times that under the offline optimal replacement
algorithm. Thisratio isthe lowest achievable by any online replacement a gorithm.

Size-Adjusted LRU (SLRU) (Aggrawal et al., 1999). SLRU (and its
approximation, the Pyramidal Selection Scheme (PSS)) strives to incorporate size
and cost considerations into LRU along with cache consistency issues. Usually,
objects have an associated Time-To-Live (TTL) tag, attached by the generating
source (e.g., Web server), or an Expires tag that defines the lifetime of the object.
We can exploit thistag, when present, in order to decide the freshness of an object
and incorporate this factor into the replacement policy.

Let us define the dynamic frequency of an object d to be 1/°T,, where "T,
isthe number of referencesthat intervene between the last reference for the object
d and the current k-th reference. Let o, be the time between when the object was
last accessed and the time it first entered the cache. Also, let 8, be the difference
between the time the object expires and thetime of itslast access. Then, therefiesh
overhead factor r is defined as min(1,a /B,). If the object has not been accessed
before, then » =1. If we are not aware of object’s expiration time then » =0. The
algorithm assignsto each object in the cache a“ utility value”, which is equal to:

ca* (L—ra)
UV = 2
SLRU sa* NTar

214 Katsaros & Manolopoulos

Itsgoal it to minimizethe sum of the“ utility value” of the evicted objects. L et
S, be the cache content at the k-th reference. Let R be the amount of additional
memory required to store an incoming object and consider the decision variabley,
whichisOfor anaobject, if wewishtoretainit into the cacheand 1 otherwise. Then,
the problem of selecting which objects to evict from cache can be expressed as:

Minimize Z (pa* ca* (QL—ra)) | ATu
dUSk
such that
(sa* ya) 2 R

dUSk

Thisis aversion of the well-known knapsack problem where the items that
wewishtostoreintheknapsack arethosewiththeleast “ utility value”. Thisproblem
is known to be in NP (Garey & Johnson, 1979). In practice, there exist fast and
efficient heuristics. A greedy solution isto sort the objects in non-decreasing order
of (s *AT ,)/(c *(1-r)) and keep purging from cache the objects with the highest
index inthissorting.

Function-based policies extending LFU. It is well known (Coffman &
Denning, 1973) that when® a) the requests are independent and have a fixed
probability, and b) the pageshavethesamesize, thentheoptimal replacement policy
is to keep in cache those pages with the highest probability of reference. In other
words, thebest onlineal gorithmunder thel ndependent ReferenceModel isthe LFU.
Based on this and on the observation (Abrams et al., 1996) that frequency—based
policies achieve very high byte hit rates, the function-based policies extending
LFU enhancethetraditional LFU algorithmwith sizeand/or retrieval cost consider-
ations. The LFU with Dynamic Aging (LFU-DA) (Dilley & Arlitt, 1999) extendsthe
LFU-Aging with cost considerations, whereasthe HYBRID agorithm incorporates
sizeand cost considerations. It isinteresting to present how HYBRID computesthe
“utility value” of each abject inthe cache, sinceit wasthefirst that incorporated the
factor of the downloading delay into the replacement decision.

HYBRID (Wooster & Abrams, 1997). Let a document d located at server s
be of size s, and has been requested f, times since it entered the cache. Let the
bandwidthto server s beb andtheconnectiondelay tos bec . Then, theutility value
of each document in the cache is computed as follows:

Uv _ (Cs + Wb/bs)* de/

HYBRID

and y,{0,1}.

, W,and ¥, are tunable constants.
Sa :

The replacement victim is the object with the lowest UV, .~ value.

Obviously thisalgorithmishighly parameterized. Constants 1, and waei ghthe
bandwidth and frequency respectively, whereasc_and »_can be computed fromthe
time it took to connect to server s in the recent past. HYBRID may not be used only
for proxy caches, but for cachesinside the Web-powered database aswell. For such
cachesthefirst factor of the nominator can be replaced by afactor determining the

cost to generate a Web page.

Cache Management for Web-Powered Databases 215

Thisfamily of function-based policiesdoesnot includemany members, sinceit
does not appear to be awise choice to ignore the temporal locality in the design of
areplacement policy. So the later efforts concentrated in extending other policies
(like GreedyDual-Size) with frequency considerations.

Function-based poalicies integrating LRU-LFU. This category integrates
into the replacement policy both recency and frequency of reference. As expected,
these algorithms are more sophisticated than al the previous. The integration of
recency and frequency with size and cost considerations results on the one hand in
improved performanceand ontheother handin having many tunableparameters. As
examplealgorithms of this category we present two algorithms, namely the Lowest
Relative Value (LRV) and the Least Normalized Cost Replacement for the Web
with Updates (LNC-R-W3-U).

Lowest Relative Value (LRV) (Rizzo & Vicisano, 2000). A replacement
algorithmtailoredfor proxy cachesand eval uating statistical informationistheLeast
Relative Value (LRV). Statistical analysis of several traces showed that the
probability of access for an object increases with the number of previous accesses
for it and also, that the time since the last accessis a very important factor and so
isthesizeof anobject. All, these parametershave beenincorporated into the design
of LRV, which strivesto estimate the probability of reaccessing an object asafunction
of thetime of itslast access, its size and the number of past references for it.

The utility value of each cached document which has been accessed i timesin
the past is computed as follows:

uv = ﬁ*Pr(id,l‘d,Sd)

LRV Sd

where P istheprobability of re-referencefor adocument d, giventhat it hasalready
been referenced i times, evaluated at the time of its last access ¢. The dependence
of P (it ,s) onthese three parameters has been verified with statistical analysis of
severa rea Web traces. We explain in the next paragraph how P can be derived.

Let (2) and @(1) denote the probability density function and the cumulative
distributionfunction of thetimebetween consecutiverequeststo the samedocument.
Statistical information obtained from real Web traces shows that ¢(z) is approxi-
mately independent from the number of previous accesses to a document. ¢(z) is
also the pdf of the next access time conditioned to the fact that the document gets
requested again. Let Z denote the probability that a document gets re-referenced,
evaluated at the time of the previous access. Assuming the independence stated
above, then: a) Z=Z(i s) and b) the pdf of the next access time can be expressed
as Z*¢(¢), and thus P_can be computed as:

Pr= [z o(w)* do =2* A-D(t))
Now, the function Z=Z(i ,s) which describes the dependence of P on the
number of references to a document and on its size s, must be computed. LRV

216 Katsaros & Manolopoulos

neglects the dependence of Z on s, for documentsthat have been referenced more
than once. Thus:
M (ia,sa) if ia =1,

Z(ia,8q) = .
(ia,54) EN(id) otherwise.

The function N(i) can be computed as:
N = || Di+1]|
KN PY
The function M(i ,s) can be computed from statistical information gathered
fromrequest streams. M(i s) isnot estimated for every distinct value of s , but for
groups'® of values instead.

Now we turn to the function @(z). The function @(z) cannot be computed
analytically. Thuswemust rely on statistical information avail ableon request streams

where ||D || is the number of documents accessed i times.

in order to derive an approximation Cb(t) for it. Such an approximation is the

fallowing:

SO — % () + 7 -+
00 =00 U whee)=t 1-e).

wherey, y, are constants in the range 10..100 and >5* 10°, respectively.™
Thus, the probability P of re-reference for an object can be estimated as:

%M(J, s)1-®@) ifi=1,
H N@)A- () otherwise.

Apparently, LRV hasmany parametersthat need to betuned appropriately. This
means additional cost and complexity, but LRV can make more clever replacement
decisions sinceit considers more information regarding requests streams. Thisisa
fundamental tradeoff: themoreinformationweuse, themoreefficient our processing
is, but this efficiency comes at increased computation cost.

Least Normalized Cost Replacement for the Web with Updates (LNC-R-
W3-U) (Shim, Scheuermann& Vingralek, 1999). The LNC-R-W3-Uagorithmtakes
into account, in addition to other factors, the cost to validate an expired object. Its
target is to minimize response time rather that the hit ratio and consequently it
attempts to minimize the delay savings ratio in which it incorporates the cost to
validate an “ expired” object.

Let », be the average reference rate for object d, g, the mean delay to fetch it
into the cache, u, the average validation rate and vc, the average delay to perform
avalidation check. Then, the “utility value” for object d is defined as:

Pr (id’ td’ Sd) =

ra* @i —ua* vea

ur =
LNC-R-W3-U Sd

Cache Management for Web-Powered Databases 217

Using a greedy heuristic, asin the case of SLRU, we can select replacement
victims. The major issue for thisalgorithmisthat it has many parametersr, g, u,,
ve, which aredifficult to compute. We can computeg, and ve, using aweighted sum
of their latest values and their past values as follows:

Vc;ew = (1_ ,U) * Vcsld + y2s * VCsample
gi == p)* gl + u* gample
whereve = andg . arethe most recently measured values of the respective
delays and 7 is a constant that “weighs’ the recent with the old measurements.
The mean reference rate and mean validation rate can be computed using a
dliding window of K most recent reference times as:

K
r—ik
wheretisthecurrenttimeand:, isthetimeof theoldest referenceinthediding window.

The mean validation rate can be computed from a sliding window of last K
distinct Last-Modified timestamps'? as:

rd =

K

tr — tux
where isthe time when the latest version of object d was received by the cache
and tu, isthe K-th most recent distinct L ast-Modified timestamp of objectd (i.e., the
oldest availabledistinct Last-Modified). If fewer than K samplesareavailable, then
K is set to the maximal number of available samples.

Apart from LRV and LNC-R-W3-U, there exist quite alot of algorithmsin
thisfamily. Some of them belong to thefamily of GreedyDual-Size, inthe sense
that they incorporate frequency of reference considerations into the original
algorithm (see Dilley & Arlitt, 1999; Jin & Bestavros, 2001). Some others are
more adhoc in the sense that the “ utility value” they define for adocument isa
ratio relating frequency, recency, cost, in anon uniform manner (e.g., exponen-
tial) (Niclausse, Liu & Nain, 1998).

Ud =

Discussion

In this section, we have presented a categorization of cache replacement
algorithmsfor Web objects. We have al so presented the most important algorithms
belongingtoeach category. Someof them arerel atively simple, whereassomeothers
aremoresophisticated. Thereisnoclear “champion” algorithm, which performsbest
in all cases. Aswe will seein the section, which discusses replacement issues for
some magjor commercia products, the tendency is to make replacement decisions
considering only expiration times and recency of reference. Thisis because these
factorsareeasy to handleand do notimposehighload onthesystemin order to make
replacement decisions. Moreover, they do not require complicated data structures
for the maintenance of the metadata associated with cached objects.

218 Katsaros & Manolopoulos

CACHECOHERENCE

Web-powered databases generate dynamic data with sometimes high update
frequencies. This makes the issue of cache consistency (or cache coherence)
critical. The purpose of acache consistency mechanismisto ensurethat cached data
areeventually updatedtoreflect thechangesto theoriginal data. Cachescan provide
either strong or weak consistency. The former form of consistency guarantees that
stale data are never returned to the clients. Thus, the behavior of the whole system
(Web-powered database and client applications) is equivalent to there being only a
single (uncached) copy of the data, except from the performance benefits of the
cache. Weak consistency allowsserved copiesto divergetemporarily fromthe copy
in the origin server. In other words, caches providing weak consistency may not
return to the client the result of the last “write” operation to a datum.

Thecoherency requirementsassociated with Web objectsdependingeneral on
the nature of the objects and the client’ stolerance. Asaconcrete example consider
a cache that serves stock prices, sports and weather information. This particular
cachewill usually beforced to provide strong consistency for stock prices because
of the stringent client requirements, whereas it may provide weak consistency for
sports and weather data.

Cache consistency can be achieved through either client-driven or server-
driven protocols.® In the former, the cache isresponsible for contacting the source
of original datain order to check the consistency of its cached data. Inthelatter, the
data source is responsible for notifying the caches, which store its data, for any
committed “writes’. These two options are the two extremes in the spectrum of
possiblealternatives. They represent the fundamental trade-off in cache coherency:
client caches know when their data are requested, but they do not know when they
aremodified™. On the other hand, servers have complete knowledge of “writes’ on
data, but they do not know which clients that they have ever requested any of their
data, are till interested in them.

Consequently, these two approaches differ in the burden they impose on the
server and the network, and on the “read” and “write” performance. The former
approach may impose heavy or unnecessary |oad on serversdueto many validating
messages for unchanged resources. Thelatter requires the server to maintain client
state, keeping information about which client caches which objects (Cao & Liu,
1998). Moreover, these approaches have different resilience to failures. Network
partition, for example, canprevent theclient fromreceivinginvalidationinformation
and thusto use stale data. Another complication for server-driven protocolsishow
toidentify their clients. Thiscan be solved with the use of tokens, called “ cookies”.
Cookies are encoded strings of data generated by the Web server and stored on the
client. There are two types of cookies. persistent cookies and session cookies.
Persistent cookies are usually stored in a text file on the client and may live
indefinitely. Session cookies usually reside in the memory space of the client and
typically are set to expire after aperiod of time determined by the Web server. For
the* cookie-phobic” clients, whodo not permit cookiesto bestored ontheir machine,

Cache Management for Web-Powered Databases 219

many Web sites simply embed cookies as parametersinthe URLs. Thisistypically
doneby inserting (or appending) aunique sequential number, calledsession D, into
al the <ahref=...> linksin the site's HTML code®.

An amalgamation of these two extreme approaches, called Leases (Gray &
Cheriton, 1989), isto havethe server informthe client about “writes’ for aspecified
period of time, and after that time, theclientsareresponsiblefor validating their data.
This approach tries to combine the advantages of the aforementioned extreme
solutionshby fine-tuning the period for whichtheserver notifiesabout changesindata.

Cache consistency has been studied extensively in computer architecture,
distributed shared memory, network and distributed file systems (Howard et al.,
1988; Nelson, Welch & Ousterhout, 1988) and distributed database systems
(Franklin, Carey & Livny, 1997). IntheWeb, dataaremostly for read only purposes,
so many of the approaches proposed in the context of distributed databases and
distributed shared memory systems cannot be appliedinthe Web. Themost relative
fieldsarethat of network and distributed file systems, but the challenge in the Web
environment is to make the solutions proposed in these fields to scale to the large
number of clients, the low bandwidth of the Internet, the frequent failures (client,
server) and the network partitions. In Subsection “ Cache coherence maintenance”,
we will present the different approaches for cache consistency maintenance,
categorized as either client or server-driven.

For Web-powered databases, since served objects (HTML-XML fragments
(Challenger, lyengar & Dantzig, 1999; Y agoub et al ., 2000), HMTL-XML pages) are
derivedfromthedataresidingintheunderlying database, arisestheneedto maintain
the dependencies between base data and derived data, so as to be able to identify
stale objectswhen changesto base datatake place. Thus, theissue of object change
detection is aso very important. In Subsection “ Object change detection” we will
present an approach for the detection of which objects are affected by changes to
base data.

Cache Coherence Maintenance

Client-driven protocols. Client-driven protocols rely on the client to
validate the contents of its cache before returning them as a hit. The simplest
approach, called poll-each-read (Yin, Alvisi, Dahlin & Lin, 1999; Cao & Liu,
1998), isto send avalidating messageto therespectiveserver every timethedata
arerequested, in order to confirm that the data are fresh or in the opposite case,
to retrieve the modified ones. The primary advantage of this approach isthat it
never returnsstal edatato clientswithout theclient knowingit.*® But thisprotocol
imposes high load on serversdueto the very many validating messagesreceived
by clients, high network traffic due to many control messages traveling in the
network and unnecessary client latency, in case the data are not modified, since
every “read” request must be preceded by a contact to the server. Consequently
this policy suffersfrom poor “read” performance, but on the other hand, isvery
efficient for “writes” since they proceed immediately, without any invalidation

220 Katsaros & Manolopoulos

procedure from the server to the clients. In other words, this policy isideal when
there are very few “reads’ and many “writes”.

Trying to reduce the communication messages for data validation and read
latency, another policy based on poll-each-read, namely poll, assumesthat the data
remain valid for a specific period of time after their latest validation. If thistime
interval is assumed to be zero, then poll reduces to poll-each-read. This policy
cannot guarantee strong consistency. The challenge isto determine an appropriate
valuefor thistimeinterval . By choosingasmall valuefor thisinterval, wecanreduce
the percentage of stale objects returned to the clients, but the number of validating
messages to the server increases significantly. The server can associate with every
datum avaluefor thisinterval, Time-To-Live (TTL) (Cate, 1992) or Expires, or the
client can calculate avalue by itsown for every datait caches (adaptive-TTL) (Cao
& Liu, 1998).

Server-driven protocols. On the other extreme of spectrum, liesthe protocol
that hasthe serversto notify theclientsfor any changesondata. Thispolicyiscalled
Invalidation or Callback (Howard et al., 1988; Nelson et al., 1988) and clearly, it
requires the servers to maintain some information recording which clients cache
which data. Before any “write” occurs, the server must send out invalidation
messagestoall clientscaching thesedata. Thispolicy guaranteesstrong consistency,
withinthetimeitisrequired for amessageto bedeliveredtoall clients. Ontheother
hand, the maintained “state” information for clients can grow to unmanageable
amount, when there are alot of clients and alot of requested resources. Moreover,
it causes bursts of server activity for sending out the invalidation messages to all
clientscaching acopy of themodified object. Obviously, the* read” performance of
thispolicy isvery good, since cached dataare guaranteed to be alwaysfresh, but the
“write” performance may become very bad in cases of network partitions, client
failures and large number of clients, due to the communication overhead for
delivering the invalidation messages. To state it simply, this policy is idea in
environmentswherethere are alot of reads and afew writes. Nevertheless, server-
driven consistency hasbeen shownto bevery efficient in keeping the clientsand the
server synchronized and this efficiency comes at relatively little cost (Cao & Liu,
1998; Yin, Alvisi, Dahlin & lyengar, 2001).

In between these two extremes lies the Leases protocol (Gray & Cheriton,
1989; Yinet al., 1999). A cache using Leases requires avalid lease, in addition to
holding thedatum, beforereturning that datuminresponsetoaread request. A client
holding avalid lease on an object is sure that no “write” on this object will proceed
beforeitisbeing notified about it (or take hispermission). When an object isfetched
fromtheoriginserver, the server returnsalease guaranteeing that the object will not
be modified during the lease term. After the lease expires, a read of the object
requiresthat the cache extendsfirst thelease on the object, updating the cacheif the
object has been modified since the | ease expiration.

When a“write” to an object must take place and an unreachable client (due to
crash or network partition) holdsalease on thisobject, the server needsonly towait
for the expiration of this lease before proceeding into the write. So, the Leases

Cache Management for Web-Powered Databases 221

protocol limitsthe starvation of “writes’. Similarly, when the server crashes, it can
restoretheinformation ontheleasesit hasgrantedif itshas saved them on secondary
storage or alternatively (dueto the high I/O cost the former approach incurs) it can
only waitfor aperiod of timeequal tothelongest | easeit hasgranted!’ beforecommit
any writes. Leases present a trade-off similar to Poll; long lease terms reduce the
cost of reads, amorti zing leaserenewal over many reads, but onthe other hand, delay
the“writes’. Short lease terms present several advantages. First, they minimizethe
delay dueto client or server failures. Second they reduce the storage requirements
ontheserver andthird they minimizethefal se-sharing (Gray & Cheriton, 1989) that
occurs. False sharing occurs when the server needs to modify an object, for which
aclient not currently accessing that object holds a lease. Longer-term leases are
moreefficientfor“hot” objectswithrelatively littlewrite-sharing. Thedetermination
of theoptimal lease term dependson anumber of factors, such as object popularity,
state-space overhead, control messages overhead, read/write frequency. Some
analytical models addressing the issue of optimal lease duration were presented in
(Duvvuri, Shenoy & Tewari, 2000).

Leases are efficient when the cost of the |ease renewal is amortized over
many reads. For the Web though, the interaccess time for an object may span
several minutes degrading thusthe performance benefits of theoriginal Leases.
S0, Volume Leases were proposed in (Yin et al., 1999) to amortize the lease
renewal cost over readsto many objects. Objects at the server are grouped into
volumes. Usually a volume groups together related objects (e.g., objects that
tend to be accessed together). A client can access an object in its cache when
it holdsavalid lease on both the object (Object Lease) and the volume to which
this object belongs (Volume Lease). The server can modify an object as soon as
either lease (Object or Volume) expires.

With alease term equal to zero, the Leases is equivalent to Poll-each-read.
Leases bears some similarity with the TTL approach, but the difference being that
the former guarantees strong consistency.

Summary. In Table 1 we present the consistency maintenance protocols
categorized along two dimensions; the first being the form of consistency they
provide and the second being the part that initiates the consistency check.

Object Change Detection

When caching dynamically generated objects, a key problem isto determine
which objects become obsolete, when base data change. Thisisimportant for the
scheduling of theinvalidation messagesthat must be sent to the caches (or in general

Table 1: Categorization of consistency maintenance protocols
Protocol / Consistency Weak Strong
Client-driven Poll, (adaptive-)TTL Poll-each-read

Server-driven Invalidation, Leases

222 Katsaros & Manolopoulos

to invalidate a cached object) in order to maintain strong consistency. For the
identification of the objects affected by changesto base data, caches must maintain
information about the dependencies of cached objects on base data.

For this purpose, the Object Dependence Graph (ODG) and Data Update
Propagation (DUP) were introduced in (lyengar & Challenger, 1998; Challenger
et a., 1999). DUP maintains the correspondence between objects (defined to be
cacheable items) and underlying data, which change and affect the values of
objects. Dependencies between objectsand dataarerecorded inthe ODG. A vertex
inthisgraph correspondsto an object or adatum. Anedgefromavertex d to avertex
o indicatesthat achangetod affectso. By transitivity, “hidden” dependenciesexist
in ODG aswell. Using graph traversal algorithms (depth-first, breadth-first) wecan
determine the objects affected by changes to base data.

Asasimpleconcreteexample, consider asiteserving stock relatedinformation,
which uses arelational database consisting of atable STOCK INFO(stockName,
currentPrice, exchangeVolume) and two dynamically generated HTML pages
(URLS), URLI publishing the pairs of stockName and currentPrice and a URL2
publishing the pairs of stockName and exchangeVolume. We can represent the
dependencies of these URLs on base data by an ODG asin Figure 2(a) or Figure
2(b). In the left part of the figure, thereis only one datum (the base table) and two
objects (URLI and URL?2), whereasin theright part, there exist the same URL s, but
three data (the three columns) of the basetable. By appropriately choosing the data,
we can control the coarseness of the dependencies. Based on the dependencies
described in the left part of the figure, any modification on the table resultsin an
invalidation of both objects, whereasthe dependenciesexpressed intheright part of
thefigurealow usto prevent invalidation of URL 1 when occur changesonly to the
exchangeVolume.

Cache managers maintain directories containing information about cached
objects. Thisinformationmay includethe ODG aswell. Uponreceiving anotification
for amodified datum they can invalidate the objects depended onit. Obviously, the
object dependencies are communicated to caches by the application programs that
generate the objects. The invalidation events can be generated by trigger mecha

Figure 2: Examples of the object dependence graph representing different
coarseness dependencies between objects and base data

T/RI1 TTRI? T/RI1 T/RI?

/" AN

STOCK_INFO STOCK_INFO::stockName ~ STOCK_INFO::currentPrice STOCK_INFO::exchnageV olume

(a (b)

Cache Management for Web-Powered Databases 223

nismsor specially crafted application scripts(Challenger etal., 1999). Of course, this
presents a complication, since the DBMS, the application servers and caches may
be independent components, but the success of the system in (Challenger et al.,
1999), which served as the Web site for the Winter Olympic Games of 1998,
demonstratesthefeasibility of deployingsimilar solutions.

PREFETCHING

Wepointed out earlier (see Section* Background”) that caching haslimitations.
It isnot useful for first-time referenced objects, and its usefulness decreases when
objects tend to change frequently. To cure caching’s reactive nature, prefetching
has been proposed in order to enhance its content. Prefetching is the process of
deducing futurerequestsfor objectsand bringing those objectsinto the cache before
an explicit request is made for them. Prefetching presents afundamental tradeoff;
the more objects are brought into the cache the greater is the probability of acache
hit, but so is the generated traffic. An effective and efficient prefetching scheme
should maximize the number of hitsduetoitsaction and at the sametime minimize
theincurred cost dueto the prefetched objects. Thiscost may represent cache space,
bandwidth, etc.

Thecoreissuein employing aprefetching schemeisthe deduction of future
requests. What is needed is a mechanism that will “suggest” objects to be
prefetched from their origin location, the “server”. In general, there exist two
possibilities for the deduction of future references. Either there is complete
knowledge about them or they must be predicted. Theformer iscalled informed
and the latter predictive prefetching.

Informed prefetching occurs in cases where the client (e.g., an application
program) knows exactly the resources is going to request in the near future and
reveals them into the cache (Patterson et al., 1995; Cao et a., 1996). The latter is
responsible for programming its caching and prefetching decisions in order to
increase its performance. Informed prefetching is actually a scheduling policy
subject to aset of constraints regarding cache space, timeliness of prefetching and
availablebandwidth. Thismodel requiresthecommunication bandwidth betweenthe
applications and the cache to be stable and thus can be implemented only in cases
where the cache is somehow embedded into the application, e.g., databases,
operating systems, €etc.

Informed prefetching is completely exonerated from the burden of guessing
which objects will be requested. Currently, such a situation where an application
knows exactly its future requests is not frequent in the Web, because requests are
not generated by afew programmed sources, as happensin the case of operating or
database systems, but originate directly from Web clients (usualy humans).
Moreover, in the Web we cannot assume fixed bandwidth between the cache and
the origin location of the data. We cannot assume this even for cachesinside the Web-
powered database, because their load depends on the external Web client requests.

224 Katsaros & Manolopoulos

Predictive Prefetching for the Web

Inthe Web, we need an alternative mechanism for deducing future references.
The only possibility is to take advantage of the spatial locality present in Web
request streams. Spatial locality captures the co-reference of some resources and
it isrevealed as “regularity patterns’ in the request streams. Studies examining
request streams in proxy and Web servers (Almeida et a., 1996) confirmed the
existenceof spatial locality. Theremainingissueisto* quantify” spatial locality, that
is, to discover the dependencies between references for different data. Such
dependencies can be discovered from past requests for resources' and used for
making predictions about future requests. The dependencies, which can be ex-
pressed as rules, drive prefetching decisions. In other words, they select which
objectswill be prefetched.

Inwhat follows, wewill describethegeneral form of aMarkov predictor. Inthe
sequel, we will present the three families into which the existing prefetching
algorithms can be categorized and will also explain how they can beinterpreted as
Markov predictors. Their interpretation asMarkov predictor isimportant in order to
understand their differences and shortcomings.

Markov Predictors

Let T = <tr,..., tr> be a sequence of consecutive requests for documents
(called transaction) made by aclient. Let also, S=<d,, ..., d >, n<'k, be asequence
of accesses, whichisasubsequence® of thistransaction. Givenacollection of client
transactions, the probability P(S) of an access sequence S isthe normalized number
of occurrencesof S insidethe collection of transactions. Thus, if thetotal number of
transactionsisn Tr, andthesequence.sS appears/i-(S) timesinsidethiscollection, then
P(S)=fr(S)/nTR.

LetS=<d,..., d >beasequence of accesses. Thenthe conditional probability
that the next accesses will beto d , ,....d vond | d,..., d). This
probability isequal to:

P(dn+]'_._'dn+m| d])___) i :P(dl,....,dn,dn+l,...,dn+m)
P(d],..., dn)

Therefore, given acollection of client transactions, rules of the form
d,..d d.d., 2
can be derived, where P(d ,....d ..., d) isequal to or larger than a user-
defined cut-off valueT. P(d , ,...d , |d,..., d)istheconfidence of therule. The
left part of theruleiscalled the head and theright part is called the bod)y of therule.
The dependency of forthcoming accesses on past accesses defines a Markov
chain. The number of past accesses considered in each rule for the calculation of
thecorresponding conditional probability iscalledtheorder of therule. For instance,
the order of therule 4,B 0 Cis2.
Definition 5 (n-m Markov predictor). An n-m Markov predictor calculates
conditional probabilitiesP(d .,d . |d, ..., d) between document accessesand

Cache Management for Web-Powered Databases 225

discoversrulesof theform (2). Thehead of eachrule hassizeequal to » and the body
has maximum size equal to m.

A predictive prefetching algorithm can be defined as a collection of /-m, 2-
m, ..., n--m Markov predictors.

Below we present thethree familiesinto which existing predictive prefetching
mechanisms for the Web can be categorized. The first two are adopted from the
context of operating and database systems, whereas the third is particularly suited
for the Web environment.

Dependency Graph (DG)

The agorithms belonging to this family are based on the concept of the
Dependency Graph (DG). This concept was originally proposed in the context of
operating systems (Griffioen & Appleton, 1994) and was later adopted in the Web
(Padmanabhan & Mogul, 1996, Cohen, Krishnamurthy & Rexford, 1999; Jiang &
Kleinrock, 1998).

The DG depictsthe pattern of accessto different objects. The graph hasanode
for each abject that has ever been accessed. There is an arc from node X to node
Y, if andonly if at somepointintime, Y was accessed within w accessesafter X and
both accesses were done by the same client?. The user-specified parameter w is
called the lookahead window. \We maintain the following information in the graph:
a) the number of accessesto each node X and b) the number of transitionsfrom node
X to node Y. The confidence of arule, say XPY, is the ratio of the number of
transitionsfrom X to Y to the total number of accessto X itself. Figure 3(a) depicts
aDG constructed from two request sequences ABCACBD and CCABCBCA. The
numbers on the arcs denote the number of transitions from the source to the target
of the arc, whereas the numbers next to each node denote the number of accesses
to each node.

The Dependency Graph (DG) agorithm uses a /-1 Markov predictor. It
cal cul ates conditional probabilities P(d. | d /) foralld, d belonging to atransaction,
provided that the number of intervening requests between d, and d doesnot exceed
w. It maintains a set of rules of the form d [] d. For auser who has accessed the
sequence of documents 7 =<tr, ..., tr >, DG searches all rules with head tr and
prefetches all documents d for which tr”D disarule.

Prediction by Partial Match (PPM)

Thework by Curewitz, KrishnanandVitter (Curewitzeta ., 1993) identifiedthe
relation between compression schemes and prediction. Thus, they proposed the
adoption of a well-known text compressor, namely the Predictor by Partial
Match, in order to carry out predictive prefetching in object databases. Its
usefulness was later investigated in the Web environment (Fan, Cao, Lin &
Jacobson, 1999; Palpanas & Mendelzon, 1999; Chen, Park & Yu, 1998;
Deshpande & Karypis, 2001).

The PPM schemeisbased on the notion of ak-order PPM predictor. A k-order
PPM predictor maintains;j-1 Markov predictors, for all 1<j<k. It employsaMarkov

226 Katsaros & Manolopoulos

Figure 3: (a) Dependence graph (lookahead window 2) and (b) Predictor by
partial match for two request streams ABCACBD and CCABCBCA

(€Y (b)

predictor, which hasthe constraint that the preceding; “ events’” must be consecutive
in the request stream. A PPM predictor is depicted as a tree where each path or
subpath that emanates from the root corresponds to a distinct sequence of
consecutive requests. A k-order PPM can be constructed from a collection of
transactions asfollows: we move a“sliding window” of size; (for all j=1,2,..,k+1)
over each transaction. For every sequence of accesses of length j, we either create
anew pathof lengthj inthetreeinitializingitsassociated counterto 1, or (incasesuch
apathalready exists) wesimply increment by onethecounter of thepath. Figure 3(b)
illustrates a 2™ order PPM predictor, where paths emanate from the tree root with
maximum length equal to k+1=2+1 (=3). The counter associated with each node
depictsthe number of timesthis node was requested, after all nodes beforeit in the
path, were requested. The counter for achild of the root depictsthe total number of
appearances of this node in the transactions.

The k-order PPM algorithm uses a collection of /-1, 2-1, ..., k-1 Markov
predictors(kisauser-specified constant) with theadditional constraint that accesses
are consecutive. These Markov predictors cal culate conditional probabilitiesof the
fompPd, |d) Pd. |d ,d) ..., Pd,|d,., ..dp)and determine the
corresponding rules, which have head sizes equal to 1,2, ... ,k, respectively.

In summary, we see that the following facts hold, see aso (Nanopoulos,
Katsaros & Manolopoulos, 2002):

DG considers dependencies between pairs of references only (first-order
dependencies). The considered references need not be consecutive.

e PPM considers dependencies not only between pairs of references (higher-
order dependencies). The considered references must be consecutive.
Thesetwo facts highlight theinefficiency of DG and PPM schemesto address

thereguirementsintheWeb environment. Duetothehypertextual nature of theWeb,

the Web workloads exhibit higher order dependencies between references.

Cache Management for Web-Powered Databases 227

Higher order dependencies describe the fact that afuture reference may depend not
only on one specific reference made in the past, but also on a “longer history”.
Moreover, due to the navigational nature of information seeking in the Web,
correlated references may not be consecutive. Thus, an effective predictive
prefetching scheme should address these requirements.

Prefetching Based on Association Rules Mining—The WM Algorithm

In (Nanopoulos, Katsaros& Manol opoul os, 2001; Nanopouloset al., 2002) we
devel oped the algorithm WM to address the af orementioned requirements. WM is
based on the association rules mining paradigm (Agrawal & Srikant, 1994).

The agorithms? for association rules discovery (e.g., the Apriori (Agrawal &
Srikant, 1994)) process transactional databases and derive rules of the form (2).
They work in several phases. In each phase, they make a pass over the database of
transactions. In the k-th pass, they determine the firequent®® k-itemsets and create
the set of candidate (k+1)-itemsets. In the next pass, they determine the frequent
(k+1)-itemsets, and so on. Thefrequent 1-itemsetsare the frequent itemsappearing
in the transactions database. After the discovery of all the frequent itemsets, they
make one pass over the database in order to determine the association rules.

Apriori-likealgorithmsarenot appropriatefor deriving prefetching rulesfor the
Web. Their shortcomingisthat they do not takeinto account theordering of theitems
inside atransaction. In (Nanopouloset a., 2002) the WM algorithm was proposed
and showed that generalizes the existing prefetching algorithms (the algorithms
belonging to the family of DG and PPM). WM works like the standard Apriori
algorithm, but hasadifferent candidate generation procedurein order to addressthe
particul arities of the Web mentioned earlier.

In WM , unlike the standard Apriori, an itemset* is “supported” by a
transaction if the itemset is a subsequence of the transaction. Recall that in the
Apriori, anitemset is“ supported” by atransactionif itisasubset of thetransaction.
Thus, the WM takesinto account the ordering between theaccessesin atransaction.
Thisfeatureisvery important for the purposes of Web prefetching, because arule
like APB is apparently different than a rule BPA. The WM algorithm is able to
producebothrules(if they exist), whereasthe Aprioriwould have produced only one
of them. WM achievesthis by adopting adifferent candidate generation procedure
which works as follows: let two frequent (k-1) itemsets be L, =<p,,...,p, > and
L=<q,..q_>.1f p=qg forali=12.. k-2, then WM produces both candidates
C=<p,..p,.q. > ad C,=<q,...q_.p, > Whereas the Apriori would have
produced only the first of them.

DuetoitsApriori-likenature, the WM algorithmisableto producerulesof the
form(2). Itisobviousalso, that WM usesacollection of 1-m, 2-m, ..., k-m Markov
predictors (k is determined by the dataand not prespecified asin PPM) without the
constraint that accesses should be consecutive. Thus, WM addresses the require-
mentsof theWeb environment. In (Nanopoul oset al. 2001; Nanopouloset a. 2002),
extensive experiments are presented that confirm the superiority of WM , which
combines the virtues of PPM and DG.

228 Katsaros & Manolopoulos

Discussion

All three schemes presented earlier, address the question of what to prefetch.
But, in designing an efficient and effective prefetching scheme two more questions
must be answered. When to prefetch and where to place prefetched data
Prefetchingmust betimely. If aprefetchingisissuedtooearly, it might displaceuseful
datafrom cache. If it isissued too late, the prefetched datamay arrive late and thus
donot contributeinlatency reduction. The guestion of whento prefetch hasnot been
addressed inthe Web yet, sincethe Internet bandwidth variesfrom timeto timeand
the load on Web/application servers may experience high peaks. The question of
where to place prefetched data has not been addressed either. There are many
alternatives, as many as the locations where a cache can be placed in the data flow
path. Each such choice provides diverse opportunities for improving the perfor-
mance and varying complicationsinitsdeployment.

Inthissectionwehave presented three methodsfor deriving predictions, which
can be used by a predictive prefetching scheme for the Web. Although, prediction
isthecoreissuein such ascheme, alot of work must be done before prefetching can
be efficiently employed in the Web environment.

WEBCACHESINCOMMERCIAL PRODUCTS

In this section we will present how cache consistency and replacement is
managed in a commercia proxy server, the Squid proxy cache, and in a high
performance Web-powered database, the Oracle9i Application Server
(Oracle9iAS).2> Moreover, wewill briefly comment on some effortsin augmenting
thefunctionality of commercial productswith prefetching capabilities.

Cache Management in Proxy Caches

The Squid proxy. One of the most popular proxy servers used today is the
Squid proxy (Squid, 2001). Squid implements both disk-resident and main memory
caching of objectsretrieved fromWeb servers. Thedefault replacement policy isthe
list-based LRU?. Moreover, it implements a “watermarking” policy to reclaim
cache space. It periodically runs an algorithm to evict objects from cache when its
utilization exceedsawatermark level. Therearetwowatermark levels, a“low-water
mark” and a“high-water” level. Replacement begins when the swap (disk) usage
is above the low-water mark and attempts to maintain the utilization near the low-
water mark. If theutilizationisclosetothelow-water mark, lessreplacementisdone
each time. As the swap utilization gets close to the high-water mark, the object
eviction becomes more aggressive. Finally, Squid implements a size-based object
admission policy enabling the determination of the objectsthat will enter the cache.
A minimum and a maximum val ue for the size of the objects can be defined.

Squid switched from a TTL-based expiration model to a Refiresh-Rate model.
Objectsare no longer purged from the cache when they expire. Instead of assigning
TTL's when the objects enter the cache, freshness requirements are now checked

Cache Management for Web-Powered Databases 229

whentheobjectsarerequested. If anobjectis“fresh”, itisgivendirectly totheclient.
Ifitis“stale’, then an If-Modified-Since request is made for it. When checking the
object freshness, the Squid calculates the following values:
* AGE, ishow much the object has aged since it was retrieved, that is:
AGE = NOW - OBJECT AGE.
* LM AGE,ishow old the object was when it was retrieved, that is:
LM AGE = OBJECT DATE - LAST MODIFIED TIME.
e LM FACTOR, istheratio of AGE to LM AGE, that is:
LM FACTOR = AGE | LM AGE.

. CLIENT MAX AGE,isthe(optional) maximum object agethat theclient will

accept, as taken from the HTTP/1.1 Cache-Control request header.
e EXPIRES, isthe (optional) expiry time from the server reply headers.

These values are compared with the parameters of the “refresh pattern” rules.
The refresh parameters are the following: MIN AGE, PERCENT, MAX AGE.

Thefollowingalgorithmisapplied for determiningif anobjectisfresh or stale:

Algorithm 2 (Squid’s Cache Refresh Model (Squid, 2001))
(1). BEGIN
(2). if(exists(CLIENT_MAX_AGE))
(3). if(AGE > CLIENT_MAX_AGE) return STALE
(4). if (AGE<MIN_AGE) return FRESH
(5). if (exists(EXPIRES))
(6). if(EXPIRES< NOW) return STALE
(7). else return FRESH
(8). if(AGE>MAX_AGE) return STALE
(9). if(LM_FACTOR < PERCENT) return FRESH
(20). return STALE
(12). END

Other proxies. The Apache(Apache, 2001) proxy cache uses TTL-based
consistency as well. The object’s lifetime is computed from the server-supplied
Expires response header when it is present; otherwise it is computed as a portion
fromthelast modification time (using the Last-Modified response header) of the
object. So, TTL Apache = weight factor*(NOW- Last-Modified). The Jig-
saw (Jigsaw, 2001) proxy server is TTL-based aswell. TTL’ sfor cached objects
are set from the Expires response headers. |f they are not present, 77L isdefault
set to 24 hours.

Cache Management in Oracle9iAS

Before describing how Oracle9iAS deals with dynamic data caching, we will
briefly present the performance problems encountered by high-load Web-powered
databases and will also present a couple of architecture alternatives employing
cachesto improve their scalability and performance.

Many database-backed Web sites receive millions of requests per day. Such
Web sites are those offering news on a*“hot” event in progress (e.g., amajor sports

230 Katsaros & Manolopoulos

event) or search engines' sites. Sincethetimerequired to serve adynamic page can
beordersof magnitudelarger thantherespectivetimefor astatic page, itisclear that
the Web server may experienceavery highload during peak times. Thisisalsotrue
for the application server that creates the Web pages and the underlying database
from where it retrieves the relevant data. In order to increase the scal ability of the
wholesystem and at the sametimeimproveefficiency, many Web sitesincreasethe
number of Web servers, so asto reducethe per-server load, thusresultinginacluster
of Web servers (Web server farm). In most of the times, this scheme has a front-
end load distributor?, which is responsible for distributing more evenly the load
among the machines of the farm. Figure 4 depicts this architecture.®

The standard configuration in such acluster of Web serversisto replicate the
database itself (Figure 4(a)). This scheme is very simple, but it does not cache
dynamically generated pages and moreover it isvery difficult to keep the database
replicassynchronized. Analternativeistoavoidreplicating thedatabase, but provide
instead amiddle-tier cache (depicted in Figure 4(b)) in order to reduce the database
load. This scheme cannot avoid the redundancy of computation at the Web and
application serversand it requires synchronization between middle-tier cachesand
thedatabase. Finally, another schemeisto providethecluster with afront-end cache
(depicted in Figure 4(c)). This cache is capable of caching dynamic content
forwarding any requestsresultinginacachemissintotheserversof thecluster. This
architecture provides a separation between content publication, handled by the
front-end cache, and content generation, handled by the Web and application
servers and the underlying database. It avoids database replication and multiple
caches, but the challenge it faces is to stay coherent. This cache is sometimes
referred to as server acceleration or reverse proxy cache.®

The Oracle Web Cache

Oracle® has employed the third architecture, depicted in Figure 4(c) aug-
mented with middle-tier data caches at the Web servers or application serves. The
front-end cacheis called Web Cache, whereas the middle-tier caches are referred
to as Data Caches.

The purpose of a Data Cache it to avoid burdening the database backend by
caching base data. As base data is considered any collection of data that can be
expressed using aSQL SELECT statement. They can be atable, or any subset of a
table or datafrom morethan onetable. The synchronization policy of these caches
establishes how and how often the cached data are refreshed. The synchronization
may beeither (a) incremental, refreshing only that portion of the datathat have been
modified, or (b) complete, by deleting the locally cached data and retrieving them
again from the origin database. The first option is favorable when thereis alarge
amount of cached datawhereas the second is better when alarge percentage of the
data changes or when the bathed updates are loaded into the origin database. The
scheduling of synchronization can be done either automatically at specified time
intervals or manually with the aid of the Cache Manager.

Cache Management for Web-Powered Databases 231

Figure 4: A typical architecture of a Web-powered database in a Web server
farm

@D @D @) @D D

INTFRNFT INTFRNFT INTFRNFT
Front-end
cache
Load Load Load
Digtrihitor Didtrihitar Dictrihitar
Web sever Web sever Web sever Web sever Web sever Web sever
application | | application application | | application application | [application
server server server server server server

3 >
data data data data

@ (b) (©

Oracle9iAS Web Cache providesserver accel eration and server |oad balancing
at thesametime. It front-endsacoll ection of Web and application servers(seeFigure
4(c)). It lightensthe load of busy Web servers by storing frequently accessed pages
in memory, eliminating the need to repeatedly process requests for those pages on
middletier servers. It can cache both static and dynamic content. It can cache full
and partial-pages as well as personalized pages (pages containing cookies and
personalized content e.g., personal greetings).

Oracle9iAS Web Cache provides both strong and weak consistency through a
combination of invalidation messagesand expiration. Thisway, itisableto support
applications that can tolerate non-recent data (e.g., weather forecasts) and others,
accepting only fresh data (e.g., stock prices).

Data invalidation can be performed in two ways, by the use of an expiration
policy for the cached objects or by sending an XML/HTTP invalidation message
to the Web Cache host machine.

Expiration Policies. An expiration policy can be set in one of the following
three ways:

232 Katsaros & Manolopoulos

=

Expire <time> after entering the cache.

2. Expire <time> after object creation (This option relies on the Last-Modified
header generated by the origin Web server).

3. Expires as per HTTP Expires response header.

Expirations are primary used when content changes can be accurately predicted.

XML/HTML invalidation messages. When content changes are less pre-
dictable and more frequent, then a mechanism based on messages is hecessary for
mai ntai ning cache coherency. Oracle9iAS Web Cache’ sinvalidation messagesare
HTTP POST requests carrying an XML payload. The XML-formatted part of the
POST request informs the cache about which URL’s to mark as stale. An
invalidation message can be sent in one of the following ways:

1. Manually, using the Telnet protocol to connect to the Web Cache’'s host
machine or the Web Cache Manager-.
2. Automatically, using database triggers, scripts or applications

a. Triggers. A trigger stored in adatabase can include SQL, PL/SQL or JAVA

statements to execute as a unit.

b. Scripts. Since many Web sitesuse scripts(e.g., PERL scripts) toinsert new

dataintothedatabase andthefile system, Web Cache providestheopportunity

for modifying the scripts so as to send an invalidation message to the cache.

c. Applications. Invalidation messages can be generated by a Web site’'s

underlying application logic or from the content management application

used to design Web pages. Oracle9iAS Web Cache shipswith C andJAVA
code that enables developers to embed invalidation mechanisms directly
intotheir applications.

Invalidated objectsinthe Web Cache can be either garbage-collected and thus
never be served stale from the Web Cache or can berefreshed by sending arequest
to the origin application Web server. This second option depends on the origin
application Web server’'s capacity.

Prefetching in Commercial Products

Currently, nocommercial Web (proxy) server implementsprefetching. This
isdueto the complexity of prefetching in synchronizing the server and the cache
and the lack of support from HTTP 1.1. Although commercial products do not
have prefetching capabilities, several research effortshaveresulted in augment-
ing commercial products with prefetching. To mention the most important of
them, the WebCompanion (Klemm, 1999) is a client-side prefetching agent
implemented as a proxy on the client’ s browser and is based on prefetching the
embedded links of a page. P-Jigsaw (Bin & Bressan, 2001) is an extension to
Jigsaw Web server, implementing prefetching in the Web server based on a
simplified form of association rule discovery (Bin, Bressan, Ooi & Tan, 2001).
(Cohen, Krishnamurthy & Rexford, 1998) implements prefetching between Web
servers and proxy caches by constructing volumes of related resources through
the Dependency Graph.

Cache Management for Web-Powered Databases 233

EMERGINGANDFUTURETRENDS

Content Delivery Networks

The Internet “miracle” is based on a growing set of standardized, intercon-
nected networksand astandard for i nformation publishing and viewing, theWeb and
browsers. We al know that the Internet, and consequenity the Web, faces
performance problems. Performance problems arise in any of the following three
general areas:

. Web server processing delays. Servers can't keep up with peak loads
presented, unlessthe siteis built with overcapacity.

e Internet delays. Beyond USA, network capacity diminishes rapidly. More-
over, thedataexchange pointsbetweenthevariousnetworksthat constitutethe
Internet (peering points) become overloaded and lose packets thus requiring
the packets to be resent.

. “Last-mile” delays (delays between the subscriber and the Internet e.g., due
to aslow dial-up modem connection).

Increasing the number of Web (and application) servers (Web server farms)
does provide a solution for the first problem but can do nothing for the other two.
Caching at variouspointsinthenetwork canimproveperformancesubstantial ly, but
these caches usually suffer from low hit rates (Kroeger et al., 1997). Theideain
aleviating these problems is to make content delivery from origin servers more
“distributed”, moving someof their contenttothe“edge” of thelnternet. Based upon
this idea the Content Delivery Networks (CDN) (Akamai, InfoLibria, etc.)
emerged recently. CDN are designed to take advantage of the geographic locations
of end users. Rather than serving content from the origin Web site, the content
distribution model makes copies of “key” content on multiple content delivery
servers sites distributed through the Internet, close to the users requesting that
content. “Key” content may represent popular or bandwidth-demanding objects
(graphics, streaming media), usually static content.

A Content Delivery Network, like Akamai’s FreeFlow, runs on thousands of
servers distributed across the Internet at Network Provider operations centers,
universities, corporate campuses and other locations with alarge number of Web
visitors. A CDN contracts with content providers (e.g., Yahoo!) to deliver their
content. The content publisher can control what pieces of content to “ outsource” to
the CDN provider, by replacing existing HREF tagsinthe content’ sowner’ s HTML
withtagsthat pointtothe CDN provider’ sdomain, which hasalready obtained acopy
of the content to be delivered. Thus, a client request first goes to the origin Web
server, which will return an HTML page with references for graphics and other
objectstothecontent delivery network. Then, theclient will request the* outsourced”
content from the CDN provider. Figure 5 depicts how the content distribution
model operates.

Content distribution services address efficiently the aforementioned perfor-
mance problems.

e Withthe"hottest” content “outsourced”, the load on the origin server isreduced.

234 Katsaros & Manolopoulos

e Theconnectionfromalocal content delivery server isshorter than betweenthe
origin Web server and the user, thus reducing latency.

. Sincethe CDN serversare shared by many usersthisservice greatly increases
the hit ratio.

Though CDN serversoperatelikeaconventional cache, they differ inthat they get
only requests for those objects that they are contracted to serve. Thus, their “hit ratio”
is100%. CDN do not replace normal caches since they work in an “orthogonal” axis.
CDN optimize content access for specific paying content publishers, while an Internet
cache optimizes content access for acommunity of subscribers.

CDN 'shavebeen proven successful indelivering static content (e.g., streaming
media), but services in the Web move quickly from read-only to transactional.
Millions of users might visit a site per day and perform an analogous number of
transactions e.g., in an on-line auctions site. Thus, scalability issues must be
effectively addressed in these sites. The primary question is whether CDN can be
employedindelivering dynamic content.

Currently, several companies (Akamai, Zembu) proposed architectures for
delivering dynamic content from the “edge” of the Internet. The basic ideais to
separate the Content Generation Tier from the Content Assembly and Delivery
Tier. Theformer istypically centrally maintainedin an enterprisedatacenter andits
primary function is application coordination and communication to generate the
informationthat isto bepublished. It typically consistsof application servers, policy
servers, data and transaction servers and storage management. The latter, residing
in the “edge” of the Internet, consists of servers (“edge servers’) that perform
content caching and assembly of pages. These two tiers communicate through a
simple Integration Tier, consisting of a few Web servers serving as the HTTP
communication gateways. Althoughthisdistributedinfrastructureiscommercialized
by some companies (e.g., Akamai’s EdgeSuite) and employed by several content

Figure 5: The content distribution model

/ \ Origin Web server

Sall

Web client

()

7 CDN Cache Servers

Cache Management for Web-Powered Databases 235

providers (CNN, McAffee), work is still needed in thefield of cache management
in order to address the issues of scalability.

In such a large scale distribution, where “edge servers’ are geographically
distributed over awide areanetwork (Internet), the issue of cacheinvalidation and
update scheduling is very crucial, in order to guarantee strong cache consistency.
Recent work on update scheduling focusesonly on centrally managed Web-powered
databases (L abrinidis& Roussopoul os, 2001) and does not address many important
issues like update deadlines, stal eness tolerance. Moreover, cache management in
the“edgeservers’ raisessomeissuesfor the cachereplacement, aswell. Traditional
policieslike LRU, are not be adequate for these caches, and novel onesarerequired
(e.9., Least Likely to be Used (LLU) (Dattaet a., 2001)) that take into account the
derivation dependencies between cached objects.

Processing Power to the Clients

Apart from employing the sophisticated solution of CDNsinorder torelieve
theorigin dataserversfromheavy load, simpler solutionscould helptowardsthis
goal, aswell. Such solutions could exploit current proxy caches, which should
only become “smarter”.

Semantic caching mechanisms (Dar, Franklin, Jonsson, Srivastava& Tan,
1996) could providesignificant performancebenefits provided that they become
more sophisticated than the current proposals (Chidlovskii & Borghoff, 2000),
maybe through the cooperation with the origin data server, as proposed in (Luo
& Naughton, 2001).

Ancther alternative would be to migrate not only data closer to the clients but
somedataprocessing capabilities, aswell. Sohavingtheserver to providea ongwith
the data, code portions that implement part of its processing logic could improve
performance and reduce latency significantly. Thisis because cached data can be
processed by their associated code in order to answer queries different from those
that resulted in caching the specific data. Pioneering work based on this idea was
implemented for proxy cachesin (Luo, Naughton, Krishnamurthy, Cao & Li, 2000).

CONCLUSION

In this chapter, we have examined the issues of cache replacement and
consistency as well as that of prefetching for Web caches. We were particularly
concerned for cachesthat store data originating from Web-powered databases. \We
demonstrated that cachingisessential forimproving theperformanceof suchamulti-
tier system.

We presented themost important policiesproposed sofar for theissue of cache
replacement. Through this presentation became clear that any successful replace-
ment algorithm should take into account the object’ ssize and cost in such amanner
that it presents no complexity in making replacement decisions. We discussed how
cache consistency can be maintained and concluded that, since Web applications

236 Katsaros & Manolopoulos

require both strong and weak consistency, a combination of invalidation and
expiration policiesisthe best solution.

We also described a common context so as to treat existing predictive
prefetching algorithms as Markov predictors. Through this description, the supe-
riority of WM become clear, since it was specifically designed to address the
requirementsof the Web environment, namely, higher order dependenciesand non-
consecutiveness between correlated references.

Finally, we presented the ideas behind the emerging trend of Content Distri-
bution Networks, that attempt to make the Web a redlly distributed database by
moving data closer to their consumers. We highlighted the challenges related to
caching behind their architectural design. Moreover, we pointed out some areas
where future work should concentrate. We believe that future work should
concentrate on two targets. Firstly, to move data closer to the clients, as Content
Distribution Networks do currently and secondly to move some“ applicationlogic”
closer to the clients, in order to improve the scal ability.

ENDNOTES

1 The number of appearances of an item in a stream is called the popularity
profile of the item.

2 This path will be called data flow path in the sequel.

3 The reader can refer to (Oracle, 2001) for more information on this topic.

4 Longest Forward Distance.

5 Cost Inverse Forward Distance.

6 Presented in (Abrams, Standridge, Abdulla, Fox & Williams, 1996).

7 Not referenced in the future.

8 Policieslike LRU, LFU, SIZE, can beregarded as function-based policies as
well, where the utility function is the inverse of recency, frequency and inverse of
size, respectively. They can be regarded as key-based policies as well having only
aprimary key.

9 These two assumptions determine the Independent Reference Model.

10 The number of such groupsisusually small.

11 Detailson how the value of the constantsc, #1, 2 iscomputed can be found
in(Rizzo & Vicisano, 2000).

12 Available in the response message from the server.

13 Here, by “client” we mean any location in the data flow path (see Section
“Introduction”) that caches data originating from a*“ server” location.

14 In the Web there is usually a single “writer” (the server) and multiple
“readers’ (the clients).

15Moreinfoonthetechniquesfor identificating clientscanbefoundin (Kristol,
2001) and (Oracle, 2001).

16 In casetheoriginal server isunreachabledueto failure or network partition,
then the cache can inform the client that the data are potentially stale and the client
can take an “ application-depended” decision.

Cache Management for Web-Powered Databases 237

17 Provided that it has recorded it on the secondary storage.

18 Leasesfall into server-driven protocolssinceit isthe server that grants
the leases.

19 Recorded in Web server log files.

20 By the term subsequence, we mean that the elements of .S need not be
necessarily consecutivein 7r.

21 Or by the same application or the same process.

22 We assume standard knowledge of the problem of mining association rules
and of the Apriori dgorithm (Agrawa & Srikant, 1994).

23 The itemsets whose support exceeds a user-defined support threshold.

24 \Weusetheterm “itemset” for the WMo aswell, although we should usethe
term “itemsequence’.

25 Oracle is aregistered trademark of Oracle Corporation.

26 Objectsare maintainedin sorted order of their last accessinalist (list-based
LRU) and not in a heap (heap-based LRU).

27 Instead of using Round Robin DNS.

28Notethat for Web-powered databases, replicating only theWeb serverisnot
enough for scaling up the whole system. The application server must be replicated
aswell.

29 A proxy server caches content from an infinite number of sources, whereas
a server accelerator caches content for one or a handful of origin servers.

30Allinformationin Subsection“ The OracleWeb Cache” isbased on (Oracle,
2001). Consequently, newer rel eases of the product may turn thismaterial obsol ete.

REFERENCES

Abrams, M., Standridge, C., Abdulla, G., Fox, E. and Williams, S. (1996). Removal
policiesin network caches for World Wide Web documents. Proceedings of
the ACM Conference on Applications, Technologies, Architectures and
Protocols for Computer Communications (ACM SIGCOMM’96), 293-305.

Aggrawal, C., Wolf, J. and Y u, P. (1999). Caching on the World Wide Web. IEEE
Transactions on Knowledge and Data Engineering (IEEE TKDE), 11(1),
94-107.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rulesin
large databases. Proceedings of the 20" International Conference on Very
Large Databases (VLDB’94), 487-499.

Almeida, V., Bestavros, A., Crovella, M. anddeOliveira, A. (1996). Characterizing
reference locality in the WWW. Proceedings of the 4" IEEE Conference on
Parallel and Distributed Information Systems (IEEE PDIS’96), 92-103.

Apache. (2001). Apache 1.2.6 HTTP server documentation. Retrieved August 30,
2001, from http://www.apache.org.

Atzeni, P., Mecca, G. and Merialdo, P. (1998). Design and maintenance of data-
intensive Web sites. Proceedings of the 6" International Conference on

238 Katsaros & Manolopoulos

Extending Database Technology, (EDBT’98), Lecture Notes in Computer
Science, 1377, 436-450.

Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2), 78-101.

Berners-Lee, T., Caililiau, R., Luotonen, A., Nielsen, H. F. and Secret, A. (1994).
The World-Wide Web. Communications of the ACM (CACM), 37(8), 76-82.

Bin, D. L. and Bressan, S. (2001). P-Jigsaw: Extending Jigsaw with rules assisted
cache management. Proceedings of 10" World Wide Web Conference
(WWWw10),178-187.

Bin,D. L., Bressan, S, Ooi, B. C. and Tan, K.L. (2000). Rule-assisted prefetching
in Web-server caching. Proceedings of ACM International Conference on
Information and Knowledge Management (ACM CIKM’00), 504-511.

Bredlau, L., Cao, P., Fan, L., Phillips, G. and Shenker, S. (1999). Web caching and
Zipf-like distributions: Evidence and implications. Proceedings of the IEEE
Conference on Computer Communications (IEEE INFOCOMM’99), 126-
134.

Cao, P, Felten, E. W., Karlin, A. R. and Li, K. (1996). Implementation and
performanceof integrated application-controlledfilecaching, prefetching, and
disk scheduling. ACM Transactions On Computer Systems (ACM TOCS),
14(4), 311-343.

Cao, P. and lrani, S. (1997). Cost-aware WWW proxy caching algorithms.
Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS’97), 193-206.

Cao, P.andLiu, C. (1998). Maintaining strong cache consistency intheWorld Wide
Web. IEEE Transactions on Computers (IEEE TOC), 47(4), 445-457.
Cate, V. (1992). Alex—A global file system. Proceedings of the USENIX File

System Workshop, 1-12.

Challenger, J., lyengar, A. and Dantzig, P. (1999). A scal ablesystemfor consistently
caching dynamic Web data. Proceedings of the IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM’99).

Chen, M. S., Park, J. S.and Yu, P. S. (1998). Efficient datamining for path traversal
patterns. IEEE Transactions on Knowledge and Data Engineering (IEEE
TKDE), 10(2), 209-221.

Chidlovskii, B. and Borghoff, U. (1999). Semantic caching of Web queries. The
VLDB Journal, 9(1), 2-17.

Coffman, E. and Denning, P. (1973). Operating Systems Theory. Englewood
Cliffs, NJ: Prentice-Hall.

Cohen, E., Krishnamurthy, B. anbd Rexford, J. (1998). Improving end-to-end
performance of the Web using server volumes and proxy filters. Proceedings
of ACM International Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (ACM
SIGCOMM’98), 241-253.

Cache Management for Web-Powered Databases 239

Cohen, E., Krishnamurthy, B. and Rexford, J. (1999). Efficient algorithms for
predicting requests to Web servers. Proceedings of the IEEE International
Conference on Computer Communications (IEEE INFOCOM’99), 284-
293.

Curewitz, K., Krishnan, P. and Vitter, J.S. (1993). Practical prefetching via data
compression. Proceedings of the ACM International Conference on
Management of Data (ACM SIGMOD93), 257-266.

Dar, S., Franklin, M., Jonsson, B., Srivastava, D. and Tan, M. (1996). Semantic data
caching and replacement. Proceedings of 22" International Conference
on Very Large Data Bases (VLDB’96), 330-341.

Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Ramamritham, K. and Fishman,
D. (2001). A comparative study of alternative middletier caching solutionsto
support dynamic Web content acceleration. Proceedings of 27" Interna-
tional Conference on Very Large Data Bases (VLDB’01), 667-670.

Denning, P. and Schwartz, S. (1972). Properties of the Working-Set model.
Communications of the ACM (CACM), 15(3), 191-198.

Deshpande, M. and Karypis, G. (2001). Selective Markov models for predicting
Web-page accesses. Proceedings of the 1 SIAM Conference on Data
Mining (SDM’01).

Dilley, J. and Arlitt, M. (1999). Improving proxy cache performnace: Analysis of
three replacement policies. IEEE Internet Computing, 3(6), 44-55.

Duvvuri, V., & Shenoy, P. and Tewari, R. (2000). Adaptive Leases: A strong
consistency mechanism for the World Wide Web. Proceedings of the 19"
IEEE Conference on Computer Communications (IEEE INFOCOM’00),
834-843.

Fan, L., Cao, P., Lin, W. and Jacobson, Q. (1999). Web prefetching between |ow-
bandwidth clients and proxies: Potential and performance. Proceedings of
ACM International Conference on Measurement and Modeling of Com-
puter Systems (ACM SIGMETRICS’99), 178-187.

Franklin, M., Carey, M. and Livny, M. (1997). Transactional client-server cache
consistency: Alternatives and performance. ACM Transactions On Data-
base Systems (ACM TODS), 22(3), 315-363.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman and Company.

Gray, C. and Cheriton, D. (1989). L eases: An efficient fault-tolerant mechanism for
distributed file cache consistency. Proceedings of the 12" ACM Symposium
on Operating Systems Principles (ACM SOSP’89), 202-210.

Greenspun, P. (1999). Philip and Alex’s Guide to Web Publishing. New Y ork:
Morgan Kaufmann.

Griffioen, J.and Appleton, R. (1994). Reducing filesystemlatency using apredictive
approach. Proceedings of the Summer USENIX Conference, 197-207.
Hosseini-Khayat, S. (1997). Investigation of generalized caching. PhD Thesis,

Washington University, Saint Louis, Missouri.

240 Katsaros & Manolopoulos

Hosseini-K hayat, S. (2000). On optimal replacement of nonuniform cache objects.
IEEE Transactions on Computers (IEEE TOC), 49(8), 769-778.

Howard, J., Kazar, M., Menees, S., Nichals, D., Satyanarayanan, M., Sidebotham,
R. and West, M. (1988). Scale and performance in a distributed file system.
ACM Transactions On Computer Systems (ACM TOCS), 6(1), 51-81.

lyengar, A. and Challenger, J. (1998). Data update propagation: A method for
determining how changesto underlying dataaffect cached objectsontheWeb.
Technical Report, IBM Research Division, RC 21093(94368).

Jiang, Z. and Kleinrock, L. (1998). An adaptive network prefetch scheme. IEEE
Journal on Selected Areas in Communications (IEEE JSAC), 16(3), 358-
368.

Jigsaw. (2001). Jigsaw 2.0 HTTP server documentation. Retrieved August 30,
2001 from http://www.w3c.org/Jigsaw.

Jin, S. and Bestavros, A. (2000). Sources and characteristics of Web temporal
locality. Proceedings of the IEEE/ACM Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS 00).

Jin, S. and Bestavros, A. (2001). GreedyDual* Web caching algorithm: Exploiting
the two sources of tempora locality in Web request streams. Computer
Communications, 24(2), 174-183.

Klemm, R. (1999). WebCompanion: A friendly client-side Web prefetching agent.
IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE),
11(4), 577-594.

Korth, H., Silberschatz, A. and Sudarshan, S. (1998). Database System Concepts.
New York: McGraw-Hill.

Kristol, D. (2001). HTTP cookies: Standards, privacy and politics. ACM Transac-
tions on Internet Technology (ACM TOIT), 1(2), 151-198.

Kroeger, T.,Long, D. E.andMogul, J. (1997). Exploring thebounds of Web | atency
reduction from caching and prefetching. Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems (USITS97), 13-22.

Labrinidis, A. and Roussopoulos, N. (2000). WebView materialization. Proceed-
ings of the ACM International Conference on Management of Data (ACM
SIGMOD00), 504-511.

Labrinidis, A. and Roussopoulos, N. (2001). Update propagation strategies for
improving the quality of data on the Web. Proceedings of 27" International
Conference on Very Large Data Bases (VLDB’01), 391-400.

Luo, Q. and Naughton, J. (2001). Form-based proxy caching for database-backed
Web sites. Proceedings of 27" International Conference on Very Large
Data Bases (VLDB’01), 191-200.

Luo, Q., Naughton, J., Krishnamurthy, R., Cao, P. and Li, Y. (2000). Active query
caching for database Web servers. The World Wide Web and Databases,
Lecture Notes in Computer Science, 1997, Springer-Verlag, 92-104.

Luotonen, A. and Altis, A. (1994). World Wide Web proxies. Computer Networks
and ISDN Systems, 27(2), 147-154.

Cache Management for Web-Powered Databases 241

Malaika, S. (1998). Resistanceisfutile: TheWebwill assimilateyour database. [EEE
Data Engineering Bulletin, 21(2), 4-13.

Mattson, R., Gecsai, J., Slutz, D. and Traiger, |. (1970). Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2), 78-117.

Nanopoulos, A., Katsaros, D. and Manolopoulos, Y. (2001). Effective prediction of
Web-user accesses. A data mining approach. Proceedings of the Interna-
tional Workshop on “Mining Log Data Across All Customer TouchPoints”
(WEBKDD01).

Nanopoulos, A., Katsaros, D. and Manolopoulos, Y . (2002). A datamining algorithm
for generalized Web prefetching, IEEE Transactions on Knowledge and
Data Engineering (IEEE TKDE), to appear, 2002.

Nelson, M., Welch, B. and Ousterhout, J. (1988). Caching in the Sprite network file
system. ACM Transactions On Computer Systems (ACM TOCS), 6(1), 134-
154.

Niclausse, N., Liu, Z. and Nain, P. (1998). A new efficient caching policy for the
World Wide Web. Proceedings of the Workshop on Internet Server
Performance (WISP).

O'Neil, E., O'Neil, P. and Weikum, G. (1993). The LRU-K page replacement
algorithm for database disk buffering. Proceedings of the ACM Interna-
tional Conference on Management of Data (ACM SIGMOD’93), 297-306.

Oracle. (2001). Oracle9iAS Web Cache (White paper), June.

Padmanabhan, P. and Mogul, J. (1996). Using predictive prefetching to improve
World Wide Web latency. ACM SIGCOMM Computer Communication
Review, 26(3).

Palpanas, T. and Mendelzon, A. (1999). Web prefetching using partial match
prediction. Proceedings of the 4" Web Caching Workshop (WCW’99).

Patterson, H.R., Gibson, G.A., Ginting, E., Stodolsky, D. and Zelenka, J. (1995).
Informed prefetching and caching. Proceedings of the ACM Symposium on
Operating System Principles (ACM SOSP’95), 79-95.

Rizzo, L. and Vicisano, L. (2000). Replacement policiesfor aproxy cache. ACM/
IEEE Transactions on Networking (ACM/IEEE TON), 8(2), 158-170.
Robinson, J. and Devarakonda, M. (1990). Data cache management using fre-
guency-based replacement. Proceedings of the ACM Conference on Mea-
surement and Modeling of Computer Systems (ACM SIGMETRICS 90),

134-142.

Rodriguez, P., Spanner, C. and Biersack, E.W. (2001). Analysis of Web caching
architectures: Hierarchical and distributed caching. ACM/IEEE Transactions
on Networking (ACM/IEEE TON), 9(4), 404-418.

Shim, J., Scheuermann, P. and Vingralek, R. (1999). Proxy cache algorithms:
Design, implementation and performance. IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE), 11(4), 549-562.

Squid. (2001). Squid 2.4 Stable 1 HTTP server documentation, Retrieved August
30, 2001 fromhttp://squid.nlanr.net.

242 Katsaros & Manolopoulos

Tanenbaum, A. (1992). Modern Operating Systems. Englewood Cliffs, NJ:
Prentice-Hall.

Wang, J. (1999). A survey of Web caching schemes for the Internet. ACM
SIGCOMM Computer Communication Review, 29(5).

Wooster, R. and Abrams, M. (1997). Proxy caching that estimates pageload delays.
Computer Networks, 29(8-13), 977-986.

Y agoub, K., Florescu, D., Issarny, V. and Valduriez, P. (2000). Caching strategies
for data-intensive Web sites. Proceedings of the 26" International Confer-
ence on Very Large Databases (VLDB 00), 188-199.

Yin, J., Alvisi, L., Dahlin, M. and lyengar, A. (2001). Engineering server-driven
consistency for large scale dynamic Web services. Proceedings of the 10"
World Wide Web Conference (WWW10), 45-57.

Yin,J.,, Alvisi, L., Dahlin,M.and Lin, C. (1999). Volume L easesfor consistency in
large-scale systems. [EEE Transactions on Knowledge and Data Engi-
neering (IEEE TKDE), 11(4), 563-576.

Young, N. E. (1994). The k-server dual and loose competitiveness for paging.
Algorithmica, 11(6), 525-541.

Section IV

Heterogeneous and
Distributed Systems

